Supplementary Information for

Oil palm genome sequence reveals divergence of interfertile species in old and new worlds

Rajinder Singh^{1*}, Meilina Ong-Abdullah^{1*}, Eng-Ti Leslie Low^{1*}, Mohamad Arif Abdul Manaf¹, Rozana Rosli¹, Rajanaidu Nookiah¹, Leslie Cheng-Li Ooi¹, Siew–Eng Ooi¹, Kuang-Lim Chan¹, Mohd Amin Halim¹, Norazah Azizi¹, Jayanthi Nagappan¹, Blaire Bacher², Nathan Lakey², Steven W Smith², Dong He², Michael Hogan², Muhammad A Budiman², Ernest K Lee³, Rob DeSalle³, David Kudrna⁴, Jose Louis Goicoechea⁴, Rod Wing⁴, Richard K Wilson⁵, Robert S Fulton⁵, Jared M Ordway², Robert A Martienssen^{6,7} and Ravigadevi Sambanthamurthi^{1,7}

⁷For correspondence: martiens@cshl.edu, <u>raviga@mpob.gov.my</u>

¹ Malaysian Palm Oil Board, 6, Persiaran Institusi Bandar Baru Bangi, 43000 Kajang Selangor, Malaysia

² Orion Genomics, 4041 Forest Park Avenue, St. Louis, MO 63108, USA

³ Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA

⁴ Arizona Genome Institute, University of Arizona, Tucson AZ 85705, USA

⁵ The Genome Institute at Washington University, Washington University School of Medicine, Saint Louis, MO 63108, USA

⁶Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA

^{*}These authors contributed equally to this work.

TABLE OF CONTENTS

Supplementary Figures

Supplementary Figure 1. 454 Linker Library Production	4
Supplementary Figure 2. Average insert size and distribution sizes of Origen_1	
BAC library	5
Supplementary Figure 3. Incremental assembly of fingerprinted BACs	6
Supplementary Figure 4. The genetic map of the selfed Nigerian palm T128,	
constructed using a combination of markers namely SNP, SSR and RFLP	7
Supplementary Figure 5. Isotigs (unigene clusters) formed by assembly of	
transcriptome libraries	12
Supplementary Figure 6. Repeat content	13
Supplementary Figure 7. Segmental duplications in E. guineensis	15
Supplementary Figure 8. Segmental duplications	18
Supplementary Figure 9. Synteny between banana and oil palm	36

Supplementary Tables

Supplementary Table 1. <i>Pisifera</i> genome fragment and linker library statistics	37
Supplementary Table 2. Oleifera genome fragment and linker library statistics	38
Supplementary Table 3. BAC pool fragment and linker library statistics	39
Supplementary Table 4. The oil palm genome sequence	40
Supplementary Table 5. Genome size as determined by flow cytometry	42
Supplementary Table 6. Transcriptome library sequencing and assembly details	43
Supplementary Table 7. Chromosomes and linkage groups in oil palm	44
Supplementary Table 8. Comparative genomics of oil palm	45
Supplementary Table 9. Transcriptome sequencing of oil palm mesocarp and	
kernel at time points prior to and at the peak of oil accumulation	46

Supplementary Methods

Repetitive sequence detection	57
Public database sources for comparative genome sequences and gene models	57
Supplementary Notes	
Triacylglycerol biosynthesis	59
Fruit ripening and abscission	59
Supplementary references	60

Supplementary Figures

Supplementary Figure 1. 454 Linker Library Production. The fragment sizes going into each 454 linker library type were retrospectively monitored by BLAST comparison of linker reads from each half-plate sequencing run to an initial assembly of the *pisifera* reference genome. 50C50 linker library reads (including at least 50 bases up- and downstream of the identified center adapter sequence) that mapped to a single contig or scaffold were identified. The DNA fragment size spanning the two paired linker read sequences was calculated based on the alignment to the initial reference sequence. The intended target insert sizes for each library type are represented by the solid blue line. The average calculated insert size for each half-plate run is indicated by a red box. Error bars represent +/- one standard deviation from the mean of all successfully measured insert sizes for the given half-plate 454 sequencing run. As shown in Supplementary Table 1, the intended 10 Kb target insert size linker libraries displayed a low 50C50 rate (27% overall). For this reason, too few reads generated successfully measured insert sizes to accurately calculate an actual average insert size, and therefore this library class is excluded from the graph.

Supplementary Figure 2. Average insert size and distribution sizes of Origen_1 BAC library. Methods for BAC library construction were performed essentially as previously described^{44,45}. The average insert size and size distribution of the library were determined by selecting random BAC clones and isolating BAC plasmid DNA followed by digestion with *Not*I restriction enzyme and separation on 1% agarose with pulse field gel electrophoresis (PFGE) (CHEF Mapper, BIO-RAD) at 1–50 sec linear ramp, 6 volts/cm, 14°C in 0.5X TBE buffer for 18–20 hours. The insert size of each clone was determined by comparison with molecular weight standards and averages and size distributions were calculated.

60,297 clones group into 11,457 contigs

Supplementary Figure 3. Incremental assembly of fingerprinted BACs. Fingerprinted BACs were assembled incrementally into a total of 17 builds with FPC software (incremental builds on x-axis). The final build of the reference *pisifera* physical map resulted in 63,989 (51%) BACs which remained as singletons and 60,297 (49%) which formed 11,457 contigs. Of the 11,457 contigs, 3,579 (31%) had two BACs, 6,359 (56%) had 3-9 BACs each, 1,463 (13%) had 10-24 BACs each, and 56 (0.5%) contigs comprised 25 or more BAC clones each.

312_T128_LG1[1]	312_T128_	G1[2] 312_T128_LG1[3]		
0.0 - A. SNPM00340	A	SNPE00156	70.2	~ SNPE00214*
0.3 / SNPM00368	目	SNPE00203	71.2	 SNPE00115*
7.2 д 📔 👔 SNPM03276		SNPE00169	71 6 / 🕂	SNPE00116*
8.2 🛝 🛛 🗍 🖉 SNPM01129		SNPE00170	/1.5-/	SNPM02867*
9.0 W SNPM00157		SNPE00204	72.2	[\] SNPE00113
12.6 W SNPM04508		SNPE00147		SNPE00111*
13.4 WH SNPM00197_1	59.5 []]	SNPE00168	72.7	SNPE00112*
16.2 W SNPM01388		SNPIVIU2400	72 0	SNPIVIUU572"
17 4 SNPM00461		SNPE00200	73.0	SNPE00109
		SNPE00201	74.0-0	SNPE00100
18 2 3 SNPM04032		SNPE00177	74.5	SNPM04941
NH// SNPM00269		SNPE00146	74.7	SNPE00106
\ _ / SNPM03685		SNPE00172	75.0	L SNPE00105
18.7 - SNPM02596	60.0	SNPE00151		SNPE00099
SNPM04284	60.5 - <mark>t</mark>	SNPE00148	75 2	SNPE00102
19.2 / SNPM00268	60.7	- SNPE00167	/ 5.2	SNPE00213
19.9 SNPM01012	61.0	SNPE00175		SNPE00101
21.2 // SNPM00155	61.21	SNPE00171	75.5	SNPE00096
21.7 M SNPW00224	61.51	SNPEUU 152	75 7	SNPE00097
22.5 / H NSNEM03935	01.7	SNPE00149	/ S. / WH	USNPE00145
23 2 J/H SNPM04247	62.0	SNPE00150	76 5	SNPM00387
27.6 SNPM01470	62.2	SNPE00158	, o.o M N	SNPE00135
20.4 // \\ SNPM03471	62.5	sMg00228	76.7	SNPE00120
29.4 //_\\1SNPM00498		SNPE00159	77 0	SNPE00104
30.2 /// [\\\ ^L SNPM02459		SNPE00157	//.0-	SNPE00143
32.9 // SNPM02817	62.7 ^J	SNPE00153	79.6	- SNPM02655
34.2 SNPM01653		SNPE00155	81.4	- SNPM01582
36.1 / SNPM04690		SNPE00154	85.8	- SNPM00366
37.4 SEGUUU35	63.01	SNPEUU16U	89.81	F SINPIVIUU257_1
39.8 - SINPIVI04005	63.2 ⁻	sPSc00136	90.51	SNPM02251
40.1 / UsPSc00220		SNPE00139	95.8	- SNPM03563
40.3 SNPM04365	63.5	SNPE00141	97.9	SNPM02176
42.6 SPSc00232		SNPE00142	99.7	SNPM04083
43.5 - sPSc00234	64.0	- SNPE00138	103.4 👭 📗	SNPM04010
44.6 SPSc00239	64.5	- SNPE00137	106.8 📲 🛛	LSNPM00235
45.1 / sPSc00249	65.2	SNPE00136	113.2	SNPE00173
45.9 M SNPM02234	65.91		113.5	SMg00039
46.4 SPSc00241	~~ ~	SNPE00132	121 0	SNPM01649
40.0 - SPSc00243	66.2°	SNPE00133	121.0	SNPM00316
48.1 SPSc00246		ISNPE00131	121.2 - 🛛 🗌	SNPM03539
48.4 SPSc00250	66.7	SNPM01237	122.0	SNPM03091
49.1 sPSc00251	67.2	SNPE00129	123.5	SNPM03226
51.5 🖉 📲 SNPM04251		SNPM03010	128.2 // 🗌 🖞	[\] SNPM00217_2
57.5 🖞 🚦 SNPM04206	67.5	SNPM01250	120 7	\[SNPM00217_1
58.2 SPSc00214	07.5	SNPE00124	120.7 //Ц	SNPM02004
IsPSc00204	[SNPE00123	132.5	SNPM01135
58.7 * • SPSCUU215	67.71	SNPE00127	132.8	SNPIVIUU339
	08.01		// //	SNPW04052
	69.0	SNPE00121	135.3 4	SNPM01968
	03.0	SNPE00118	136.4 J H	SNPM03491
	69.2 ⁷	SNPM02708	142.5	SNPM01818
			144.6	SNPM04780
			144.8 /	[\] SNPM00906

312_T	128_LG7_SH[1]	312_T128_LG	7_SH[2]	312_T128_	LG7_SH[3]
0.0 0.8 1.0 1.3	SNPE00027 SNPE00027 SNPE00029 SNPM02501	17.9 18.1 18.6 18.9	IPE00042 Sc00125 IPE00037	80.2 80.9	SNPM00216 SNPM01480 SNPM01261 SNPM00356
1.8 []]	SNPE00032 SNPE00034 SNPE00033	19.1 - SN 20.1 - SN	1PE00039 1PE00036	84.8 88.5 94.6	SNPM00342 SNPM04580
2.0 2.8 4.3 5.8	^L SNPE00030 ^L SNPE00031 ^L SNPE00025 - SNPM02402	20.9 21.4 21.9 22.6	IPE00028 Sc00119 Sc00121 IPE00023	94.0 96.6 101.7 102.5 102.7	SNPM00169 mEgCIR3232 SNPM01779 SNPM00935
7.1 8.8 9.3	 sPSc00034 SNPE00024 SNPE00022 SNPM00348 	23.6 24.9 SN SN SN SN SN SN SN SN SN SN SN SN SN	JPE00041 Sc00117 Sc00114 JPE00093	103.0	SNPM04395 SNPM02577 SNPM03746 SNPM00417
9.8 []]	SNPM00249 SNPM00203 SNPE00020 SNPE00021		VPRI00092 VPE00074 VPE00086 VPE00089	106.0	SNPM02604 SNPM00275 SNPM00380 SEg00094
11.1 -	SNPE00019 SNPE00018	25.9 - SN	IPE00090	119.0 - 121.1 -	^L SNPM00879 ^L SNPM03283
11.6 12.9	SFB83_oSSR SPSc00061 SNPE00017	26.9 SN	VPE00087 VPE00092 VPE00094	122.6 129.5 130.8	- SNPM03958 - SNPM03806 - SNPM00163
	SPSc00067 SNPE00016 SNPE00015	27.1 - SN 27.4 - SN 27.6 - SN 28.4 - SN	1PE00075 1PE00078 1PE00079 1PE00068	131.3 - 134.3 - 137.7 -	- SNPM02278 - SNPM00296 - SNPM02362
13.9	[SNPE00014	29.2 - SP 29.9 - SN 31.4 - SN 32.2 - SP 33.2 - SN	Sc00102 VPE00069 VPE00081 Sc00104 VPE00082 VPE00212	141.0	 SNPM02991 SNPM02160 SNPM00255 SNPM00341 sMg00040 SNPM00632
14.1 -	<mark>sPSc00097</mark> SNPE00211	35.0 - SN	IPE00084	166.5 - 169.6 -	^L SNPM04470 ^L SNPM00628
14.4 -	- SNPE00057 SNPE00055	35.5 SP 37.0 SP 37.6 SP	Sc00110 Sc0002	170.8 ⁻ 172.9 ⁻	- SNPM02187 - sEg00146 SNPM01750
14.6 ⁻	SNPE00054 SNPE00053	38.2 - sP 40.5 - sP	Sc00004 Sc00005	174.7	⁻ SNPM01759 ⁻ SNPM00363 SNPM01342
15.4	sPSc00091	42.0 - sP 43.2 - mi	Sc00025 EaCIR3275	178.0	SNPM00416
15.9	SNPE00049 SNPE00047	43.8 · SN 45.3 · SE	VPM01703 g00222	178.5 ⁻¹	SNPM04352 SNPM03093 SNPM03981
16.1	SNPE00051	48.1 - SN	↓PM00555 ′ <mark>Sc00086</mark>	179.0	SNPM02535
16.4	- SNPE00048	55.5 - SN	<mark>Sc00085</mark> VPM04141	179.5	- SNPM00233
16.6 []]	SNPE00046 SNPE00045 SNPE00044	65.8 - SN 71.0 - SN 72.2 - SN	IPM02737 IPM01359 IPM00682	180.0 - 182.0 ⁻	SNPM03655 SNPM04038 SNPM04589
		73.2 SN	1PM03164 1PM04975		
		73.5 SN	VPM01187 VPM01555		

Supplementary Figure 4. The genetic map of the selfed Nigerian palm T128, constructed using a combination of markers namely SNP, SSR and RFLP. SSR markers are in red, RFLP markers are labeled green, the *Shell* gene is in blue colour while SNP markers are denoted in black. The single asterisk shows markers skewed at P < 0.1; double asterisk: skewed marker at P < 0.05; three asterisks: skewed marker at P < 0.001; four asterisks: skewed marker at P < 0.005; five asterisks: skewed marker at P < 0.001; six asterisks: skewed marker at P < 0.005.

Supplementary Figure 5. Isotigs (unigene clusters) formed by assembly of transcriptome libraries. Thirty transcriptome libraries were constructed and sequenced by Roche/454 technology. In total, 15.4 million transcriptome sequences were generated comprising 5.2 Gb of sequence. Each of the 30 libraries was assembled, producing between 4,528 and 18,936 isotigs from fertile *pisifera* pollen (T124) and *pisifera* fruit, respectively.

Supplementary Figure 6. Repeat content. Sequences from the P4 build were screened against known repeat databases from TIGR and RepBase⁴⁶ as well as against the previously constructed PisiferaRepeat and OleiferaRepeat databases using TBLASTN (Eval $< 10^{-5}$, low complexity filters disabled). Regions of the P4 build matching these repeat databases were extracted and annotated based on the repeat class to which they most closely matched. This resulted in genomic regions totaling 282.3 Mb (14 bp to 5106 bp in size, mean 363 bp, median 197).

Known repeats in oil palm are dominated by LTR (long terminal repeat) retrotransposons, especially the RIRE1-like subfamily which has undergone significant expansion, as have other *copia* elements. Among *copia* elements, RIRE1 was the most abundant subclass (20%), resembling certain species of rice in this respect⁴⁷, in agreement with the prevalence of *copia* elements in oil palm predicted by FISH¹⁷. There are very few non-LTR and DNA class transposons. Of the non-LTR retrotransposons, LINEs make up less than 1% of total repetitive elements, and SINEs are negligibly

observed. Other classes of repetitive elements such as Class II DNA transposons, hATlike transposons, MITEs and CACTA repeats make up relatively small proportions of the overall repeat content of the oil palm genome. About half of the repeats in the oil palm genome show no sequence similarity to other previously identified retro elements, although 7 percent are composed of a previously observed but uncharacterized dispersed repeat in *E. guineensis* DRepEG¹⁷.

Supplementary Figure 7. Segmental duplications in *E. guineensis***.** MUMmer plots generated by the PROmer program are presented for observed segmental duplications within oil palm. Dots represent windows of matching protein translations on the two chromosomes, matches in the same direction are shown in red, opposite strand in blue. Chromosome names are based on the nomenclature of the linkage groups in the T128 genetic map (Supplementary Table 7).

a E.oleifera.

o7_sc00067->

Chr3_SegDup1 07_sc00742<-07_sc00948-> 07_sc0091<-07_sc00370-> 07_sc00073-> $\begin{array}{c} 0.7 \\$ o7_sc00086-> |.... po5sible-repeat Scale: one character equals 400822 bases

----o7_sc00032-> 0 = scoult-> 0 0 = s00038<-07 = s00038<-07 = s00037<-07 = s000170-> 07 = s000170-> possible-repeat Scale: one character equals 68955 bases

Chr15_SegDup6	+++++++++++++++++++++++++++++++++++++++
07_sc00058<- 07_sc00057<-	
o7_sc00064-> possible-repeat	
Scale: one ch	aracter equals 47020 bases

....

Scale: one character equals 157449 bases

Supplementary Figure 8a continued on next page.

Chr8_SegDup16	
07_sc00428<- 07_sc00788<- 07_sc00003<- possible-repeat	
Scale: one ch	aracter equals 20111 bases

Chr16_SegDup8	•••••
07_sc00161<-	
o7 sc00148<-	
07 sc01448->	
07 sc00475<-	
07 sc01055<-	
07 sc00015->	
possible-repeat	

Scale: one character equals 64244 bases

Chr10_SegDup7 Ctr + 7________ 07 sc120-> 07 sc2120-> 07 sc2043-> 07 sc0043-> 07 sc0041-> 07

Scale: one character equals 52532 bases

07_sc00161-> 07_sc00670<-07_sc00627<-07 = 500001-- ... 07 500001-- ... 07 500001-- ... 07 500013-- ... 07 50001-- ... 07 5000-- ... 07 50000-- ... 07 50000-- ... 07 5000-- . Scale: one character equals 76688 bases

b *P.dactylifer*

Scale: one character equals 188810 bases

Scale: one character equals 114920 bases

Supplementary Figure 8b continued on next page.

Supplementary Figure 8. **Segmental duplications. a,** Validating segmental duplications in *E.oleifera*. For each segmental duplication in *E. guineensis*, we verified the unique representation of the two corresponding EG-5 linkage groups in the O7 Build in *E.oleifera* using comparative genomics. The Segmental Duplication (SegDup) is plotted as a line of + signs each representing a number of bp (indicated below each plot). O7 scaffolds on the y-axis) correspond to each duplicated EG-5 region (x-axis). Plots for the two halves of the duplication in EG-5 are presented side-by-side. Note that some smaller overlapping scaffolds have been removed for clarity. **b**, Validating segmental duplication, we verified the unique representation of that region in the *P. dactylifera* scaffold assembly as above.

Supplementary Figure 9. Synteny between banana and oil palm. Two mummer plots showing synteny between *E. guineensis* chromosomes 4 and 11 with *M. acuminata* chromosomes 11 and 8. Plots show protein level conservation, and imply that several ancient internal rearrangements have occurred. Matches in the same direction are shown in red, opposite strand in blue.

Supplementary Tables.

		All Re	All Reads			Reads
Target Lib (Kb)	Plates	Reads (M)	Seq Cvg	50C50 Rate	Reads (M)	Seq Cvg
Fragments	41.0	53.5	11.6	-	99.6	20.0
0.75	4.0	5.4	1.0	63%	3.4	0.6
1.5	8.0	9.1	1.6	60%	5.4	1.0
3	3.0	2.5	0.5	54%	1.4	0.3
5	21.5	23.5	4.5	53%	12.5	2.4
8	8.5	11.8	2.3	51%	6.0	1.2
10	10.0	11.5	1.9	27%	3.1	0.6
13	8.0	10.1	1.9	46%	4.6	0.9
20	11.0	15.2	2.7	43%	6.6	1.2
Total	115.0	142.6	28.1		142.6	28.1

Supplementary Table 1. Pisifera genome fragment and linker library statistics

For fragment (non-linker) and linker libraries of the indicated insert sizes (Target Lib (Kb)), the number of 454 full plate runs (Plates), number of reads in millions (Reads), and fold sequence coverage generated (Seq Cvg) are provided. All Reads heading refers to total reads and raw sequence coverage. Useful Reads heading refers to linker library reads in which the center adapter, as well as at least 50 bases of sequence before and after the center adapter, were sequenced (50C50). Those reads which included genome sequence, but were not 50C50, were removed from linker library read groups and added to the fragment library read group. Total raw sequence fold coverage reported in Supplementary Table 1 is greater than that reported in the main text. Raw sequence coverage reported in the main text (26x) is based on quality filter passed reads used by Newbler in the genome assembly.

		All Re	All Reads			Useful Reads		
Target Lib (Kb)	Plates	Reads (M)	Seq Cvg	50C50 Rate	Reads (M)	Seq Cvg		
Fragments	34.0	49.8	10.0	-	88.6	17.1		
0.75	4.0	4.1	0.7	58%	2.4	0.4		
1.5	4.5	5.3	0.9	63%	3.3	0.6		
3	1.0	1.1	0.2	56%	0.6	0.1		
5	27.5	31.3	5.5	57%	17.9	3.2		
8	7.5	7.9	1.4	47%	3.7	0.7		
10	14.0	17.3	3.3	42%	7.3	1.4		
13	1.0	1.5	0.3	49%	0.7	0.1		
20	8.5	12.1	2.4	48%	5.8	1.1		
Total	102.0	130.3	24.7		130.3	24.7		

Supplementary Table 2. Oleifera genome fragment and linker library statistics

Plate runs, reads and sequence coverage are provided as described in Supplementary Table 1.

		All Re	eads	Useable	Reads	
Target Lib (Kb)	Plates	Reads (M)	Seq Cvg	50C50 Rate	Reads (M)	Seq Cvg
Fragments	4.0	3.6	0.6	-	8.1	1.5
1.5	0.5	0.6	0.1	49%	0.3	0.1
3	4.5	4.2	0.8	47%	2.0	0.4
5	0.5	0.7	0.1	49%	0.4	0.1
8	1.5	2.0	0.4	47%	1.0	0.2
10	0.5	0.9	0.2	45%	0.4	0.1
Total	11.5	12.2	2.2		12.2	2.2

Supplementary Table 3. BAC Pool Fragment and Linker Library Statistics

Plate runs, reads and sequence coverage are provided as described in Supplementary Table 1.

				Largest	G+C	% of P5
Genome ^a	Ν	Size (Mb)	N50 (Kb)	(Mb)	content	Scaffolds
P5 Build contigs	1,309,411	1,549	3.14	0.13	39%	-
P5 Build scaffolds	40,360	1,535	1,045	22.10	37%	100%
EG-5 Linked chromosomes	16	658	44,350	68.43	37%	43%
EG-5 Linked + P5 unlinked	40,072	1,535	1,270	68.43	37%	100%
Scaffold gaps	166,221	478	-	-	-	31%
Observed repetitive sequence ^b	-	282	-	-	39%	18%
Estimated repeat content	-	760	-	-	-	50%
					G+C	% of P5
Genes ^c	Ν	Size (Mb)	Mapped	Unmapped	Content	Scaffolds
Total predicted	158,946	92.1	-	-	50%	6%
With RefSeq support ^d	34,802	34.8	74%	26%	50%	2%
With RNASeq support ^e	15,311	6.8	63%	37%	52%	0%
Known retroelements ^f	67,169	38.2	33%	67%	50%	2%
<i>ab initio</i> only	41,664	12.3	60%	40%	51%	1%

Supplementary Table 4. The oil palm genome sequence

^aCharacteristics of the *E. guineensis* genome assembly.

^bMany partial, degraded and unknown retroelements included

^cCharacteristics of gene predictions for the *E. guineensis* genome.

^dGene predictions matching genes in RefSeq database version 35.

^eGene predictions supported by transcriptome sequencing, but without RefSeq match.

^fGene predictions matching elements in RepBase and/or TIGR Gramineae repeat database.

The assembly resulted in 1,309,411 contigs and 40,360 scaffolds. Scaffold sizes range from 2.0Kb to 22.1Mb. The scaffold N50 (minimal scaffold length of the smallest set of scaffolds that are able to span 50% of the genome) is 1.045Mb, and the combined total length of the assembly (P5 Build) is 1.535Gb, representing 85% of the estimated 1.8Gb genome size (Supplementary Table 5). Comparison of the P5 Build to genetic linkage maps (Supplementary Fig. 4, Methods) resulted in unambiguous positioning of 366 molecular markers within 304 of the longest P5 Build scaffolds, forming a new assembly, "EG-5 Linked". This new assembly includes 16 genetic scaffolds (one scaffold for each of the 16 oil palm chromosomes) and 658Mb of sequence. EG-5 Linked scaffold sizes range from 21.3Mb to 68.4Mb, and the EG-5 Linked assembly has an N50 of

44.3Mb. Including the EG-5 Linked and P5 Build (unlinked) together, the combined assembly contains 40,072 scaffolds with an N50 of 1.26Mb.

Gene predictions from the P4 build were generated using Glimmer and SNAP resulting in 151,252 predictions from Glimmer and 158,897 predictions from SNAP. The two were screened for overlap in the P4 build, and overlapping predictions from SNAP were removed from the set resulting in 158,946 predicted transcripts in the P4 build. Gene predictions were then classified by BLAST searching (Eval $< 10^{-5}$) to reference genomes of *A. thaliana*, *O. sativa*, curated RefSeq35 (with retro-elements removed), and *E. guineensis* transcriptome libraries. In addition, gene predictions were screened against the TIGR Gramineae repeat database, as well as *pisifera* and *oleifera* repetitive sequence databases (see Repetitive sequence detection). Predictions were then grouped as follows: RefSeq support: 34,802 genes; retroelements: 67,169; Transcriptome only: 15,311; Gene predictions with no supporting evidence: 41,664.

	E. gi	uineensis	
Measurement	dura (Mb)	pisifera (Mb)	E. oleifera (Mb)
1	1801	1,806	1,820
2	1850	1,832	1,825
3	1825	1,836	1,801
4	1820	1,828	1,818
Average	1824	1,825	1,816
Std. Dev.	20	13	10
Average (E. guineensis)	1	1,825	
Std. Dev. (E. guineensis)		16	

Supplementary Table 5. Genome size as determined by flow cytometry

The genome sizes of *E. guineensis (dura* and *pisifera)* and *E. oleifera* were determined by flow cytometry. Four independent measurements were made for each genome (personal communication, Dr. K. Arumuganathan, Virginia Mason Research Center).

The estimated genome size of *E. guineensis* is similar to previous flow cytometry studies^{48,49}. Interestingly, the genome size of *E. oleifera* is similar to that of *E. guineensis*. However, the genome size of *E. oleifera* reported here is almost twice of that previously reported for an *E. oleifera* palm from Surinam⁴⁹. The fibrous and lignified nature of the Surinam *E. oleifera* leaf samples most likely contributed to poor isolation of nuclei, and the subsequent lower genome size estimate for *E. oleifera*⁴⁹

Supplementary Table 6. Transcriptome library sequencing and assembly details

Uura Deliferra Sisifera Fenera Nonorr TC All TC All G

							дΟ	E F	ΞZ	A	A A
				Mean	Median						
Tissue	Species or cross	# Reads	Total Bases	Length	Length	# Isotigs	A B	C	DE	F	GΗ
E. guineensis materials:											
spear leaf	Dura	611,301	234,730,367	741	790	17,849	1				1
Root	Dura	544,460	186,827,044	653	704	13,688	1				1
Floret before anthesis (BA)	Dura	430,617	136,972,388	644	701	13,025	1				1
Floret/fruit after anthesis (AA)	Dura	491,450	159,452,355	527	554	7,857	1				1
Spear leaf	Pisifera	353,102	126,429,118	566	583	11,969		1			1
Leaf	Pisifera	563,194	209,578,762	630	667	11,204		1			1
Root	Pisifera	471,740	156,149,475	619	662	7,897		1			1
Pollen	Pisifera	582,078	219,457,909	743	799	6,344		1			1
Pollen	Pisifera	435,176	128,684,750	522	558	4,528		1			1
Roots of seedling	Tenera	605,420	209,106,303	618	650	11,648			1		1
Floret before anthesis (BA)	Tenera	363,461	119,007,405	482	504	9,993			1		1
Floret/fruit after anthesis (AA)	Tenera	507,517	172,546,989	604	636	17,849			1		1
Mesocarp	Tenera	621,614	202,496,615	720	763	18,936			1		1
Kernel	Tenera	576,743	171,345,655	677	708	17,071			1		1
Mesocarp	Tenera	642,368	189,574,467	682	726	16,060			1		1
Kernel	Tenera	462,814	168,860,793	717	750	15,970			1		1
Total E. guineensis:		8,263,055	2,791,220,395			201,888					
Tissue cultured materials:											
Female flower	Normal DxP	424,077	122,673,087	606	631	13,625			1		1 1
Female flower	Normal DxP	535,423	201,686,040	722	762	16,591			1		1 1
Shoot apex	Normal DxP	423,331	151,604,419	673	704	14,513			1		1 1
Female flower	Abnormal DxP	393,127	138,049,299	589	604	12,281				1	1 1
Female flower	Abnormal DxP	456,919	159,486,885	574	601	12,130				1	1 1
Shoot apex	Abnormal DxP	406,206	136,110,784	708	748	12,996				1	1 1
Total tissue culture:		2,639,083	909,610,514			82,136					
E. oleifera materials:											
Spear leaf	Oleifera	512,619	177,817,256	702	761	4,785	1				
Whole fruit	Oleifera	617,890	211,555,425	671	726	12,513	1				
Whole fruit	Oleifera	583,884	182,911,966	598	642	10,302	1				
Whole fruit pooled from 3 sections of the bunch	Oleifera	663,995	223,986,124	469	494	8,100	1				
Stalk	Oleifera	405,170	123,182,197	604	663	7,606	1				
Stalk	Oleifera	549,553	188,401,707	637	692	6,349	1				
Stalk pooled from 3 sections of the bunch	Oleifera	569,983	180,314,388	479	502	5,249	1				
Spikelet pooled from 3 sections of the bunch	Oleifera	655,148	222,344,145	497	524	8,209	1				
Total E. oliefera:		4,558,242	1,510,513,208			63,113		-	-	-	
Total All:		15,460,380	5,211,344,117			347,137					
									_	_	_

Tissue sources for each of the 30 RNA sequencing libraries is presented. Tissues and trees were selected to maximize library complexity for genome annotation purposes as well as to measure interesting expression variation for high value breeding traits such as oil production and clonal stability. Libraries were individually assembled using the Newbler program from Roche 454, resulting in transcriptome sets ranging from 4,258 to 18,936 isotigs per library. In addition to individual assemblies, group assemblies were generated for *dura* (A), *E. oleifera* (B), *pisifera* (C), and *tenera* tissue libraries (D), as well as normal clonal (E), abnormal (mantled) clonal (F), and all clonal tissues (G) derived from crosses of *dura* and *pisifera*. Validation of gene models for *E. guineensis* was based on homology to isotigs from all combined *E. guineensis* libraries (H).

Chromosome	T128_codominant	P2/Billotte	Size (bp)
CHR 1	LG1	lg_8	68,432,966
CHR 2	LG7	lg_4	65,556,141
CHR 3	LG10	lg_1	60,058,032
CHR 4	LG6	lg_11	57,248,047
CHR 5	LG12	lg_12	51,953,839
CHR 6	LG5	lg_10	44,354,769
CHR 7	LG8	lg_6	43,453,266
CHR 8	LG9	lg_2	40,192,799
CHR 9	LG4	lg_7	38,054,796
CHR 10	LG13	lg_15	31,889,635
CHR 11	LG11	lg_14	30,067,610
CHR 12	LG14	lg_13	28,799,275
CHR 13	LG15	lg_9	27,816,170
CHR 14	LG2	lg_3	24,378,543
CHR 15	LG16	lg_16	24,313,565
CHR 16	LG3	lg_5	21,370,583

Supplementary Table 7. Chromosomes and linkage groups in oil palm

Linkage groups in the T-128 Nigerian population⁵⁰ as well as the DxP (P2) pseudotestcross population which followed the nomenclature of Billotte et al. (2005)⁵¹, were aligned using common SNP and SSR markers. Cytogenetically, individual oil palm chromosomes are difficult to distinguish but fall into 4 groups, comprising (I) the largest chromosome (which hybridizes to 5SrDNA), (II) 8 medium chromosomes; (III) 6 small chromosomes and (IV) a small acrocentric chromosome, which carried the 18S-25S rDNA^{17, 52}. Attempts were made to identify these chromosomes by FISH using RFLP clones from early genetic maps, but the results were often ambiguous. We have renumbered the chromosomes according to the size of sequence scaffolds in the EG5 linked build. The chromosomes correspond to Linkage Groups in each mapping population as shown.

				Gen		
		# Gene Models	A.thaliana	P. dactylifera	E. guineensis	M.acuminata
	A. thaliana	27,416	99.34%	79.90%	80.16%	80.49%
ne	P. dactylifera	28,889	81.88%	99.64%	94.38%	87.16%
ß	E. guineensis	34,802	86.00%	96.28%	99.93%	93.64%
	M. acuminata	36,549	79.94%	83.53%	83.54%	97.23%

Supplementary Table 8. Comparative genomics of oil palm

Rows (Gene) represent previously reported gene models for *Arabidopsis* (*A. thaliana*), banana (*M. acuminata*) and date palm (*P. dactylifera*), as well as oil palm (*E. guineensis*) gene models reported here. Columns (Genome) represent the complete genome sequences for each species. The percentage of query genes matched to the target genome is shown for each pairwise comparison of gene models to genome.

Supplementary Table 9. Transcriptome sequencing of oil palm mesocarp and kernel at time points prior to and at the peak of oil accumulation.

			15	20		
And bid models in a second sec	Cons Description	Burtain (Cara Alabaratian	TOMAG	ZUWaa	10 million al	45 million all
Plastidial Eatty Acid Synthesis	Gene Description	ProteinyGene Adoreviation	mesocarp 214.94	nesocarp 117.62	20waa kernel	100 0C
Plasticial Party Acid Synthesis	Biotin Carboyd Carrier Protein of		214.04	117.02	200.24	138.80
ATEC15520	Hotosomosis ACCase	BCCP3				
AT2G43710	Stearowl-ACP Decaturase	fab?	1 723 88	1 656 33	1 126 32	621.84
AT1009510	Acid-ACP Thioasterasa B	Cath	170.90	107.34	2 204 04	017.10
AT4G13050	Acyl-ACP Thioesterase A	ΓΑΤΑ	60.41	74.40	100.75	15.59
AT5G10160	Hydroxyacyl-ACP Debydrase	HAD	191.95	71.93	248 28	94.00
n pororo	Pyruvate Dehydrogenase β subunit,	10.00		1		34.00
	E1b component of Pyruvate Dehydrogenase					
AT2G34590	Complex	PDH (E1-β)	290.44	158.81	175.39	103.33
AT5G46290	Ketoacyl-ACP Synthase I	KASI	288.19	93.62	387.27	194.96
AT2G22230	Hydroxyacyl-ACP Dehydrase	HAD	22.46	14.31	25.75	4.56
AT1G24360	Ketoacyl-ACP Reductase	KAR	1,004.04	265.72	596.18	261.49
AT1G43800	Stearoyl-ACP Desaturase	DES6	190.10	1.27	78.63	14.07
	Carboxyltransferase α Subunit of					
AT2G38040	Heteromeric ACCase	CT·α	220.36	71.08	313.56	219.13
	Dihydrolipoamide Acetyltransferase, E2					
	component of Pyruvate Dehydrogenase					
AT1G34430	Complex	EMB3003 (PDH-E2)	206.58	39.11	133.94	48.33
	Dihydrolipoamide Dehydrogenase, E3					
	component of Pyruvate Dehydrogenase					
AT4G16155	Complex	LPD2 (PDH-E3)	112.52	26.83	157.21	76.23
AT3G02630	Stearoyl-ACP Desaturase	DES5	3.45	1.57	293.95	267.08
AT4G25050	Acyl Carrier Protein	ACP4	618.23	313.44	360.22	177.64
	Pyruvate Dehydrogenase α subunit,					
	E1a component of Pyruvate Dehydrogenase					
AT1G01090	Complex	PDH (E1-a)	215.69	94.70	162.47	92.72
AT3G55290	Ketoacyl-ACP Reductase	KAR	151.05	85.26	372.77	321.22
	Pyruvate Dehydrogenase β subunit,					
	E1b component of Pyruvate Dehydrogenase					
AT1G30120	Complex	PDH (E1-β)	-	-	-	-
AT2G05990	Enoyl-ACP Reductase	ENR1 (MOD1)	227.57	51.22	220.83	104.44
	Dihydrolipoamide Acetyltransferase, E2					
	component of Pyruvate Dehydrogenase					
AT3G25860	Complex	LTA2 (PDH-E2)	85.49	17.32	65.75	38.66
AT3G25110	Acyl-ACP Thioesterase A	FatA	-	-	-	
AT3G02610	Stearoyl-ACP Desaturase	DES2	-	-	-	
AT5G35360	Biotin Carboxylase of Heteromeric ACCase	BC	321.85	89.36	328.69	197.83
	Biotin Carboxyl Carrier Protein of					
AT5G16390	Heteromeric ACCase	BCCP1	89.35	14.81	37.77	70.90
AT1G74960	Ketoacyl-ACP Synthase II	KASII (fab1)	104.29	116.25	372.63	246.87
AT5G16240	Stearoyl-ACP Desaturase	DES1	-	-	-	-
AT1G62640	Ketoacyl-ACP Synthase III	KASIII	55.70	46.69	140.33	41.57
AT1G62610	Ketoacyl-ACP Reductase	KAR	-	-	-	-
	Dihydrolipoamide Dehydrogenase, E3					
	component of Pyruvate Dehydrogenase					
AT3G16950	Complex	LPD1 (PDH-E3)				
AT2G30200	Malonyl-CoA : ACP Malonyltransferase	MCMT	90.75	27.32	83.59	36.23

Ambidancia	Dentain Family	Protoin (Cons Abbraultain	15waa	20waa	10 una karral	1 Frank lange -
Arabidopsis nomolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
AT1C22240	Caleosia	CNIO	\$7.10	\$0.01	676.35	344.85
A11623240	Caleosin	CALO	-	1.5		-
471626180	Acetyi-CoA Carboxylase (Plastidial,	1000				
AT1630180	Caleosin	CALO	2.97	2.92	0.14	1.10
AT1670670	Caleosin	CALO	2.67	75.02	16.12	72.02
AT1677590	Long Chain Acul CoA Sunthetare	LACSA	202.90	152.10	10.13	94.63
AT2G04250	Long Chain Acyl-CoA Synthetase	14058	202.02	133.19	113.70	04.02
AT2004550	Cong-Chain Acy-Cox Synthetase	080	0.04		224.20	122.02
AT2G23890	Hole ACP Systems (plastid)	HACPS	10.71	7.45	324.30	16.27
AT3G11470	Oleste Deseturase	FAD2	220.01	106.43	15.03	10.27
AT3G12120	Oleate Desaturase	PADZ	239.01	100.45	13.93	9.90
AT3G16570	Oil-Body Oleosin	080	1.04	1.00	203.23	515.15
A13027000	Wrinklad1 (AD2/EDWERD Transmission	080	-		1.55	
472654220	Wrinkled1 (AP2/ERWEBP Transcription	MIDIA	12.04	0.00	0.95 40	536.00
AT4C01000	Factor)	WRIT	13.04	8.08	985.40	526.00
A14G01900	Pil protein	PI	/2.65	104.25	7.91	11.20
A14G10020	Steroleosin	STERO	0.50	0.53	1,808.14	864.62
A14G14070	Acyi-ACP Synthetase	AAEIS			c (01 17	
A14G25140	Oil-Body Oleosin	080	5.16	2.63	6,681.17	2,543.51
AT4G26740	Caleosin	CALO	2.29	1.29	424.91	425.66
AT5G36880	AcetylCoA synthase	ACS	134.24	133.22	24.48	19.60
AT5G40420	Oil-Body Oleosin	OBO	1.15	1.94	2,828.17	1,883.39
AT5G55240	Caleosin	CALO	-		-	-
Plastid Polar Lipids Glycero			41.02	48.86	15.26	15.92
AT5G66450	Phosphatidate Phosphatase	LPP-E2	1.25			-
AT4G26770	CDP-DAG Synthase (plastidial)	CDP-DAGS	-			
AT2G45150	CDP-DAG Synthase (plastidial)	CDP-DAGS		·		
AT3G11170	Linoleate Desaturase	FAD7	5.80	5.10	1.54	2.26
AT4G30950	Oleate Desaturase	FAD6	16.96	8.83	7.67	34.28
AT4G27030	Phosphatidylglycerol Desaturase	FAD4				
AT3G60620	CDP-DAG Synthase (plastidial)	CDP-DAGS	59.79	28.77	3.22	9.31
AT3G03530	Phospholipase C (Non specific)	NPC4	2.98	2.23	0.67	6.09
AT4G30580	1-acylglycerol-3-phosphate acyltransferase	LPAAT1	14.44	10.16	60.32	12.11
AT2G11810	Monogalactosyldiacylglycerol Synthase NAD-dependent Glycerol-3-Phosphate	MGD3	-			
AT5G40610	Dehydrogenase (plastidial)	GPDH	0.05	0.07	60.08	73.75
AT5G20410	Monogalactosyldiacylglycerol Synthase	MGD2	2.01	29.78	0.36	1.94
AT3G50920	Phosphatidate Phosphatase	LPP-E1	7.23	10.56	2.73	2.61
AT5G03080	Phosphatidate Phosphatase	LPP-Y	290.68	160.26	132.96	124.36
AT5G05580	Linoleate Desaturase	FAD8	361.44	423.71	1.38	1.54
AT3G05630	Phospholipase D, zeta	PLD72	-		-	-
AT3G11670	Digalactosyldiacylglycerol Synthase	DGD1	79.34	268.57	56.02	98.30
AT4G00550	Digalactosyldiacylglycerol Synthase Glycerol-3-Phosphate Acyltransferase	DGD2	17.70	22.98	2.53	5.15
AT1G32200	(plastidial)	ATS1/ACT1	23.08	39.42	0.59	0.73
AT3G15850	MGDG Desaturase (palmitate-specific)	FADS			214.7	-
AT4G33030	UDP-Sulfoguinovose Synthase	SOD1	5.34	28.99	10.44	5.05
	Phosphatidylglycerol-Phosphate Synthase					
AT2G39290	(nlastidial)	PGP1	66 32	67.24	22.50	20.05
HTEOSSES0	UDP-sulfoquinovose:DAG	TOTI	00.52	07.24	LLING	20.00
AT5G01220	sulfoquinovosultransfarase	5002	17.67	112.62	0.64	1.49
AT3G16785	Phospholipase D. zeta	PLD-71	42.26	37.62	12 98	10.76
AT3656040	IDP.Glucose Pyronhosphorylase	LIGPase LIGP3	- 2.20 E E E	32.20	0.20	0.60
A13030040	Permease-like Protein of Inner Chloroplast	oorase, oora	0.50	32.30	0.30	0.60
AT1G19800	Envelope	TGD1	13.74	10.10	11.95	7.58
AT4G31780	Monogalactosyldiacylglycerol Synthase	MGD1	72.90	18.92	23.02	11.86

				15waa	20waa		
Arabidopsis	s homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
Mitochondrial Lipid Synthe	esis		ielanie	53.86	46.25	25.49	15.59
AT4G24160	D	Cardiolipin-Specific Deacylase	CLD	65.13	43.58	6.81	12.04
AT1G06520	D	Glycerol-3-Phosphate Acyltransferase	GPAT1	1.02	0.62		
AT2G44620	D	Acyl Carrier Protein	ACP	126.25	139.44	121.82	41.00
AT1G04640	D	Lipoyltransferase	LT	9.46	6.43	0.74	1.70
		Mitochondrial Dihydrolipoamide					
47361334		Denydrogenase, branched chain alpha-					
A13G1/240		ketoacid denydrogenase complex			-	-	
AT1G65290		Acyl Carrier Protein	ACP	212.05	329.20	99.35	53.94
A15G60340	5	Hydroxyacyi-ACP Denydrase	HAD	112.07	64.07	100.67	56.47
ATSGOUSIC		Mitochondrial Enoyl-CoA Hydratase		0.43			
A14G31810		Mitochondrial Enoyi-CoA Hydratase	MAG	36.13	31.73	10.94	10.22
AT2004340		Recoacyi-ACP Synchase	RA3	3.11	17.29	5.10	3.51
A14G16/00		Phosphatidylserine Decarboxylase	PSD	20.34	20.22	13.54	7.00
A14604870		Cardiolipin synthase	cis	33.30	20.39	16.93	24.21
AT3G02600	D	Phosphatidate Phosphatase (mitochondrial)	PP	1.84	1.74	10.27	2.06
AT3G45770	D	Enoyl-ACP Reductase	ER	113.42	98.03	44.41	26.76
AT1G78690	D	Cardiolipin Transacylase	TAZ	10.22	11.77	5.21	2.59
AT2G39290	D	Phosphatidylglycerol-Phosphate Synthase	PGPS1	66.32	67.24	22.50	20.06
AT5G47630	D	Acyl Carrier Protein	ACP	7.55	5.20	3.93	2.42
		FAD-dependent Glycerol-3-Phosphate					
AT3G10370	D	Dehydrogenase	SDP6	17.11	9.04	2.64	0.74
AT3G05510	D	Cardiolipin Transacylase	TAZ	184.95	16.25	10.00	10.36
		Mitochondrial Dihydrolipoamide					
		Dehydrogenase, branched chain alpha-					
AT1G48030	D	ketoacid dehydrogenase complex		85.82	72.12	54.04	46.50
AT2G20860	0	Lipoate Synthase	LS or LIP1	18.58	16.96	6.29	5.90
Sphingolipid Synthesis	~			51.47	70.59	17.66	15.35
AT2G37940	D	Inositolphosphorylceramide Synthase	ERH1	55.75	70.52	18.19	25.70
AT3G25540	D	Ceramide Synthase	LAG1				
AT5G19200	0	Ketosphinganine Reductase	KSR	• :		-	-
AT2G34690	D	Sphingosine Transfer Protein	ACD11	94.44	78.85	4.86	4.37
AT2G29525	5	Inositolphosphorylceramide Synthase	ERHL1				
AT5G03080	D	Long Chain Base 1-Phosphate Phosphatase	LCBPP	290.68	160.26	132.96	124.36
AT3G06060	D	Ketosphinganine Reductase	KSR	75.49	155.86	40.53	24.48
AT4G20870	D	Fatty Acid 2-hydroxylase	FAH2		-	1.02	5.79
		Subunit of Serine Palmitoyltransferase					
AT3G48780	D	(LCB2b)	LCB2b				
AT2G46210	D	Sphingobase-D8 Desaturase	SLD2	3.35	5.78	0.17	2.97
		Subunit of Serine Palmitoyltransferase					
AT5G23670	D	(LCB2a)	LCB2a	233.04	483.10	23.04	36.52
AT4G22330	D	Ceramidase	CES1	40.25	11.99	23.15	19.81
AT1G13580	D	Ceramide Synthase	LAG13	33.54	35.41	8.14	20.86
AT3G54020	D	Inositolphosphorylceramide Synthase	ERHL2	34.38	107.17	12.64	17.96
AT4G39670	D	Sphingosine Transfer Protein	STP	11.58	60.24		1.43
AT3G58490	D	Long Chain Base 1-Phosphate Phosphatase	LCBPP	57.36	186.33	17.61	6.63
AT3G19260	D	Ceramide Synthase	LOH2	9.65	8.32	10.95	5.34
AT4G04930	D	Dihydrosphingosine Delta-4 Desaturase	DSD1	15.13	27.31	17.26	13.65
AT5G51290	D	Ceramide Kinase	CERK	25.75	27.09	3.92	5.02
AT1G69640	D	Sphingobase C4-Hydroxylase	SBH1	46.94	117.05	40.76	24.28
AT5G23450	D	Long Chain Base Kinase	LCBK	98.39	76.78	26.93	30.85
AT4G21540	D	Long Chain Base Kinase	LCBK	33.01	61.18	15.23	7.92
AT3G61580	D	Sphingobase-D8 Desaturase	SLD1	2.98	0.31	9.09	0.14
AT1G27980	D	Dihydrosphingosine Phosphate Lyase	DPL1	45.80	59.15	9.17	9.76
AT2G34770	D	Fatty Acid 2-hydroxylase	FAH1	49.98	15.25	17.70	7.00
AT1G14290	0	Sphingobase C4-Hydroxylase	SBH2	7.37	20.10	0.44	0.33
		Subunit of Serine Palmitoyltransferase					
AT4G36480	D	(LCB1)	LCB1	169.18	202.44	59.25	32.79
		Glucosylceramide Synthase (UDP-glucose-					
AT2G19880	D	dependent)	GCS	7.02	6.10	1.60	1.92

Arabidopsis homolog Protein/Gene Abbreviation mesocarp 10was kernel 15was k Oxidation 76.22 65.54 16.80 AT3665940 Hydroxyisobutyryl-CoA Hydrolase HIBCH 4.1.51 49.07 8.96 AT3665100 Acyt-CoA Oxidase ACX2 2.2.75 40.28 13.82 AT36765100 Peroxisomal Encyt-CoA Hydrolase KAT2/PED1 296.64 342.28 13.83 AT36765100 Peroxisomal Encyt-CoA Hydratase 2 ECH2 51.05 63.33 13.93 AT4639850 ABC Acyt Transporter (peroxisomal) CTS 41.35 57.43 11.57 AT4629010 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT4636760 Acyt-CoA Thidesterase ACT2 52.45 61.84 0.40 AT3651840 Acyt-CoA Synthetase - - - - AT3651840 Acyt-CoA Oxidase ACX4 36.50 43.55 2.43 AT3641840 Encyt CoA Nidase ACX4					15waa	20waa		
Oxidation 76.22 66.54 16.80 AT5665940 Hydroxyisobutyryl-CoA Hydrolase HIBCH 41.51 49.07 8.96 AT5665940 Hydroxyisobutyryl-CoA Hydrolase HIBCH - - - AT566510 Acy-CoA Oxidase ACX2 22.75 40.28 13.82 AT1676150 Peroxisomal Encyl-CoA Thiolase KAT2/PED1 226.64 342.28 13.82 AT4633850 ABC Acyl Transporter (peroxisomal) CTS 43.35 57.43 11.57 AT4623910 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT4625910 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT661510 Acyl-CoA Oxidase ACX1 153.12 183.15 2.06 AT1606510 Acyl-CoA Oxidase ACX6 - - - AT5627600 (peroxisomal) LAC57 5.63 10.76 - AT5642880 Ketaacyl-CoA Thiolase PK11 - <		Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
AT5665940 Hydroxyisobutyyl-CoA Hydrolase HIBCH 41.51 49.07 8.96 AT560510 Acyl-CoA Oxidase ACX2 22.75 40.28 1.75 AT5605110 Acyl-CoA Oxidase KAT2/PED1 26.64 342.28 13.82 AT1676150 Peroxisomal Encyl-CoA Hydratase 2 ECH2 51.05 6.333 11.57 AT4639850 ABC Acyl Transporter (peroxisomal) C15 41.35 57.43 11.57 AT461700 Multifunctional Protein AMI 658.36 283.65 207.46 1 AT461700 Acyl-CoA Oxidase ACX1 153.12 183.15 2.06 AT1601710 Acyl-CoA Oxidase ACX4 36.50 43.35 2.43 AT3651840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 AT5632560 Long-Chain Acyl-CoA Synthetase ECi2 93.65 106.79 16.61 AT3651840 Acyl-CoA Dixidase ACX4 36.50 43.31 - - AT363280 Diencnyl	Oxidation	NATURA NATURA NA		nu sura de tos car	76.22	66.54	16.80	15.07
AT2630600 Hydroxylsobutyryl-CoA Hydrolase HIBCH . . AT360510 Acy-CoA Oxidase KAC2 22.75 40.28 13.82 AT2633150 Ketoacyl-CoA Thiolase KAT2/PED1 266.64 342.28 13.82 AT1676150 Peroxisomal Encyl-CoA Hydratase 2 ECH2 51.05 63.33 13.93 AT4633980 ABC Acyl Transporter (peroxisomal) C15 43.53 57.43 11.57 AT4626760 Acyl-CoA Oxidase ACX1 53.12 183.15 2.06 AT1601710 Acyl-CoA Thioesterase ACX2 5.63 10.76 - AT36027600 (peroxisomal) LACS7 5.63 10.76 - AT36351840 Acyl-CoA Noidase ACX4 36.50 43.55 2.43 AT36351840 Acyl-CoA Noidase PK11 - - - AT36351840 Benoyl CoA Isomerase ECI2 93.65 106.79 16.61 AT3635840 Acyl-CoA Nidase ACX5 4.31 - -		AT5G65940	Hydroxyisobutyryl-CoA Hydrolase	HIBCH	41.51	49.07	8.96	20.55
AT5605110 Acy-CoA Doidse ACQ 2.2.75 40.28 1.75 AT2633150 Ketoacy/CoA Thiolase KAT2/FD1 296.64 342.28 13.82 AT1676150 Peroxisomal Encyl-CoA Hydratase 2 ECH2 51.05 63.33 13.93 AT4633850 ABC Acyl Transporter (peroxisomal) CT5 41.35 57.43 11.57 AT4623010 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT4016760 Acyl-CoA Oxidase ACX1 153.12 183.15 2.06 AT1001710 Acyl-CoA Oxidase ACX6 - - - AT3651840 Acyl-CoA Oxidase ACX6 - - - AT3651840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 AT3651840 Ketoacyl-CoA Thiolase PK1 - - - AT4614430 Encyl CoA isomerase DC11 72.00 51.55 41.01 2.86 AT5643280 Hydroxyboutryl-CoA Hydrolase HBCH<		AT2G30660	Hydroxyisobutyryl-CoA Hydrolase	HIBCH			-	
AT2633150 Ketoacyl-CoA Thiolase KAT2/PED1 296.64 342.28 13.82 AT1676150 Peroxisomal Enoyl-CoA Mydratase 2 ECH2 51.05 63.33 13.93 AT4639850 ABC.Acyl Transporter (peroxisomal) CTS 41.35 57.43 11.57 AT46292010 Multifunctional Protein AIM1 658.36 228.65 207.46 1 AT4616760 Acyl-CoA Noidase ACX1 153.12 183.15 2.06 AT1601710 Acyl-CoA Coldase ACX6 - - - AT1605180 Acyl-CoA Oxidase ACX6 - - - AT5627600 (peroxisomal) LACS7 5.63 10.76 - AT3631840 Acyl-CoA Oxidase PK11 - - - AT563280 Dienoyl CoA Isomerase ECI2 9.36 106.79 16.61 AT2635690 Acyl-CoA Thiolase ACX5 4.31 - - AT1604710 Ketoacyl-CoA Thiolase ACX5 4.31 -<		AT5G65110	Acyl-CoA Oxidase	ACX2	22.75	40.28	1.75	5.54
AT12676150 Peroxisomal Encyl-CoA Hydratase 2 ECH2 51.05 63.33 13.93 AT4639850 ABC Acyl Transporter (peroxisomal) CTS 41.35 57.43 11.57 AT4629010 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT4616760 Acyl-CoA Oxidase ACX1 153.12 183.15 2.06 AT10001710 Acyl-CoA Dxidase ACX2 5.63 10.76 - AT1305180 Acyl-CoA Oxidase ACX6 - - - Unac-Chain Acyl-CoA Dxidase ACX4 36.50 43.55 2.43 AT3651840 Acyl-CoA Dxidase ACX4 36.50 43.55 2.43 AT4614430 Encyl CoA isomerase ECI2 93.65 106.79 16.61 AT5632600 Hydraxysobutyryl-CoA Hydrolase HIBCH - - - AT6304550 Hydraxysobutyryl-CoA Hydrolase HIBCH - - - AT1606710 Acyl-CoA Dxidase ACX5 4.31		AT2G33150	Ketoacyl-CoA Thiolase	KAT2/PED1	296.64	342.28	13.82	28.65
A14G39850 ABC Acyl Transporter (peroxisomal) CTS 41.35 57.43 11.57 A14G29010 Multifunctional Protein AIM1 658.36 283.65 2007.46 1 A14G16760 Acyl-CoA Oxidase ACX1 153.12 183.15 2.06 AT1G01710 Acyl-CoA Thioesterase ACX2 52.45 61.84 0.40 AT1G06310 Acyl-CoA Oxidase ACX6 - - - Long-Chain Acyl-CoA Oxidase ACX6 - - - AT5G27600 (peroxisomal) LACS7 5.63 10.76 - AT3G51840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 AT5G48880 Ketacyl-CoA Thiolase PKT1 - - - AT4G30550 Hydroxybotnyrl-CoA Hydrolase HIBCH - - - AT2G35690 Hydroxybotnyrl-CoA Hydrolase HIBCH - - - AT1G04710 Ketacyl-CoA Synthetase Long-Chain Acyl-CoA Synthetase Long-Chain Acyl-CoA Synthetas		AT1G76150	Peroxisomal Enoyl-CoA Hydratase 2	ECH2	51.05	63.33	13.93	15.67
AT4629010 Multifunctional Protein AIM1 658.36 283.65 207.46 1 AT4616760 Acy-CoA Oxidase ACX1 153.12 138.15 2.06 AT1601710 Acy-CoA Oxidase ACX1 153.12 138.15 2.06 AT1601710 Acy-CoA Oxidase ACX6 - - - Long-Chain Acy-CoA Synthetase LCS7 5.63 10.76 - - AT5027600 (peroxisomai) LCS7 5.63 10.76 - - AT50351840 Acy-CoA Oxidase PK11 - - - - AT5032800 Diency-CoA Isomerase ECI2 93.65 106.79 16.61 AT5032800 Diency-CoA Isomerase DCI1 72.00 51.25 15.44 AT1604710 Ketoacyl-CoA Thiotase KAT1 31.3 48.89 S88 Long-Chain Acyl-CoA Synthetase KAT1 31.5 2.86 11.0 2.86 AT4060520 Acyl-CoA Thioesterase ACX1 1.2		AT4G39850	ABC Acyl Transporter (peroxisomal)	CTS	41.35	57.43	11.57	14.02
AT4G15760 Acyl-CaA Oxidase ACX1 153.12 183.15 2.06 AT1G01710 Acyl-CaA Dxidase ACX2 52.45 61.84 0.40 AT1G06310 Acyl-CaA Dxidase ACX6 - - - AT3G27600 (perxisomal) LACS7 5.63 10.76 - AT3G51840 Acyl-CaA Oxidase ACX4 36.50 43.55 2.43 AT3G51840 Acyl-CaA Dxidase ACX4 36.50 43.55 2.43 AT3G51840 Ketacayl-CaA Thiolase PK1 - - - AT4G14430 Enoyl CaA isomerase ECI2 93.65 106.79 16.61 AT5G43280 Dienoyl CaA Isomerase DCI1 72.00 51.25 15.44 AT2G35690 Acyl-CaA Dxidase ACX5 4.31 - - AT1G05700 (perxisomal) LACS6 55.05 41.01 2.86 AT4G05520 Acyl-CaA Thioesterase ACT1 - - - AT4G05520 <td></td> <td>AT4G29010</td> <td>Multifunctional Protein</td> <td>AIM1</td> <td>658.36</td> <td>283.65</td> <td>207.46</td> <td>127.21</td>		AT4G29010	Multifunctional Protein	AIM1	658.36	283.65	207.46	127.21
AT1601710 Acyl-CoA Thioesterase AC12 S2.45 61.84 0.40 AT1606310 Acyl-CoA Notdase AC26 - <t< td=""><td></td><td>AT4G16760</td><td>Acyl-CoA Oxidase</td><td>ACX1</td><td>153.12</td><td>183.15</td><td>2.06</td><td>5.98</td></t<>		AT4G16760	Acyl-CoA Oxidase	ACX1	153.12	183.15	2.06	5.98
ATIG06310 Acyl-CoA Oxidase ACX6 Long-Chain Acyl-CoA Synthetase - - ATIG527600 (pervaisomail) LACS7 5.63 10.76 - ATIG51840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 ATIG51840 Ketacayl-CoA Thiolase PK1 - - - AT4G14430 Enoyl CoA isomerase ECI2 93.65 106.79 16.61 ATG30650 Hydroxylsobutyryl-CoA Hydrolase HIBCH - - - ATG634500 Acyl-CoA Oxidase ACX5 4.31 - - ATG306500 Hydroxylsobutyryl-CoA Hydrolase HIBCH - - - ATG306500 Ketacayl-CoA Thiolase KAT1 31.53 48.89 5.88 Cong-Chain Acyl-CoA Synthetase - - - - - ATG065900 Acyl-CoA Dxidase ACX3 25.26 18.59 2.38 AT4000520 Acyl-CoA Dxidase ACX1 1.42 6.09 <		AT1G01710	Acyl-CoA Thioesterase	ACT2	52.45	61.84	0.40	0.73
Long-Chain Acyl-CoA Synthetase AT3627600 (perovisional) LACS7 5.63 10.76 - AT3631840 Acyl-CoA Dxidase ACX4 36.50 43.55 2.43 AT3631840 Acyl-CoA Dxidase PKT1 - - - AT44614430 Enoyl CoA Isomerase ECI2 9.36 106.79 16.61 AT5643880 Netoacyl-CoA Thiolase PKT1 - - - AT3630850 Hydroxyloutryl-CoA Hydrolase HIBCH - - - AT3639500 Acyl-CoA Oxidase ACX5 4.31 - - - AT3605970 (peroxisonal) LAC56 55.05 41.01 2.86 AT1606270 Acyl-CoA Synthetase ACX1 - - - AT4606520 Acyl-CoA Thiolase ACX3 25.26 18.59 2.38 AT4000520 Acyl-CoA Thiolesterase ACT1 - - - AT4000520 Acyl-CoA Hidestareae Red 32.77 46.68		AT1G06310	Acyl-CoA Oxidase	ACX6				
ATS627600 (peroxisomal) LACS7 5.63 10.76 . AT3651840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 AT3651840 Ketoacyl-CoA Thiolase PKT1 - - - AT4614430 Encyl CoA Isomerase ECI2 93.65 106.79 16.61 AT3631840 Ketoacyl-CoA Thiolase PKT1 - - - AT4614430 Encyl CoA Isomerase DCI1 72.00 51.25 15.44 AT363050 Hydroxylobulryn-CoA Hydrolase HIBCH - - - AT1604710 Ketoacyl-CoA Thiolase KAT1 31.53 48.89 5.88 Comg-Chain Acyl-CoA Synthetase LACS6 55.05 41.01 2.86 AT1606720 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT1606520 Acyl-CoA Oxidase ACX1 2.72 46.68 10.78 AT3605800 Multifunctional Protein MF2 40.60 142.33 86.32			Long-Chain Acyl-CoA Synthetase					
AT3G51840 Acyl-CoA Oxidase ACX4 36.50 43.55 2.43 AT3G51840 Ketoaryl-CoA Thiolase PKT1 - <t< td=""><td></td><td>AT5G27600</td><td>(peroxisomal)</td><td>LACS7</td><td>5.63</td><td>10.76</td><td></td><td>0.7</td></t<>		AT5G27600	(peroxisomal)	LACS7	5.63	10.76		0.7
AT5C48880 Ketoacyl-CoA Thiolase PKT1 AT45C44880 Enoyl CoA Isomerase ECI2 93.65 106.79 16.61 AT5C43280 Dienoyl CoA Isomerase DCI1 72.00 51.25 15.44 AT263050 Hydroxylooburyl-CoA Hydrolase HIBCH AT1604710 Ketoacyl-CoA Thiolase KAT 31.3 AT1604710 Ketoacyl-CoA Thiolase KAT 31.3 AT3605970 (peroxisomal) LACS6 55.05 41.01 2.86 AT1606270 Acyl-CoA Coidase ACX1 AT4000520 Acyl-CoA Thioesterase ACX1 AT160520 Enoyl CoA isomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3005080 Multifunctional Protein MP2 100.60 142.33 86.32 Plastid Transporter MT2 28.71 21.18 30.95		AT3G51840	Acyl-CoA Oxidase	ACX4	36.50	43.55	2.43	6.02
AT4614430 Encyl CoA isomerase ECI2 93.65 106.79 16.61 AT5643280 Dienoyl CoA isomerase DCI1 72.00 51.25 15.44 AT2630650 Hydroxylobutyryl-CoA Hydrolase HIBCH - - - AT26336500 Acyl-CoA Oxidase ACX5 4.31 - - AT26336500 Ketoacyl-CoA Thiolase KAT1 31.53 48.89 5.88 Cong-Chain Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT1606250 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT4600520 Acyl-CoA Thioesterase ACT1 - - - - AT3605807 Enoyl CoA isomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT360580 Multifunctional Protein Ref 2 32.72 46.68 10.78 AT3605860 Multifunctional Protein MT2 28.71 21.18 30.95 Flastid Transporters Incesside triphosphate transporter NT2 <td< td=""><td></td><td>AT5G48880</td><td>Ketoacyl-CoA Thiolase</td><td>PKT1</td><td>-</td><td></td><td></td><td>-</td></td<>		AT5G48880	Ketoacyl-CoA Thiolase	PKT1	-			-
AT5643280 Dienoyl CoA isomerase DCI1 72.00 51.25 15.44 AT5630550 Hydrosybouryrl-CoA Hydrolase HIBCH - - - AT26335690 Acyl-CoA Oxidase ACXS 4.31 - - AT1604710 Ketoacyl-CoA Thiolase KAT1 31.53 48.89 - Long-Chain Acyl-CoA Synthetase Long-Chain Acyl-CoA Synthetase - - - AT1604970 (peroxisomal) LACS6 55.05 41.01 2.86 AT1606520 Acyl-CoA Thioesterase ACT1 - - - AT1606520 Acyl-CoA Thioesterase ACT1 - - - AT3005970 Enoyl-CoA Reductase Red 32.72 46.68 10.78 AT4000520 Acyl-CoA Reductase Red 32.72 46.68 10.78 AT3050860 Multifunctional Protein MFP2 104.06 142.33 66.32 Plastid Transporterrs Translocator GPI2 374.70 122.60 53.07 <td></td> <td>AT4G14430</td> <td>Enoyl CoA isomerase</td> <td>ECI2</td> <td>93.65</td> <td>106.79</td> <td>16.61</td> <td>13.78</td>		AT4G14430	Enoyl CoA isomerase	ECI2	93.65	106.79	16.61	13.78
AT2630500 Hydroxylsobutynt-CoA Hydrolase HBCH - - - AT2635590 Acyl-CoA Oxidase ACXS 4.31 - - AT2635690 Acyl-CoA Thiolase KAT1 31.53 48.89 5.88 Long-Chain Acyl-CoA Synthetase LACS6 55.05 41.01 2.86 AT1606700 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT1606520 Acyl-CoA Oxidase ACX1 - - - AT1606520 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT3605800 Acyl-CoA Oxidase ACX1 - - - - AT1665520 Enoyl-CoA Simerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3617800 Dienoyl-CAB Reductase Red 32.72 46.68 10.78 AT3606860 Multifunctional Protein MFP2 28.71 21.8 36.32 Plastid Transporter Incleoside triphosphate transporter 170.30 107.56 178.30<		AT5G43280	Dienoyl CoA Isomerase	DCI1	72.00	51.25	15.44	14.47
AT2635690 Acyl-CoA Oxidase ACS 4.31 - - AT1604710 Ketoacyl-CoA Thiolase KAT1 31.53 48.99 5.88 Long-Chain Acyl-CoA Synthetase LACS6 55.05 41.01 2.86 AT16062970 (peroxisomal) LACS6 55.05 41.01 2.86 AT1606290 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT4000520 Acyl-CoA Thioesterase ACT1 - - - AT1665500 Enoyl-CoA isomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3615800 Dienoyl-CoA eductrace Red 32.77 46.68 10.78 AT16065800 Multifunctional Protein MFP2 104.00 142.33 86.32 Plastid Transporters T07.30 107.56 178.30 0 176.516.00 178.30 AT1661800 translocator GP12 374.70 122.60 53.07 AT1661800 funcisoter transporter GP11 383.92 42		AT2G30650	Hydroxyisobutyryl-CoA Hydrolase	HIBCH	-	-	-	
AT1G04710 Ketoacyl-CoA Thiolase Lung-Chain Acyl-CoA Synthetase KAT1 31.53 48.89 5.88 AT3G05970 (pcrxisiomal) LAC56 55.05 41.01 2.86 AT1G06290 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT4600520 Acyl-CoA Thioesterase ACT1 - - - AT1G05520 Encyl CoA isomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3G05860 Multifucinal Protein MFP2 140.60 142.33 86.32 Plastid Transporters - - - - - AT1615500 Nucleoside triphosphate transporter NTT2 28.71 21.18 30.95 Glucose 6 phosphate:phosphate GPT2 374.70 122.60 53.07 AT1618000 nucleoside triphosphate transporter GPT2 374.70 22.60 53.07 AT16161500 Glucose transporter GPT1 167.72 73.01 0.40 AT5661515 Glucose transporter GPT1 <td< td=""><td></td><td>AT2G35690</td><td>Acyl-CoA Oxidase</td><td>ACX5</td><td>4.31</td><td></td><td>-</td><td>1.08</td></td<>		AT2G35690	Acyl-CoA Oxidase	ACX5	4.31		-	1.08
Lang-chain Acyl-CoA Synthetase AT3605970 (peroxisomal) LACS6 55.05 41.01 2.86 AT1606290 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT4000520 Acyl-CoA Thioesterase ACT1 - - - AT160520 Enoyl CoA Isiomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3012800 Dienoyl-CoA Reductase Red 32.72 46.68 10.78 AT3005860 Multifunctional Protein MF2 28.71 21.8 365.32 Plastid Transporters 170.30 107.56 178.30 107.56 178.30 Gluccose 6 phosphate transporter NT2 28.71 21.8 30.95 AT1661800 translocator GP12 374.70 122.60 53.07 AT166150 Gluccose transporter GIT1 167.72 73.01 0.40 AT5616150 Gluccose transporter GIT1 167.72 73.01 0.40 AT5646150 Trosphate transporter <td></td> <td>AT1G04710</td> <td>Ketoacyl-CoA Thiolase</td> <td>KAT1</td> <td>31.53</td> <td>48.89</td> <td>5.88</td> <td>6.70</td>		AT1G04710	Ketoacyl-CoA Thiolase	KAT1	31.53	48.89	5.88	6.70
AT3605970 (peroxisomal) LACS6 55.05 41.01 2.86 AT1606290 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT1605290 Acyl-CoA Thiosterase ACT1 - - - AT1605520 Encyl CoA Itometrase (peroxisomal) ECI1 14.72 6.09 0.66 AT36058500 Diencyl-CoA Reductace Red 32.72 46.68 10.78 AT3606860 Multifunctional Protein MFP2 140.60 142.33 86.32 Plastid Transporters - - - - - AT1615500 Nucleoside triphosphate transporter NTT2 28.71 21.18 30.95 Glucose 6 phosphate:phosphate - - - - - AT1661800 translocator GPT2 374.70 122.60 53.07 AT3605150 Glucose transporter GIT1 167.72 73.01 0.40 AT5616150 Glucose transporter GIT1 167.72 73.01			Long-Chain Acyl-CoA Synthetase					
AT1G6520 Acyl-CoA Oxidase ACX3 25.26 18.59 2.38 AT4G60520 Acyl-CoA Thioesterase ACT1 - <td< td=""><td></td><td>AT3G05970</td><td>(peroxisomal)</td><td>LACS6</td><td>55.05</td><td>41.01</td><td>2.86</td><td>0.82</td></td<>		AT3G05970	(peroxisomal)	LACS6	55.05	41.01	2.86	0.82
AT4600520 Acyl-CoA Thiosterase ACT1 AT1605520 Enoyl CoA Isiomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3605620 Dienoyl-CoA Reductave Rad 32.72 46.68 10.78 AT3605680 Multifunctional Protein MFP2 100.60 142.33 86.32 Plastid Transporters Translocator MFP2 20.71 21.18 30.95 AT1651500 Nucleoside triphosphate transporter NT2 28.71 21.26 53.07 AT16516100 translocator GP12 374.470 122.60 53.07 AT15616150 Glucose transporter NT1 383.92 42.00.1 337.14 3 AT5616150 Glucose transporter GIT1 167.72 73.01 0.40 AT56333.02 Phosphenelogytwate transporter PP11 22.05 55.48 817.19 2 AT5646100 Transportactor TF7 16.47 20.57 9.33 2		AT1G06290	Acyl-CoA Oxidase	ACX3	25.26	18.59	2.38	3.32
AT1665520 Enoyl CoA isomerase (peroxisomal) ECI1 14.72 6.09 0.66 AT3612800 Dienoyl-CoA Reductaxe Rid 32.72 46.68 10.78 AT3606860 Multifunctional Protein MFP2 140.60 142.33 86.32 Plastid Transporters		AT4G00520	Acyl-CoA Thioesterase	ACT1	-		-	-
AT3G12800 Dienoyl-Col Reductave Red 32.77 46.68 10.78 AT3G06860 Multifunctional Protein MFP2 140.60 142.33 86.32 Plastid Transporters 170.30 107.56 178.30 AT1G15500 Nucleoside triphosphate transporter NT2 28.71 21.18 30.95 AT1G15800 translocator GP12 374.70 122.60 53.07 AT1G16800 nucleoside triphosphate transporter NT1 383.92 420.01 337.14 3 AT161500 Success transporter GIT1 167.72 73.01 0.40 AT15G16150 Glucose transporter PP11 220.55 95.48 817.19 2 AT5G48100 Triose posphate transporter PP11 20.55 9.33 2		AT1G65520	Enoyl CoA isomerase (peroxisomal)	ECI1	14.72	6.09	0.66	3.15
AT3606860 Multifunctional Protein MFP2 140.60 142.33 86.32 Plastid Transporters 170.30 107.56 178.30 AT1615500 Nucleoside triphosphate transporter Glucose 6 phosphate:phosphate NTT2 28.71 21.18 30.95 AT1661800 translocator GPT2 374.70 122.60 53.07 AT1561510 Glucose 6 rphosphate transporter NIT1 383.92 420.01 33/14 3 AT5616150 Glucose transporter GI11 167.72 73.01 0.40 AT5643320 Phosphoanologynuvate transporter PPT1 220.56 95.48 817.19 2 AT5646100 Triose phosphate translocator TPT 16.47 20.67 9.33		AT3G12800	Dienoyl-CoA Reductase	Red	32.72	46.68	10.78	6.60
Plastid Transporters 170.30 107.56 178.30 AT1015500 Nucleoside triphosphate transporter Gluccose 6 phosphate:phosphate NTT2 28.71 21.18 30.95 AT1015500 translocator GPT2 374.70 122.60 53.07 AT10150800 translocator GPT2 374.70 122.60 53.07 AT10150800 Nucleoside triphosphate transporter GIT1 167.72 73.01 0.40 AT5016150 Glucose transporter GIT1 167.72 73.01 0.40 AT504010 Triosphate translocator PPT1 220.56 95.48 817.19 2 AT504010 Triosphate translocator TPT 16.47 20.57 9.33		AT3G06860	Multifunctional Protein	MFP2	140.60	142.33	86.32	87.38
AT1615500 Nucleoside triphosphate transporter Glucose 6 phosphate;phosphate NTT2 28.71 21.18 30.95 AT1661800 translocator GPT2 374.70 122.60 53.07 AT1661800 Nucleoside triphosphate transporter NIT1 383.92 420.01 337.14 3 AT5616150 Glucose transporter GIT1 167.72 73.01 0.40 AT5633320 Phosphate transporter PPT1 220.56 95.48 817.19 2 AT564610 Triose phosphate translocator TPT 16.47 20.67 9.33	Plastid Trans	porters		A A Constitution	170.30	107.56	178.30	88.85
Glucose 6 phosphate:phosphate AT1661800 translocator GPT2 374.70 122.60 53.07 AT1661800 Nucleoside triphosphate transporter NIT1 383.92 420.01 337.14 3 AT5616150 Glucose transporter GIT1 167.72 73.01 0.40 AT5633320 Phosphoenolpyruvate transporter PT1 220.56 95.48 817.19 2 AT564610 Triose phosphate translocator TPT 16.47 20.67 9.33		AT1G15500	Nucleoside triphosphate transporter	NTT2	28.71	21.18	30.95	19.72
AT1661800 translocator GP12 374.70 122.60 53.07 A110680300 Nucleoside triphosphate transporter NT11 383.92 420.01 337.14 3 AT5616150 Glucose transporter GLT1 167.72 73.01 0.40 AT5633320 Phosphoenolpytwate transporter PP11 220.56 95.48 817.19 2 AT5646100 Triose phosphate transporter TPT 16.47 20.67 9.33			Glucose 6 phosphate:phosphate					
ATIG60300 Nucleoside triphosphate transporter NT1 383.92 420.01 337.14 3 AT5061610 Glucose transporter GLT1 167.72 73.01 0.40 AT503320 Phosphaet transporter PPT1 220.55 95.48 817.19 2 AT564610 Triose phosphate translocator TPT 16.47 20.67 9.33		AT1G61800	translocator	GPT2	374.70	122.60	53.07	38.50
AT5616150 Glucose transporter GL1 167.72 73.01 0.40 AT5633320 Phosphoenolpyruvate transporter PPT1 220.56 95.48 817.19 2 AT564610 Triose phosphate translocator TPT 16.47 20.67 9.33		AT1G80300	Nucleoside triphosphate transporter	NIT1	383.92	420.01	337.14	331.24
AT5G33320 Phosphoenolpyruvate transporter PPT1 220.56 95.48 817.19 2 AT5G46110 Triose phosphate translocator TPT 16.47 20.67 9.33		AT5G16150	Glucose transporter	GLT1	167.72	73.01	0.40	3.22
AT5G46110 Triose phosphate translocator TPT 16.47 20.67 9.33		AT5G33320	Phosphoenolpyruvate transporter	PPT1	220.56	95.48	817.19	228.11
가는 것 같은 것 같		AT5G46110	Triose phosphate translocator	TPT	16.47	20.67	9.33	1.14
Glucose 6 phosphate:phosphate			Glucose 6 phosphate:phosphate					
AT5G54800 translocator GPT1		AT5G54800	translocator	GPT1			2	3.65

				15waa	20waa		
	Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
Slycolysis		44 4 4		231.46	110.10	323.97	97.47
	AT1G09780	Phosphoglyceromutase	i-PGM	727.71	400.46	590.34	137.84
	171012000	Phosphotructokinase, pyrophosphate-	252	04.00	70.00	<i>c</i> +	
	AT1G12000	dependant Glucoroldobudo 3 obocobato	PFP	94.08	70.88	61.53	54.05
	17101000	Givceraldenyde 3 phosphate	G1 3				
	A11012900	Gluceraldebude 3 oborobate	GapA-2	50	-		110
	AT1G12440	debudrogenace	GapC2	1 417 45	1 071 54	4 730 24	1 154 92
	N11013440	Gluceraldebude 3 photobate	Gaper	4,447.40	1,071.54	4,733.34	4,2.54.55
	AT1G16300	dehydrogenase	GanCo.2	312 61	65.62	190.99	89.45
	AT1G18270	Fructose 1.6 bis phosphate aldolase	FRA	20.70	33.46	1.57	1 74
	ALGIGERO	Phosphofructokinase, pyrophosphate-	101	20.70	55.40	2.37	
	AT1G20950	dependant	PEP				
	AT1G22170	Phosphoglyceromutase	d-PGM	10.20	8.15	56.55	56.00
	AT1G32440	Pyruvate kinase	pPK	66.67	29.82	72.20	54.22
		Glyceraldehyde 3 phosphate					
	AT1G42970	dehydrogenase	Plastid-GapB	0.05	5.31	0.05	0.05
	AT1G56190	3-Phosphoglycerate kinase	PGK	19.08	15.69	22.12	9.72
	AT1G74030	Enolase	Plastid-ENO	64.00	33.72	54.12	22.24
		Phosphofructokinase, pyrophosphate-					
	AT1G76550	dependant	PFP	116.82	33.59	587.02	164.52
	AT1G78050	Phosphoglyceromutase	d-PGM	10		10	
		Glyceraldehyde 3 phosphate					
	AT1G79530	dehydrogenase	GapCp-1	9.73	14.80	4.59	8.80
	AT1G79550	3-Phosphoglycerate kinase	PGK	822.66	278.75	1,159.64	618.23
	AT2G01140	Fructose 1,6 bis phosphate aldolase	FBA	277.81	143.63	153.27	148.67
	A12G21170	Triose phosphate isomerase	Plastid-TPI	123.43	117.77	21.37	11.87
	AT2G21330	Pructose 1,6 bis phosphate aldolase	FBA	4.07	3.55	0.08	0.07
	A12G22480	Phosphotructokinase, ATP-dependant	PERS	131.15	117.08	81.00	41.65
	473634370	debudenesses (one observation)	Cidenal an CAR	41.01		2.60	16.00
	AT2G24270	Enuctore 1.6 bis phosphate aldolare	Cytosoi-np-GAP	2 429 65	959.77	1 242 62	414.02
	AT2G36530	Epolace	Cutorol-ENO	301 77	140.29	2 760 26	306.25
	AT2G36580	Purpusto kinaso	PK	0.72	2 70	5.56	4.10
	A12030300	Giveraldehyde 3 phosphate	16	0.72	2.70	3.30	4.10
	AT3G04120	dehydrogenase	GapC1	13.71	31.22	2.41	0.26
	AT3G08590	Phosphoglyceromutase	i-PGM	2.45	3.92	125.24	31.54
	AT3G12780	3-Phosphoglycerate kinase	PGK	25.71	32.89	26.99	15.10
	AT3G22960	Pyruvate kinase	pPK	198.60	35.90	747.84	282.36
		Glyceraldehyde 3 phosphate					
	AT3G26650	dehydrogenase	GapA-1	8.66	5.55	14.82	1.15
	AT3G30841	Phosphoglyceromutase	i-PGM	16.74	20.81	82.28	39.32
	AT3G45090	3-Phosphoglycerate kinase	PGK	2.45	0.32	2.53	2.33
	AT3G49160	Pyruvate kinase	pPK	17.85	18.79	5.81	3.20
	AT3G52930	Fructose 1,6 bis phosphate aldolase	FBA	2,293.17	698.16	2,359.20	578.05
	AT3G52990	Pyruvate kinase	PK	594.17	153.73	144.05	152.99
	AT3G55440	Triose phosphate isomerase	Cytosol-TPI	381.99	360.38	511.10	136.62
	AT3G55650	Pyruvate kinase	PK	-	-	-	-
	AT3G55810	Pyruvate kinase	РК	-	-		
	171001010	Phosphotructokinase, pyrophosphate-					
	AT4G04040	dependant	PFP		2.50		0.00
	A14G09520	Phosphogiyceromutase	I-PGM	1.025.00	2.60	244.40	170.00
	A14G26270	Phosphotructokinase, ATP-dependant	PFK3	1,025.09	418.72	344,40	170.29
	AT4020320	Existence 1 6 bis obecebate aldelane	FRA	1.27	. 8	4.02	
	AT4G20330	Photobe 1,0 bis priosphate autorase	PERT	1.57		4.02	
	A14G29220	Phosphofructokinase, ATP-dependant	PEKE				•
	AT4G38970	Fructose 1.6 his phosphate aldolace	FRA	26.40	33.40	7 90	26 51
	AT5G08570	Purilizate kinase	PK	393.15	330.60	258.83	210.44
	AT5G47810	Phosphofructokinase, ATP-dependant	PFK2	103.11	44.46	64.79	57.35
	AT5G52920	Pyruvate kinase	pPK-B1	183 52	91 77	386 71	143 47
	AT5G56350	Pyruvate kinase	PK	118.89	45.75	388.74	22.61
	AT5G56630	Phosphofructokinase, ATP-dependant	PFK7	40.58	30.51	13.86	5.66
	AT5G60760	3-Phosphoglycerate kinase	PGK	53.56	69.13	71.75	51.47
	AT5G61450	3-Phosphoglycerate kinase	PGK	16.71	16.63	24.59	16.22
	AT5G61580	Phosphofructokinase, ATP-dependant	PFK4			-	
	AT5G63680	Pyruvate kinase	PK		-		

			15waa	20waa		
Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocaro	mesocarp	10waa kernel	15waa kernel
Malate and Pyruvate Metabolism			104.00	66.10	47.18	29.56
AT1G04410	Malate dehydrogenese	MDH			-	
AT1G53240	Malate dehydrogenese	MDH	176.23	102.88	65.30	25.59
AT1G53310	Phosphoenolpyruvate carboxylase	PEPC1	274.57	302.73	51.93	60.54
AT1G68750	Phosphoenolpyruvate carboxylase	PEPC4	20.02	12.59	2.36	1.32
AT1G79750	Malic enzyme (NADP)	Plastid-ATNADP-ME4	-			
AT2G13560	Malic enzyme (NAD)	NAD-ME1	41.48	30.05	3.84	7.29
AT2G19900	Malic enzyme (NADP)	ATNADP-ME1				
AT2G22780	Malate dehydrogenese	MDH	84.78	122.00	36.30	19.31
AT2G42600	Phosphoenolpyruvate carboxylase	PEPC2	104.25	195.21	9.65	46.39
AT3G04530	Phosphoenolpyruvate carboxykinase	PEPCK3	9.82	23.17	2.91	1.48
AT3G14940	Phosphoenolpyruvate carboxylase	PEPC3	88.12	33.45	21.97	51.15
AT3G15020	Malate dehydrogenese	MDH	3.19	0.40	2.67	0.23
AT3G47520	Malate dehydrogenese	MDH	65.26	44.56	220.13	66.16
AT4G00570	Malic enzyme (NAD)	NAD-ME2	51.50	29.40	1.53	1.05
AT4G15530	Pyruvate orthophosphate dikinase	Plastid-PPDK	17.28	36.57	13.96	18.56
AT4G37870	Phosphoenolpyruvate carboxykinase	PEPCK1	71.79	49.19	119.83	197.89
AT5G09660	Malate dehydrogenese	MDH	-			
AT5G11670	Malic enzyme (NADP)	ATNADP-ME2	1,023.80	220.63	372.28	152.52
AT5G25880	Malic enzyme (NADP)	ATNADP-ME3	91.34	54.78	111.45	40.22
AT5G43330	Malate dehydrogenese	MDH	569.07	463.27	98.78	58.47
AT5G56720	Malate dehydrogenese	MDH	•		-	
AT5G58330	Malate dehydrogenese	MDH	6.73	5.11	1.08	0.79
AT5G65690	Phosphoenolpyruvate carboxykinase	PEPCK2	2.78	3.94	19.25	2.70
Calvin cycle						
AT1G32060	phosphoribulokinase	PRK	65.44	5.59	57.18	40.44
	Ribulose bis phosphate					
AT1G67090	carboxylase/oxygenase small subunit	RBCS-1A	0.96	29.01	67.74	12.93
	Ribulose bis phosphate			25025	101100	
AT5G38410	carboxylase/oxygenase small subunit	RBCS-3B			52	
	Ribulose bis phosphate					
AT5G38420	carboxylase/oxygenase small subunit	RBCS-2B	247.57	152.35	88.04	52.30
	Ribulose bis phosphate					
AT5G38430	carboxylase/oxygenase small subunit	RBCS-1B			S2	
Sucrose Degradation			134.29	83.34	53.05	38.76
AT1G12240	Invertase	BFRUCT4	22.08	3.05		0.16
AT1G22650	Invertase	N-INV				
AT1G35580	Invertase	CINV1	-			
AT1G62660	Invertase	BFRUCT3	165.82	85.11	0.20	0.08
AT1G72000	Invertase			-	-	
AT1G73370	Sucrose synthase	SUS6	0.33	0.18	0.06	0.66
AT2G36190	Invertase	CWINVA	56.31	67.88	-	0.03
AT3G05820	Invertase		5.48	1.62	1.54	1.42
AT3G06500	Invertase		9.84	16.10	0.77	5.57
AT3G13784	Invertase	CWINVS				
AT3G13790	Invertase	CWINVI	108.80	82.03	0.08	0.31
AT3G43190	Sucrose synthase	SUSA	1 820 34	890.36	903 14	647.89
AT3653600	Invertare	CMINU2	42.05	12.15	0.26	042.05
AT4G02280	Sucrose synthase	\$1153	227.92	187.42	53.91	66.20
AT4602280	Invertase	CINIV2	100 50	226.49	5.42	8 80
AT4G09510	Invertase	CINV2	199.59	220.49	5.42	0.00
AT5G20830	Sucrose synthace	SUIS1	11.44	45 10	93.28	38.00
AT5020050	Investore	5031	12.03	47.43	3 23	10.20
A15G22510	Sucrose supthase	51155	13.82	47.43	2.23	10.39
A15G37180	Sucrose synthase	5005	0.97	1.78	8	0.15
A13043130	auciose synthase	3434		-		U.01

			15waa	20waa		
Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
Sugar transport		10 	114.72	116.87	9.63	20.47
AT1G09960	Sucrose transporter	SUC4	89.48	42.08	28.78	32.45
AT1G11260	Sugar transporter	STP1	48.32	51.43	2.69	59.80
AT1G50310	Sugar transporter	STP9	10.68	0.72	3.95	1.41
AT1G77210	Sugar transporter	STP14	7.40	17.18	8.01	21.99
AT2G02860	Sucrose transporter	SUC3	426.89	180.59	26.58	92.14
AT3G19930	Sugar transporter	STP4	40.28	81.15	3.72	1.31
AT4G02050	Sugar transporter	STP7	28.94	5.05	5.36	6.81
AT4G21480	Sugar transporter	STP12			-	-
AT5G23270	Sugar transporter	STP11	-		÷	
AT5G26340	Sugar transporter	STP13 MSS1	568.80	895.37	0.71	3.09
AT5G61520	Sugar transporter	STP3	41.12	12.00	26.11	6.18
Starch metabolism			27.53	19.02	8.26	3.24
AT1G05610	Glucose-1-phosphate adenylyltransferase	ApS2	6.87	1.66	0.50	0.42
AT1G11720	Starch synthase	SS	10.79	4.99	4.86	5.86
AT1G27680	Glucose-1-phosphate adenylyltransferase	ApL2	5.39	4.81	2.75	3.35
AT1G32900	Starch synthase	SS	142.82	102.81	36.89	6.42
AT4G18240	Starch synthase	55	2.96	3.87	6.94	4.30
AT5G19220	ADP-glucose pyrophosphorylase	ApL1	2.72	0.53	0.49	0.08
AT5G48300	ADP-glucose pyrophosphorylase	ApS1	41.84	26.12	2.24	2.56
AT5G65685	Starch synthase	SS	6.87	7.36	11.44	2.89
WRI1 related			6.26	3.55	235.02	149.67
AT2G25170	PICKLE	PKL	24.43	11.74	129.27	82.26
	Wrinkled1 (AP2/ERWEBP Transcription					
AT3G54320	Factor)	WRI1	13.04	8.68	985.40	526.00
AT1G28300	LEAFY COTYLEDON 2	LEC2	•		5.32	10.03
AT1G21970	LEAFY COTYLEDON 1	LEC1	**	0.30	112.29	38.82
AT3G24650	ABA INSENSITIVE 3	ABI3	0.08	0.55	149.73	205.04
	Transcriptional factor with high similarity to					
AT3G26790	the B3 region of the VP1/ABI3-like proteins	FUS3			28.08	35.86
Ripening			99.69	38.61	2.47	3.52
171005010	1	1001	116.30	165.22	0.13	10.00
ATIGOSOIO	1-aminocyciopropane-1-carboxylate oxidase	AC04	116.28	165.27	0.12	10.66
AT1G06620	2-oxoglutarate-dependent dioxygenase		39.13	10.25	2.85	3.30
A12G43870	Pectin lyase-like superfamily protein		11.28	6.12	-	
A13G48290	putative cytochrome P450	CYP/1A24				
A13G59850	Pectin lyase-like superfamily protein 1-aminocyclopropane-1-carboxylate (ACC)		8.14	2.54		
	synthase (S-adenosyi-L-methionine	1001				
A13G61510	metnyitnioadenosine-lyase	ACSI	3.40	6.46		-
A14G02290	giycosyi nydroiase	9813		-	5.62	-
A14G37770	auxin inducible ACC synthase	AC58	12.15		0.56	2.90
AT5G47230	ERF/AP2 transcription factor family	ERF5	706.80	156.87	13.07	14.86

				15waa	20waa		
	Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
Abscission	1.000000000		70	31.51	28.05	15.08	7.09
	AT1G02790	exopolygalacturonase	PGA4				•
	AT1G07640	DOF transcription factors	OBP2	0.13	4.95	0.55	3.02
	AT1G18350	MAP kinase kinase7	ATMKK7	-	-		
	AT1G51660	mitogen-activated map kinase	MKK4	35.18	19.71	11.26	13.89
	AT1G51700	zinc finger protein	ADOF1	24.47	99.82	72.11	28.61
	AT1G60590	Pectin lyase-like superfamily protein		3.12		0.35	1.10
	AT2G01270	disulfide isomerase-like (PDIL) protein	QSOX2	29.80	15.28	13.07	17.19
	AT2G23760	BEL family of homeodomain proteins	BLH4	5.14	4.46	0.30	
	AT2G27990	BEL1-like homeobox gene	BLH8	6.54	8.30	2.45	2.36
		putative leucine rich repeat transmembrane	112020				
	AT2G31880	protein	EVERSHED	26.01	179.89	0.27	0.22
		a cytoplasmic and nuclear-localized NPR1					
		like protein with BTB/POZ domain and					
	AT2G41370	ankyrin repeats	BOP2	4.20	4.11	1.40	1.38
	AT2G43870	Pectin lyase-like superfamily protein		11.28	6.12		
	AT3G21220	mitogen-activated kinase	KINASE 5	17.25	6.15	10.03	4.65
	AT3G55370	DNA binding transcription factor	OBP3	1.93	3.27	0.12	
	AT4G34610	BEL1-like homeodomain 6	BLH6	60.34	38.64	7.66	14.69
	AT4G38000	DNA binding with one finger 4.7	DOF4.7				
		Malectin/receptor-like protein kinase family					
	AT5G39020	protein		• 2		-	
	AT5G41410	Homeodomain protein	BEL1	404.86	170.36	182.12	54,72
	AT5G60850	zinc finger protein	OBP4	-	-	-	-
		Dof-type zinc finger DNA-binding family					
	AT5G66940	protein					

			15waa	20waa		
Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	mesocarp	mesocarp	10waa kernel	15waa kernel
Extra Plastidial Phospholipid Synthes	is	120Gent	48.26	56.18	43.08	45.53
AT3G05420	Acyl CoA Binding Protein	ACBP4	109.04	58.93	101.40	72.36
AT3G03310	Phospholipid : Acyl acceptor Acyltransferase NAD-dependent Glycerol-3-Phosphate	PLAT?	17.81	26.99	1.89	9.02
AT3G07690	Dehydrogenase	GPDH	5		1	
AT1G63050	Acyltransferase	LPCAT	-	-	-	
AT1G04010	Phospholipid : Acyl acceptor Acyltransferase 1-acylglycerol-3-phosphoethanolamine	PLAT?	26.80	12.56	0.69	1.23
AT2G45670	Acyltransferase	LPEAT	14.02	8.98	12.80	11.33
AT4G23850	Long-Chain Acyl-CoA Synthetase	LACS4	107.13	105.93	460.61	430.59
AT1G75020	1-acylglycerol-3-phosphate acyltransferase	LPAAT4	18.50	14.78	47.24	26.32
AT4G38570	Phosphatidylinositol Synthase	PIS2	5.46	8.46	8.43	3.22
AT5G27630	Acyl CoA Binding Protein	ACBP5				
AT1G74320	Choline Kinase	СК	84.36	185.05	20.19	49.36
AT1G13560	Diacylglycerol Cholinephosphotransferase	DAG-CPT	38.85	15.13	2.00	2.82
AT4G22340	CDP-DAG Synthase	CDP-DAGS	25.71	16.44	2.28	6.60
AT1G48600	Phosphoethanolamine N-Methyltransferase	CPUORF31	20		10	
AT1G62430	CDP-DAG Synthase	CDS1	•	•	10	
AT4G24230	Acyl CoA Binding Protein NAD-dependent Glycerol-3-Phosphate	ACBP3	143.01	136.25	8.20	226.99
AT2G41540	Dehydrogenase	GPDH	160.74	465.66	265.42	326.48
AT4G25970	Phosphatidylserine Decarboxylase	PSD3	30.86	20.19	3.30	2.23
AT3G18000	Phosphoethanolamine N-Methyltransferase	NMT1	107.12	16.41	19.46	6.27
AT1G73600	Phosphoethanolamine N-Methyltransferase	PEAMT	0.33	0.21	26.72	10.29
	Phosphatidylethanolamine					
AT1G80860	methyltransferase	PLMT	3.44	1.37	7.88	5.32
AT3G25585	Diacylglycerol Cholinephosphotransferase	DAG-CPT	-			
AT4G15130	Choline-Phosphate Cytidylyltransferase	CCT2	450.17	215.12	91.17	50.61
AT1G68000	Phosphatidylinositol Synthase Glycerol-3-Phosphate Acyltransferase	PIS1	22.33	30.93	34.96	33.79
AT5G60620	(mammalian homologue)	GPAT9	68.50	110.50	111.48	60.50
AT3G18850	1-acylglycerol-3-phosphate acyltransferase	LPAAT5	20			
AT1G31812	Acyl CoA Binding Protein	ACBP6	144.17	455.56	75.39	36.71
AT4G11030	Long-Chain Acyl-CoA Synthetase 1-acylglycerol-3-phosphocholine	LACS5		1.20	0.37	
AT1G12640	Acvitransferase	LPCAT	62.68	24.42	112.32	32.22
AT2G38670	CDP-Ethanoamine Synthase	PECT1	41.24	63.01	38.67	20.66
AT4G16700	Phosphatidylserine Decarboxylase	PSD1	20.34	20.22	13.54	7.00
AT3657650	1-acviglycerol-3-phosphate acvitransferase	IPAAT2	51.54	39.72	80 34	133.68
AT4G09760	Choline Kinase	CK	3.20	14.67	-	-
AT3G58490	Phosphatidate Phosphatase	LPP-δ	57.36	186.33	17.61	6.63
AT4G19860	Phospholipid : Acyl acceptor Acyltransferase	PLAT?	60.17	19.30	55.85	53.05
AT4G27780	Acyl CoA Binding Protein	ACBP2	18.73	24.07	26.09	23.14
AT4G22550	Phosphatidate Phosphatase	LPP-B	21.76	14.12	70.64	22.98
AT5G42870	Phosphatidate Phosphatase (ER)	PAH2	36.46	35.72	35.60	67.16
	Base-Exchange-type Phosphatidyiserine	DE 000	27.10	24.25	17.00	
AT1615110	Synthase	BE-PSS	37.18	34.25	17.86	12.72
A12G26830	Etnanolamine Kinase	EK	1/9.5/	114.60	17.29	12.30
A11G/169/	Choine Kinase Rhashatid daariga Dasarbawdas	CN1	1.54	2.69	2.83	3.51
A15657190	Phosphatidylserine Decarboxylase Phosphatidylcholine:diacylglycerol	1502				•
AT3G15820	cholinephosphotransferase	PDCT/ROD1	20.10	27.31	0.25	0.90
AT2G32260	Choline-Phosphate Cytidylyltransferase	CCT1		•		1.15
AT3G09560	Phosphatidate Phosphatase (ER)	PAH1	16.10	24.12	13.90	12.74
AT5G53470	Acyl CoA Binding Protein	ACBP1	13.41	33.20	176.86	312.43

	Arabidopsis homolog	Protein Family	Protein/Gene Abbreviation	15waa mesocarp	20waa mesocarp	10waa kernel	15waa kernel
TAG Synthesis				37.93	76,56	56.92	63.07
	AT3G58490	Phosphatidate Phosphatase	LPP-δ	57.36	186.33	17.61	6.63
		NAD-dependent Glycerol-3-Phosphate					
	AT3G07690	Dehydrogenase	GPDH	*3			
	AT4G22550	Phosphatidate Phosphatase	LPP-B	21.76	14.12	70.64	22.98
	AT3G51520	Acyl-CoA : Diacylglycerol Acyltransferase	DGAT2	9.47	10.92	8.64	12.25
	AT5G42870	Phosphatidate Phosphatase (ER)	PAH2	36.46	35.72	35.60	67.16
AT3G18850	1-Acylglycerol-3-Phosphate Acyltransferase	LPAAT5	-	-	-		
	Glycerol-3-Phosphate Acyltransferase						
	AT5G60620	(mammalian homologue)	GPAT9	68.50	110.50	111.48	60.50
	AT5G13640	Phospholipid : Diacylglycerol Acyltransferase	PDAT1	21.23	28.34	31.31	105.48
	AT2G19450	Acyl-CoA : Diacylglycerol Acyltransferase	DGAT1	31.45	65.10	57.72	45.75
	AT1G75020	1-Acylglycerol-3-Phosphate Acyltransferase	LPAAT4	18.50	14.78	47.24	26.32
AT3G09560	AT3G09560	Phosphatidate Phosphatase (ER)	PAH1	16.10	24.12	13.90	12.74
		NAD-dependent Glycerol-3-Phosphate					
	AT2G41540	Dehydrogenase (cytosolic)	GPDH	160.74	465.66	265.42	326.48
	AT3G57650	1-Acylglycerol-3-Phosphate Acyltransferase	LPAAT2	51.54	39.72	80.34	133.68

15waa kernel
62.46
177.39
267.61
274.70
3.91
24.40
42.50
24.57
8.97
2.58
0.60
29.71
11.65
46.19
189.27
72.31
10.18
0.24
33.17
1.89
29.61
13.34
2.32
4.15
7.00
7.39
86.73
14.96
17.76
150.59
10.69
250.14
56.41
0.52
97.90
41.46
-1.40
2 22
54 87 26 11 24 50 24 45 04 91 54 15 00 02 10 70

For each functional classification group of genes, the average transcripts per million tags sequenced is presented in the header for each group. For individual genes, expression levels are presented as transcripts per million tags sequenced. Data is presented for transcriptomes from mesocarp (15 and 20 WAA) and kernel (10 and 15 WAA).

Supplementary Methods

Repetitive sequence detection

To construct *Elaeis* specific repeat databases, repetitive sequences of *pisifera* and *oleifera* were determined by a genome wide self-self comparison based on 60mer windowed 15mer word frequencies. Each genome was decomposed into 60mer words with 40 base overlap, and scored for uniqueness using a SSAHA³¹ based pipeline. The uniqueness score for an individual 60mer was calculated as: 60mer Uniqueness Score = Sum (i=1 to 45) [log(freq(15mer_i))]. Perfectly unique 60mers receiving a score of 0, and highly repetitive 60mers scoring as high as 727 in the *pisifera* genome were calculated. Regions of each genome with uniqueness scores in the highest (most repetitive) 20% were collected and clustered using the PCAP algorithm to create the PisiferaRepeat and OleiferaRepeat databases with 5,426 and 440 sequences, respectively.

Public database sources for comparative genome sequences and gene models

Genome source:

A. thaliana:

ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes/TAIR10

O. sativa:

ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v8.0/Osativa/assembly/Osativa_193.fa.gz *P. dactylifera*:

http://qatar-

weill.cornell.edu/research/datepalmGenome/edition3/PdactyKAsm30_r20101206.fasta.gz

Gene model source:

A. thaliana:

ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/TAIR10_p ep_20110103_representative_gene_model_updated

O. sativa:

ftp://ftp.jgi-

 $psf.org/pub/JGI_data/phytozome/v8.0/Osativa/annotation/Osativa_193_peptide.fa.gz$

P. dactylifera:

http://qatar-weill.cornell.edu/research/datepalmGenome/edition3/PDK30-pep.fsa.gz

Supplementary Notes

Triacylglycerol biosynthesis

TAG usually accumulates in oil bodies. Seeds (including oil palm kernel) maintain oil bodies as small individual units (0.5 to 2 μ m) preventing their coalescence during seed desiccation and providing high surface area to volume ratio to facilitate access by lipases during germination. In contrast, the oleaginous fruits, oil palm, olive and avocado have large oil bodies (up to 20 μ m) in the mesocarp owing to the lack of oleosins, structural proteins that stabilize and prevent the coalescence of the oil bodies. Unlike the date genome, oleosins are represented in the oil palm. Consistently, the transcriptome profile showed very high oleosin expression in the kernel and very low expression in the mesocarp (Figure 3c, Supplementary Table 9).

Fruit ripening and abscission

Interestingly the oil palm has two-fold more ripening and abscission genes than date palm (Fig. 2c). The oil palm has more *AMINOCYCLOPROPANE CARBOXYLATE OXIDASE* (*ACO*) genes responsible for the burst of ethylene and increased respiration on ripening. The oil palm genome is also enriched in *MAPKK* genes which are involved in ethylene signal transduction. *BRASSINOSTEROID INSENSITIVE1* Leucine-Rich Repeat (LRR) genes and *BLADE ON PETIOLE2* (*BOP2*) genes are similarly more highly represented in the oil palm genome. *BRI1* regulates transduction of steroid signals across membranes while *BOP2* controls abscission zone formation.

References

- 44. Luo, M. & Wing, R. A. An improved method for plant BAC library construction. *Methods Mol Biol* **236**, 3-20 (2003).
- 45. Ammiraju, J. S. et al. The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. *Genome Res* **16**, 140-7 (2006).
- 46. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet Genome Res* **110**, 462-7 (2005).
- 47. Piegu, B. et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. *Genome Res* **16**, 1262-9 (2006).
- 48. Rival, A. et al. Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis, Jacq.) tissue cultures and seed derived plants. . *Plant Cell Reports* **16**, 884-887 (1997).
- 49. Madon, M., Phoon, L. Q., Clyde, M. M. & Mohd Din, A. Application of flow cytometry for estimation of nuclear DNA content in Elaeis. *Journal of Oil Palm Research* **20**, 447-452 (2008).
- 50. Rajanaidu, N., Rao, V., Abdul Halim, H. & A.S.H., O. Genetic resources: New developments in Oil Palm breeding. *Elaeis* **1**, 1-10 (1989).
- 51. Billotte, N. et al. Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). *Theor Appl Genet* **110**, 754-65 (2005).
- 52. Madon, M., Clyde, M. M. & Cheah, S. C. Cytological analysis of Elaeis guineensis (tenera) chromosomes. *. Elaeis* **7**, 122-134 (1995).