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SUPPLEMENTARY MATERIAL FOR “WEIGHTED
LIKELIHOOD ESTIMATION UNDER TWO-PHASE

SAMPLING”

By Takumi Saegusa∗ and Jon A. Wellner†

University of Washington

In this supplement we present the proofs for [6]. Equation and
theorem references made to the main document do not contain letters.

A. Appendix. We repeatedly use the notation for empirical measures
and processes introduced in Section 2 following [2]. The fundamental idea

of [2] is to view Gξ
j,Nj

as the exchangeably weighted bootstrap empirical

process corresponding to Gj,Nj ≡
√
Nj

(
Pj,Nj − P0|j

)
for j = 1, . . . , J . The

processes Gξ
j,Nj

converge weakly to
√
pj(1− pj)Gj for independent P0|j-

Brownian bridge processes Gj , j = 1, . . . , J , in `∞(F) for Donsker classes
F .

Asymptotic linearity and the limiting distributions of α̂N in binary re-
gression and (modified and centered) calibration are given by the following
proposition. The proof requires a Glivenko-Cantelli theorem for PπN whose
proof is independent of Proposition A.1.

Proposition A.1. Under the Condition 3.1, α̂N is consistent for α0,
and

√
N(α̂N − α0)

= S−1
0

√
N

1

N

N∑
i=1

Ġe(Z
T
i α0)Zi

π0(Vi)(1− π0(Vi))
(ξi − π0(Vi)) + o∗P (1)

 S−1
0

J∑
j=1

√
νj

pj(1− pj)
GjĠe(Z

Tα0)Z,

where Gj are independent P0|j-Brownian bridge processes.
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2 SAEGUSA AND WELLNER

Under the Condition 3.2, both α̂cN , α̂mcN and α̂ccN are consistent, and

√
N(α̂cN − α0)

= − 1√
N

N∑
i=1

Ġ(0)−1
{
P0Z

⊗2
}−1

Zi

(
ξi − π0(Vi)

π0(Vi)

)
+ oP∗(1)

 −Ġ(0)−1
{
P0Z

⊗2
}−1

J∑
j=1

√
νj

√
1− pj
pj

GjZ,

√
N(α̂mcN − α0)

= − 1√
N

N∑
i=1

Ġ(0)−1

{
P0

1− π0(V )

π0(V )
Z⊗2

}−1

Zi

(
ξi − π0(Vi)

π0(Vi)

)
+ oP∗(1)

 −Ġ(0)−1

{
P0

1− π0(V )

π0(V )
Z⊗2

}−1 J∑
j=1

√
νj

√
1− pj
pj

GjZ,

and

√
N(α̂ccN − α0)

= −Ġ(0)−1

{
P0

1− π0(V )

π0(V )
(Z − µZ)⊗2

}−1

× 1√
N

N∑
i=1

(Zi − µZ)

(
ξi − π0(Vi)

π0(Vi)

)
+ oP∗(1)

 −Ġ(0)−1

{
P0

1− π0(V )

π0(V )
(Z − µZ)⊗2

}−1 J∑
j=1

√
νj

√
1− pj
pj

Gj(Z − µZ),

where the P0|j-Brownian bridge processes, Gj, are independent.

Proof. We first consider estimated weights. Define MN (α) ≡ PNmα

and M(α) = Pα0mα where mα(Z, ξ) = log ({pα(ξ|Z) + pα0(ξ|Z)}/2) . We
again apply Theorem 5.7 of [7] for a consistency proof. Because pα(ξ|Z) is
a valid marginal density of a single observation ξ given Z, the argument of
[7], page 66, can be used to verify the second condition of the theorem. We
verify the first condition of Theorem 5.7 of [7]. Let G̃e(z;α) ≡ {Ge(zTα) +
Ge(z

Tα0)}/2. Then mα(z, ξ) = ξ log G̃e(z;α) + (1− ξ) log(1− G̃e(z;α)). We
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 3

rewrite PNmα as

PNmα =
1

N

N∑
i=1

ξi log G̃e(Zi;α) + (1− ξi) log
(

1− G̃e(Zi;α)
)

=
J∑
j=1

{
Nj

N

nj
Nj

[
1

Nj

N∑
i=1

ξj,i
nj/Nj

log G̃e(Zj,i;α)

]}

+

J∑
j=1

{
Nj

N

(
1− nj

Nj

)[
1

Nj

N∑
i=1

1− ξj,i
1− nj/Nj

log
(

1− G̃e(Zj,i;α)
)]}

.

Thus, if we establish that both S0,j ≡
{

log
(

1− G̃e(zTα)
)

: α ∈ RJ+k, V ∈ Vj
}

and S1,j ≡
{

log G̃e(z
Tα) : α ∈ RJ+k, V ∈ Vj

}
are P0-Glivenko-Cantelli for

j = 1, . . . , J , it follows from Theorem 5.1 applied to sampled subjects and
non-sampled subjects in each stratum separately that PNmα converges in
probability to

P0mα =
J∑
j=1

νjpjP0

(
log G̃e(Z

Tα)
∣∣∣V ∈ Vj)

+

J∑
j=1

νj(1− pj)P0

(
log
(

1− G̃e(ZTα)
)∣∣∣V ∈ Vj) ,

uniformly in α. Note that the method of estimated weights does not estimate
the sampling probability for the subjects in a stratum if the sampling prob-
ability is 1. Thus, we can assume that Ge(Z

Tα0) ≤ σ′ < 1. Hence we have

log(σ/2) ≤ log G̃e(Z
Tα) ≤ 0 and log({1− σ′}/2) ≤ log

(
1− G̃e(ZTα)

)
≤ 0

for all j = 1, . . . , J and α ∈ RJ+k. This implies that all sets Sk,j , k = 0, 1,
have integrable envelopes. Now it suffices to show that all sets are VC sub-
graph classes. Note first that {zTα : α ∈ RJ+k} is a VC subgraph class by
Lemma 2.6.15 of [10]. Note also that Ge and the logarithm are monotone
functions. Because a map by a monotone function, addition and multipli-
cation all preserve the property of the VC subgraph class by Lemma 2.6.17
of [10], our claim follows and hence the first condition is verified. Since we
have by concavity of the logarithm and the property of α̂N that

MN (α̂N ) ≥ 1

2
PN log pα̂N (ξ|V ) +

1

2
PN log pα0(ξ|V )

≥ 1

2
PN log pα0(ξ|V ) +

1

2
PN log pα0(ξ|V ) = MN (α0),
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4 SAEGUSA AND WELLNER

consistency follows from Theorem 5.7 of [7].
We apply Theorem 3.3.1 of [10] to show asymptotic normality of α̂N .

Define

ΦN,e(α) =
1

N

N∑
i=1

Ġe(Z
T
i α)Zi

Ge(ZTi α)(1−Ge(ZTi α))

(
ξi −Ge(ZTi α)

)
≡ PNφα(ξ, V ),

and

Φe(α) = P0

 Ġe(Z
Tα)Z

Ge(ZTα)(1−Ge(ZTα))

 J∑
j=1

pjI(V ∈ Vj)−Ge(ZTα)

 .

Note that ΦN,e(α̂N ) = 0 because (∂/∂α)PN log pα = ΦN,e(α). Note also
that Φe(α0) = 0 since Ge(Z

Tα0) = pj when V ∈ Vj . It follows by the
decomposition (10) of the inverse probability weighted empirical processes
in [2] that

√
N(ΦN,e(α0)− Φe(α0)) =

√
NΦN,e(α0)

=
√
NPN

Ġe(Z
Tα0)Z

Ge(ZTα0)(1−Ge(ZTα0))
(ξ −Ge(ZTα0))

=
√
NPπN

π0(V )

Ge(ZTα0)

Ġe(Z
Tα0)Z

1−Ge(ZTα0)
−
√
NPN

Ġe(Z
Tα0)Z

1−Ge(ZTα0)

=
J∑
j=1

√
Nj

N

Nj

nj
Gξ
j

π0(V )

Ge(ZTα0)

Ġe(Z
Tα0)Z

1−Ge(ZTα0)

+
√
NPN

(
π0(V )

Ge(ZTα0)
− 1

)
Ġe(Z

Tα0)Z

1−Ge(ZTα0)
.

Since π0(V ) = nj/Nj and Ge(Z
Tα0) = pj when V ∈ Vj , the first term

converges to

J∑
j=1

√
Nj

N

Nj

nj

nj/Nj

pj(1− pj)
Gξ
jĠe(Z

Tα0)Z  
J∑
j=1

√
νj

pj(1− pj)
GjĠe(Z

Tα0)Z.

The second term can be written as

J∑
j=1

√
Nj

(
nj
Nj
− pj

)√
Nj

N

1

pj(1− pj)
1

Nj

Nj∑
i=1

Ġe(Z
T
j,iα0)Zj,i.

Since nj = [Njpj ] by assumption, it is easy to see that−N−1/2
j ≤

√
Nj(nj/Nj−

pj) ≤ 0, and hence
√
Nj(nj/Nj−pj)→ 0. Since N−1

j

∑Nj
i=1 Ġe(Z

T
j,iα0)Zj,i =

imsart-aos ver. 2011/05/20 file: wlesupp.tex date: August 15, 2012



SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 5

OP ∗(1) by the weak law of large numbers and
√
Nj/N →

√
νj , the second

term converges to zero in probability. The weak convergence of
√
N(ΦN,e −

Φe)(α0) follows from Slutsky’s theorem.
For asymptotic equicontinuity of the process, it suffices to consider a com-

pact subset Ae,0 ∈ RJ+k where α0 is its interior point since α̂N is consistent.
Let

φα,1(v) ≡ π0(v)z⊗2

Ge(zTα) {1−Ge(zTα)}

G̈e(zTα)−

{
Ġe(z

Tα)
}2

Ge(zTα)

 ,

φα,2(v) ≡ z⊗2

1−Ge(zTα)

G̈e(zTα)−

{
Ġe(z

Tα)
}2

1−Ge(zTα)

 .

Taylor’s theorem gives

φα(ξ, v)− φα0(ξ, v) = φα∗1,1(v)
ξ

π0(v)
(α− α0) + φα∗2,2(v)(α− α0),

where α∗j , j = 1, 2, are some convex combinations of α and α0. Thus,

√
N(ΦN,e − Φe)(α)−

√
N(ΦN,e − Φe)(α0)

=
√
N(PN − P0)(φα − φα0) +

√
NP0(φα − φα0)

−
√
NΦe(α) +

√
NΦe(α0)

= (PπN − P0)φα∗1,1
√
N(α− α0) + (PN − P0)φα∗2,2

√
N(α− α0)

+ P0φα∗1,1

ξ − J∑
j=1

pjI(V ∈ Vj)

√N(α− α0).(A.1)

To show this is oP ∗(1 +
√
N(α−α0)), we first show that the set Tk = {φα,k :

α ∈ Ae,0}, k = 1, 2, are Glivenko-Cantelli. It is easy to see that {zTα :
α ∈ Ae,0} is Glivenko-Cantelli. Since Ge ∈ C2 by assumption, φα,k, k =
1, 2, are uniformly bounded in α ∈ Ae,0. Thus, the sets Tk, k = 1, 2 are
both Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
For the third term in (A.1), apply the dominated convergence theorem with
P0(ξ|V ) =

∑J
j=1(nj/Nj)I(V ∈ Vj)→

∑J
j=1 pjI(V ∈ Vj).
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6 SAEGUSA AND WELLNER

Since Φ̇(α0) = −S0, apply Theorem 3.3.1 of [10] to obtain

√
N(α̂N − α0)

= S−1
0

√
N

1

N

N∑
i=1

Ġe(Z
T
i α0)Zi

Ge(ZTi α0)(1−Ge(ZTi α0))

(
ξi −Ge(ZTi α0)

)
+ oP ∗(1)

 S−1
0

J∑
j=1

√
νj

pj(1− pj)
GjĠe(Z

Tα0)Z.

This completes the proof.
Next we consider modified calibration with α̂N = α̂mcN . The cases for

(centered) calibration (i.e., α̂N = α̂cN and α̂N = α̂ccN ) are similar. Define
ΦN,mc(α) ≡ PπNGmc(V ;α)Z − PNZ and Φmc(α) ≡ P0[(Gmc(V ;α) − 1)Z].
Note that ΦN,mc(α̂N ) = 0 and Ψmc(0) = 0. We apply Theorem 5.7 of [7] for
a consistency proof. For the first condition of the theorem, we have

sup
α∈Rk

‖ΦN,mc(α)− Φmc(α)‖

= sup
α∈Rk

∥∥∥∥∥ 1

N

N∑
i=1

(
ξi

π0(Vi)
Gmc(V ;α)− 1

)
Zi − P0 {Gmc(V ;α)− 1}Z

∥∥∥∥∥
≤ sup

α∈Rk

∥∥∥∥∥ 1

N

N∑
i=1

ξi
π0(Vi)

Gmc(Vi;α)Zi − P0Gmc(;α)Z

∥∥∥∥∥
+ sup
α∈Rk

∥∥∥∥∥ 1

N

N∑
i=1

Zi − P0Z

∥∥∥∥∥ ,
where ‖·‖ is the Euclidean norm. Since α is a vector in Rk andG is monotone,
{Gmc(·;α) : α ∈ Rk} is a VC subgraph by Lemmas 2.6.15 and 2.6.18 of
[10]. Boundedness of G implies that the set

{
Gmc(v;α)z : α ∈ Rk

}
is P0-

Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9]. Then
the first term is oP ∗(1) by Theorem 5.1. The second term is oP ∗(1) by the
weak law of large numbers.

The second condition of the theorem is that for any ε > 0, inf |α|>ε ‖Φmc(α)‖ >
0. Suppose, to the contrary, that inf |α|>ε ‖Φmc(α)‖ = 0 for some ε > 0. Then

there exists a sequence {α(m)} ⊂ Rk with |α(m)| > ε for each m = 1, 2, . . . ,
such that

‖Φmc(α
(m))‖ → 0.

Let Φj,c(α), j = 1, . . . , k, be the jth element of Φmc(α). Since the norm ‖·‖
is the Euclidean norm, each element Φj,c(α

(m)) converges to zero. If α(m)
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 7

converges to α(∞) with |α(∞)| < ∞, then by the dominated convergence
theorem and Taylor’s theorem,

0 = P0

[{
Gmc(V ;α(∞))− 1

}
Z
]

= P0

[
(π0(V )−1 − 1)Ġmc(V ;α∗)Z⊗2α(∞)

]
for some α∗ with |α∗| ≤ |α(∞)|. Because P0(π0(V )−1 − 1)Ġmc(V ;α∗)Z⊗2 is
positive definite by assumption, α(∞) must be zero, which contradicts the
fact that |α(∞)| ≥ ε.

We assume that some elements of α(m) diverge. Then, a further subse-
quence α(m′) converges to some α(∞) whose elements are extended real num-
bers. Define a unit vector β(∞) ≡ limm′→∞ α

(m′)/‖α(m′)‖. Then we have for
each Z on the set {π0(V ) < 1} that

G(∞)
mc (Z)ZTβ(∞) ≡ lim

m′→∞
G

(
1− π0(V )

π0(V )
ZT

α(m′)

‖αm′‖
‖αm′‖

)
ZTβ(∞)

=


M1Z

Tβ(∞) if ZTβ(∞) > 0

m1Z
Tβ(∞) if ZTβ(∞) < 0

0 if ZTβ(∞) = 0

.

It follows by the dominated convergence theorem applied to each element of
the vector of Φmc(α) that

0 = lim
m′→∞

Φmc

(
α(m′)

)T
β(∞) = P0 lim

m′→∞

{
Gmc

(
V ;α(m′)

)
− 1
}
ZTβ(∞)

= (M1 − 1)P0I{ZT β(∞)>0,π0(V )<1}Z
Tβ(∞)

+(m1 − 1)P0I{ZT β(∞)<0,π0(V )<1}Z
Tβ(∞).

However, this is strictly positive since m1 < 1 and M1 > 1, which is a
contradiction. This completes the proof that α̂N →P ∗ 0.

We apply Theorem 3.3.1 of [10] to show the asymptotic normality of α̂N .
For asymptotic equicontinuity condition, it follows by Taylor’s theorem that

√
N(ΦN,mc − Φmc)(α̂N )−

√
N(ΦN,mc − Φmc)(α0)

= Gπ
N [Gmc(V ; α̂N )Z −Gmc(V ;α0)Z]

= (PπN − P0)(π0(V )−1 − 1)Ġmc(V ;α∗)Z⊗2
√
N(α̂− α0)

for some α∗ with |α∗−α0| ≤ |α̂N −α0|. This term is oP (1 +
√
N |α̂−α0)|) if

(PπN − P0)(π0(V )−1 − 1)Z⊗2Ġmc(V ;α)→P ∗ 0, uniformly in α. Let Amc,1 ⊂
Rk be a compact neighborhood of zero. Since α̂N is consistent, it suffices
to show that the set {(π−1

0 (V )− 1)Z⊗2Ġmc(Z;α) : α ∈ Amc,1} is Glivenko-
Cantelli. Since |π−1

0 (V ) − 1| and Z are bounded, the VC subgraph class
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8 SAEGUSA AND WELLNER

{(π−1
0 (V ) − 1)Zα : α ∈ Amc,1} (Lemma 2.6.15 of [10]) is P0-Glivenko-

Cantelli. Because Ġ is continuous and bounded, the set {Ġmc(Z;α) : α ∈
Amc,1} is Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem
of [9]. Apply the Glivenko-Cantelli preservation theorem of [9] again to
conclude {(π−1

0 (V ) − 1)Z⊗2Ġmc(Z;α) : α ∈ Amc,1} is Glivenko-Cantelli.
Hence, asymptotic equicontinuity follows from Theorem 5.1. We show the
weak convergence of the process

√
N(ΦN,mc − Φmc)(α) at α0 = 0. Since

Gmc(v;α0) = 1, it follows from the decomposition (10) of the inverse prob-
ability weighted empirical processes in [2] that

√
N(ΦN,mc − Φmc)(α0) =

√
NΦN,mc(0) =

√
N(PπN − PN )Z

=

J∑
j=1

√
Nj

N

Nj

nj
Gξ
j,Nj

Z

 
J∑
j=1

√
νj

√
1− pj
pj

GjZ ( by Theorem 5.3).

The Fréchet derivative of Φmc(α0) is

Φ̇mc(α)|α=α0 =
∂

∂α
P0(Gmc(V ;α)− 1)Z

∣∣∣∣
α=α0

= Ġ(0)P0(π0(V )−1 − 1)Z⊗2.

Thus, by Theorem 3.3.1 of [10] we obtain
√
Nα̂N = −Φ̇mc(0)

√
N(ΦN,mc − Φmc)(0) + oP∗(1)

 −Ġ(0)−1
{
P0(π0(V )−1 − 1)Z⊗2

}−1
J∑
j=1

√
νj

√
1− pj
pj

GjZ.

Here we give proofs of the theorems in Section 5.

Proof of Theorem 5.1. First consider PπN . By the decomposition (10)
of the inverse probability weighted empirical processes in [2], we have

‖PπN − P0‖F ≤ ‖PN − P0‖F +
J∑
j=1

Nj

N

Nj

nj

∥∥∥∥Pξj,Nj − nj
Nj

Pj,Nj

∥∥∥∥
F
.

The first term is oP ∗(1) since F is Glivenko-Cantelli. Since (Nj/N)(Nj/nj)→P ∗

νj/pj , each summand in the second term is oP ∗(1) by the bootstrap Glivenko-
Cantelli theorem, which is an easy corollary to Lemma 3.6.16 of [10].
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 9

Consider Pπ,eN . Because α̂N →P ∗ α0 by Proposition A.1, it suffices to con-
sider a compact neighborhood K ⊂ RJ+k of α0. Since Z is bounded and Ge
is continuous, {πα(V )}−1 = {Ge(αTZ)}−1 is bounded in this neighborhood.
Because α is a vector in RJ+k and Ge is monotone, {{Ge(α)}−1 : α ∈ K} is
a VC subgraph class by Lemmas 2.6.15 and 2.6.18 of [10]. Boundedness of
Ge implies that the set{

π0{Ge(·α)}−1f : f ∈ F , α ∈ K
}

is P0-Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
Since α̂N →P ∗ α0, we have by (5.14) that∥∥Pπ,eN − P0

∥∥
F →P ∗ 0, by recognizing that

Pπ,eN =
1

N

N∑
i=1

ξi
π0(Vi)

{
π0(Vi)

Ge(α̂TNZi)
δXi

}
.

Consider Pπ,mcN . The cases for Pπ,cN and Pπ,ccN are similar. We verified in
the proof of Proposition A.1 that {Gmc(·;α) : α ∈ Rk} is a VC subgraph
class. Boundedness of G implies that the set{

Gmc(·;α)f : f ∈ F , α ∈ Rk
}

is P0-Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
Since α̂N converges to zero in probability by Proposition A.1, the result
follows by (5.14).

Several lemmas are required for the proof of Theorem 5.2.

Lemma A.1. Let F be a class of functions with P0|f | < ∞ for every
f ∈ F . Then,

E∗

∥∥∥∥∥
√
Nj

N
I(Nj > 0)Gj,Nj

∥∥∥∥∥
F

. E∗ ‖GN‖F , for each j = 1, . . . , J.

Proof. Let εi, i = 1, . . . , N , be independent Rademacher variables, in-
dependent of Xi, i = 1, . . . , N , and Nj . It follows from the symmetrization
inequality (Lemma 2.3.6) of [10]

E∗‖GN‖F & E∗

∥∥∥∥∥ 1√
N

N∑
i=1

εif(Xi)

∥∥∥∥∥
F

.
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10 SAEGUSA AND WELLNER

Rewrite this and use Jensen’s inequality again with E[εf(X)] = 0 to obtain

E∗

∥∥∥∥∥∥
J∑
j=1

I(Nj > 0)

√
Nj

N

1√
Nj

Nj∑
i=1

εj,if(Xj,i)

∥∥∥∥∥∥
F

& E∗

∥∥∥∥∥∥I(Nj > 0)

√
Nj

N

1√
Nj

Nj∑
i=1

εj,if(Xj,i)

∥∥∥∥∥∥
F

.

Here we implicitly change the law. This can be justified by Proposition A.1
of [2].

Now applying the Lemma 2.3.6 of [10] to the jth stratum, this is further
bounded below, up to some constant, by

E∗

∥∥∥∥∥∥I(Nj > 0)

√
Nj

N

1√
Nj

Nj∑
i=1

(f(Xj,i)− P0|jf)

∥∥∥∥∥∥
F

= E∗
∥∥∥∥I(Nj > 0)

√
Nj/NGj,Nj

∥∥∥∥
F
.

The following is a multiplier inequality for bounded exchangeable weights.
Note that the sum of stochastic processes in the second term is divided by
n1/2 rather than k1/2.

Proof of Lemma 5.1. This follows the proof of Lemma 3.6.7 of [10] up
to the last line. Since the ξi’s can be split into their positive and negative
parts, we only consider the case where they are nonnegative. Thus for any
1 ≤ n0 ≤ n,

E

∥∥∥∥∥
n∑
i=1

ξiZi

∥∥∥∥∥
∗

F

≤ E

∥∥∥∥∥
n0−1∑
i=1

ξ(i)Zi

∥∥∥∥∥
∗

F

+ E

∥∥∥∥∥∥
n∑

j=n0

ξ(i)Zi

∥∥∥∥∥∥
∗

F

≤ E
(

max
1≤i≤n

ξi

)
n0 − 1

n

n∑
i=1

E∗‖Zi‖F + E

∥∥∥∥∥
n∑

i=n0

ξ(i)Zi

∥∥∥∥∥
∗

F

,

where ξ(i), i = 1, . . . , n, are the reverse order statistics of ξi, i = 1, . . . , n.
To bound the second term, we substitute ξ(i) =

∑n
k=i(ξ(k) − ξ(k+1)) with
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 11

ξ(n+1) = 0, and change the order of summation to obtain

E

∥∥∥∥∥
n∑

i=n0

ξ(i)Zi

∥∥∥∥∥
∗

F

= E

∥∥∥∥∥
n∑

i=n0

n∑
k=i

(ξ(k) − ξ(k+1))Zi

∥∥∥∥∥
∗

F

= E

∥∥∥∥∥∥
n∑

k=n0

(ξ(k) − ξ(k+1))

k∑
i=n0

Zi

∥∥∥∥∥∥
∗

F

.

It follows from the triangle inequality and the independence of the ξ’s and
Zi’s that this is bounded by

n∑
k=n0

E∗

∥∥∥∥∥(ξ(k) − ξ(k+1))

k∑
i=n0

Zi

∥∥∥∥∥
∗

F

=
n∑

k=n0

E∗

(ξ(k) − ξ(k+1))

∥∥∥∥∥
k∑

i=n0

Zi

∥∥∥∥∥
∗

F


=

n∑
k=n0

E∗(ξ(k) − ξ(k+1))E
∗

∥∥∥∥∥
k∑

i=n0

Zi

∥∥∥∥∥
∗

F

≤
n∑

k=n0

E∗(ξ(k) − ξ(k+1)) max
n0≤k≤n

E∗

∥∥∥∥∥
k∑

i=n0

Zi

∥∥∥∥∥
∗

F

= E∗
n∑

k=n0

(ξ(k) − ξ(k+1)) max
n0≤k≤n

E∗

∥∥∥∥∥
k∑

i=n0

ZRi

∥∥∥∥∥
∗

F

≤ (u− l) max
n0≤k≤n

E∗

∥∥∥∥∥
k∑

i=n0

ZRi

∥∥∥∥∥
∗

F

using the boundedness of the ξi’s in the last line. The proof for the negative
parts of the ξi’s is similar and the inequality follows.

Lemma A.2. For an arbitrary set F of integrable functions,

E∗ ‖Gπ
N‖F . E

∗ ‖GN‖F .
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12 SAEGUSA AND WELLNER

Proof. We decompose Gπ
N as in (2.1): thus

E∗‖Gπ
N‖F = E∗

∥∥∥∥∥∥GN +

J∑
j=1

√
Nj

N

(
Nj

nj

)
Gξ
j,Nj

∥∥∥∥∥∥
F

≤ E∗ ‖GN‖F +

J∑
j=1

E∗

∥∥∥∥∥
√
Nj

N

(
Nj

nj

)
Gξ
j,Nj

∥∥∥∥∥
F

.

It therefore suffices to show that each E∗
∥∥mjGj,Nj

∥∥
F is bounded up to some

constant by E∗ ‖GN‖F where mj ≡ (Nj/N)1/2(Nj/nj).

Rewrite Gξ
j,Nj

as

Gξ
j,Nj

=
√
Nj

(
Pξj,Nj −

nj
Nj

Pj,Nj

)
=

1√
N j

Nj∑
i=1

ξj,i
(
δXj,i − Pj,Nj

)
.

Now we condition on N ≡ (N1, . . . , NJ), and write EN for E(·|N). Since
ξj,i ∈ {0, 1}, it follows by the multiplier inequality of Lemma 5.1 applied

conditionally with n0 = 1 and Zi = mj(δXj,i − Pj,Nj ) that EN‖mjGξ
j,Nj
‖F

is bounded by

(1− 0) max
1≤k≤Nj

EN

∥∥∥∥∥ 1√
Nj

k∑
i=1

mj(δXj,i − Pj,Nj )

∥∥∥∥∥
∗

F

= max
1≤k≤Nj

EN

[
Nj

nj

∥∥∥∥∥ 1√
N

k∑
i=1

(δXj,i − Pj,Nj )

∥∥∥∥∥
∗

F

]
.

Note that Nj/nj ≤ σ−1 for some σ > 0 by assumption so that we can replace
Nj/nj by σ−1 in the last display to obtain an upper bound. Then, apply the
triangle inequality to further bound this by

max
1≤k≤Nj

E∗N

∥∥∥∥∥ 1√
N

k∑
i=1

(δXj,i − P0|j)

∥∥∥∥∥
∗

F

+ max
1≤k≤Nj

E∗N

[
k√
N

∥∥(Pj,Nj − P0|j)
∥∥
F

]
.

Since δXj,i − P0|j has mean zero, it follows by Jensen’s inequality that the
first term is bounded by

E∗N

∥∥∥∥∥∥ 1√
N

Nj∑
i=1

(δXj,i − P0|j)

∥∥∥∥∥∥
∗

F

= E∗N

∥∥∥∥∥
√
Nj

N
Gj,Nj

∥∥∥∥∥
F

.
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 13

The second term is bounded by E∗N
∥∥√Nj/NGj,Nj

∥∥
F . Now compute uncon-

ditionally and apply Lemma A.1 to find that both terms are bounded by
E∗‖GN‖F .

Proof of Theorem 5.2. It follows by Lemma A.2 and the assumption
on E∗‖GN‖Mδ

that

E∗ ‖Gπ
N‖Mδ

. E∗ ‖GN‖Mδ
≤ φN (δ).

By application of Theorem 3.2.5 of [10], we conclude that the conclusion of
(1) of the theorem holds.

For the second statement, note that Theorem 3.2 of [4] holds in a general
setting where P0mθ,η and Pnmθ,η are replaced by the deterministic function
M(θ, η) and the stochastic process Mn(θ, η), respectively. Our parameters α
and θ play roles of their θ and η, respectively. Our choice of M and MN is
P0Gmc(V ;α)mθ and Pπ,mcN mθ. The condition 5.17 corresponds to (3.5) of [4].
The condition 5.18 together with Lemma A.2 verifies their (3.6). Apply their
Theorem 3.2 to obtain d(θ̂N,mc, θ0) ≤ OP ∗(δ

−1
N + |α̂N − α0|) = OP ∗(δ

−1
N ).

The cases for θ̂N,e, θ̂N,c and θ̂N,cc are similar.

Proof of Lemma 5.2. We consider modified calibration. Other three
cases are similar. Because G(0) = 1 and Z is bounded, consistency of α̂N
implies that there exists Amc,2 ⊂ Amc such that for some fixed constant
C > 0, Gmc(v;α) ≥ C and Ġmc(v;α) ≥ C for every α ∈ Amc,2 and P (α̂N ∈
Amc,2)→ 1. Then, for arbitrary α ∈ Amc,2,

P0Gmc(V ;α)(mθ −mθ0) = P0Gmc(V ;α) log
pθ
pθ0

≤ 2P0Gmc(V ;α)

(√
pθ
pθ0
− 1

)
=

∫
Gmc(v;α)

{
−(p

1/2
θ − p1/2

θ0
)2 + pθ − pθ0

}
dµ

≤ −C
∫

(p
1/2
θ − p1/2

θ0
)2dµ+

∫
{Gmc(v;α)− 1}(pθ − pθ0)dµ

= −Ch2(pθ, pθ0) +

∫
Ġmc(v;α∗)(π−1

0 (v)− 1)vT (pθ − pθ0)dµ(α− α0),

where α∗ is some convex combination of α and α0. Because the integral in
the last display is a bounded row vector, the second term in the last display
is bounded by |α − α0|2 up to some constant. Thus, the condition (5.17)
holds.
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14 SAEGUSA AND WELLNER

The following lemma is useful when showing asymptotic equicontinuity
of processes involving Pπ,eN , Pπ,cN , Pπ,mcN and Pπ,ccN .

Lemma A.3. Suppose Conditions 3.2 and 3.1 hold. Let F be a Glivenko-
Cantelli class. Then

sup
f∈F

∣∣∣∣√N(PN − P0)

{
ξ

πα̂N (V )
f − ξ

πα0(V )
f

}∣∣∣∣ = oP ∗(1),(A.2)

where πα̂N is either an estimated or calibrated probability (with modified or
centered calibration).

Proof. We only consider modified calibration. The cases for estimated
weights and (centered) calibration are similar. It follows by Taylor’s theorem
that

sup
f∈F

∣∣∣∣√N(PN − P0)

{
ξ

πα̂N (V )
f − ξ

πα0(V )
f

}∣∣∣∣
= sup

f∈F

∣∣∣(PπN − P0)
(

(π−1
0 (V )− 1)ZT Ġmc(Z;α∗)f

)∣∣∣√N |α̂N − α0|,

for some α∗ with |α∗ − α0| ≤ |α̂N − α0|. Because
√
N(α̂N − α0) = OP ∗(1)

by Proposition A.1, it follows that (A.2) is oP ∗(1) by Theorem 5.1 and
Proposition A.1 if the set {(π0(V )−1 − 1)ZT Ġ{(π−1

0 (V ) − 1)ZTα} : α ∈
Amc,3, f ∈ F} is P0-Glivenko-Cantelli where Amc,3 ⊂ Amc is some compact
set containing α0 = 0. This is easily verified in the same way as in the proof
of Proposition A.1.

Proof of Theorem 5.3. The result (5.19) follows from [2]. Consider
the IPW empirical process with modified calibration. It follows by Taylor’s
theorem that

Gπ,mc
N f −Gπ

Nf

= GN

(
ξ

πα̂N (V )
− ξ

πα0(V )

)
f +
√
NP0

(
ξ

πα̂N (V )
− ξ

πα0(V )

)
f

= GN

(
ξ

πα̂N (V )
− ξ

πα0(V )

)
f

+ P0

(
1− π0(V )

π0(V )
ZT Ġmc(V ;α∗)f

)√
N(α̂N − α0),(A.3)

where α∗ is some convex combination of α̂N and α0. The first term is oP ∗(1)
by Lemma A.3. Since (π0(V )−1 − 1)ZT Ġmc is bounded and f is integrable,
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 15

it follows from the dominated convergence theorem that

P0

(
1− π0(V )

π0(V )
ZT Ġmc(V ;α∗)f

)
→ P0

(
1− π0(V )

π0(V )
ZT Ġ(0)f

)
.

Apply the result (5.19) and Proposition A.1 to conclude the finite-dimensional
convergence

Gπ,mc
N f = Gπ

Nf + (Gπ,mc
N −Gπ

N )f

→d Gf +

J∑
j=1

√
νj

√
1− pj
pj

Gjf

− P0

(
1− π0(V )

π0(V )
ZT Ġ(0)f

)
Ġ(0)−1

{
P0

1− π0(V )

π0(V )
Z⊗2

}−1

×
J∑
j=1

√
νj

√
1− pj
pj

GjZ

= Gf +
J∑
j=1

√
νj

√
1− pj
pj

Gjf −
J∑
j=1

√
νj

√
1− pj
pj

GjQmcf

= Gf +

J∑
j=1

√
νj

√
1− pj
pj

Gj(f −Qmcf).

Next, we prove asymptotic equicontinuity of Gπ,mc
N with respect to the metric

ρmc defined by

ρ2
mc(f, g) = P0(f − g)2 +

J∑
j=1

νj
1− pj
pj

Var0|j(f − g).

First recall that Gπ
N is asymptotically equicontinuous with respect to the

metric ρ defined by

ρ2(f, g) = σ2
P0

(f − g) +
J∑
j=1

νj
1− pj
pj

Var0|j(f − g).

The part σ2
P0

(f−g) corresponds to the empirical process GN ≡
√
N(PN−P0)

in the decomposition (2.1) of the inverse probability weighted empirical pro-
cesses. However, this empirical process GN is asymptotically equicontinuous
with respect to the L2(P )-metric with an assumption ‖P0‖F < ∞ in view
of Problem 2.1.2 of [10]. Thus, Gπ

N is asymptotically equicontinuous with
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16 SAEGUSA AND WELLNER

respect to ρmc. Now, it remains to verify the asymptotic equicontinuity of
Gπ,mc
N − Gπ

N . Let hN ∈ FδN ≡ {f − g : f, g ∈ F , ρmc(f, g) ≤ δN} for an
arbitrary sequence δN ↓ 0. In view of (A.3)

(Gπ,mc
N −Gπ

N )hN = oP ∗(1) + P0

(
1− π0(V )

π0(V )
ZT Ġmc(V ;α∗)hN

)
OP ∗(1),

where α∗ is some convex combination of α̂N and α0. Because each element of
a vector (π0(V )−1−1)ZT Ġmc(V ;α∗) is bounded, it follows from the Cauchy-
Schwarz inequality that each element of P0{(π0(V )−1−1)ZT Ġmc(V ;α∗)hN}
is bounded up to some constant by P0(h2

N ). Since ρmc(f, g) → 0 implies
P0(f − g)2 → 0, we have P0h

2
N → 0 as N →∞. This verifies the asymptotic

equicontinuity of Gπ,mc
N and hence completes showing its weak convergence.

The cases for Gπ,e
N , Gπ,c

N and Gπ,cc
N follow analogously.

Proof of Theorem 5.4. Since F is Donsker, it follows by Lemma 2.3.11
of [10] that E∗‖GN‖FδN → 0 for every sequence δN ↓ 0. Thus, the result
follows from Lemma A.2. Apply Markov’s inequality to obtain ‖Gπ

N‖FδN =

oP ∗(1). For the second statement, consider the expansion (A.3) of Gπ,mc
N f −

Gπ
Nf with f ∈ FδN . The first term is oP ∗(1) by Lemma A.3. Since f con-

verges to zero in L2(P0), the second term is oP ∗(1) by the dominated con-
vergence theorem and Proposition A.1. Apply the triangle inequality to con-
clude

∥∥Gπ,mc
N

∥∥
FδN

= oP ∗(1).

The proofs for Gπ,e
N , Gπ,c

N and Gπ,cc
N are similar.

Proof of Lemma 5.3. Without loss of generality, assume that θ̂N takes
its values in Θδ ≡ {θ ∈ Θ : ‖θ − θ0‖ < δ} because of consistency of θ̂N to θ0.
Define a function f : `∞(Θδ×H)×Θδ 7→ `∞(H) by f(z, θ)h = z(θ, h). Note
that f is continuous at every point (z, θ0) such that ‖z(θ, h)−z(θ0, h)‖H → 0,
as θ → θ0. To see this, suppose zN → z and θN → θ0. Then, for a fixed ε > 0,
there exists n0 such that ‖zN − z‖ < ε and ‖θN − θ0‖ < ε for N ≥ N0. For
N ≥ N0, we have

‖f(zN , θN )− f(z, θ0)‖H
≤ ‖f(zN , θN )− f(z0, θN )‖H + ‖f(z0, θN )− f(z0, θ0)‖
≤ sup

θ∈Θδ,h∈H
|zN (θ, h)− z(θ, h)|+ ‖z(θN , h)− z(θ0, h)‖H

< 2ε.

Define a stochastic process ZN indexed by Θδ ×H by

ZN (θ, h) = Gπ
N (ψθ,h − ψθ0,h) .
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 17

Because {ψθ,h − ψθ0,h : ‖θ − θ0‖ < δ, θ ∈ Θ, h ∈ H} is Donsker, Theorem 5.3
implies that the sequence ZN converges in `∞(Θδ ×H) to a tight Gaussian
process Z given by

Z = G +
J∑
j=1

√
νj

√
1− pj
pj

Gj .

This process has continuous sample paths with respect to the semimetric ρ
given by

ρ2 ((θ1, h1), (θ2, h2)) = P (ψθ1,h1 − ψθ0,h1 − ψθ2,h2 + ψθ0,h2)2

because (Θδ ×H, ρ) is totally bounded and Z is uniformly ρ-continuous. To
see the latter, note that

ρ2 ((θ1, h1), (θ2, h2)) ≥ P
{

(ψθ1,h1 − ψθ0,h1 − ψθ2,h2 + ψθ0,h2)2
∣∣∣V ∈ Vj} νj

for each j = 1, . . . , J . By assumption

sup
h∈H

ρ2 ((θ, h), (θ0, h)) = sup
h∈H

P (ψθ,h − ψθ0,h + 0)2 → 0,

as θ → θ0. Thus, f is continuous at almost all sample paths of Z.
By Slutsky’s theorem, (ZN , θ̂N )  (Z, θ0). By the continuous mapping

theorem, ZN (θ̂N ) = f(ZN , θ̂N ) f(Z, θ0) = 0 in `∞(H).
The other cases for Gπ,e

N , Gπ,c
N , Gπ,mc

N and Gπ,cc
N follow analogously; see

the proof of Theorem 5.3.

With the results of Section 5 in hand, we are ready to prove the main
theorems.

Proof of Theorem 3.1. The asymptotic distributions of θ̂N is derived
in [2]. Here we derive the asymptotic distribution of θ̂N,mc that is a solution
of the calibrated weighted likelihood equations with modified calibration

Ψπ
N,1,mc(θ, η, α) = PπNGmc(V ;α) ˙̀

θ,η = 0,

Ψπ
N,2,mc(θ, η, α)h = PπNGmc(V ;α)(Bθ,ηh− Pθ,ηBθ,ηh) = 0,

for all h ∈ H with α = α̂N . Let Ψmc(θ, η, α) = (Ψ1,mc(θ, η, α),Ψ2,mc(θ, η, α))

Ψ1,mc(θ, η, α) = P0Gmc(V ;α) ˙̀
θ,η,

Ψ2,mc(θ, η, α) = P0Gmc(V ;α)(Bθ,ηh− Pθ,ηBθ,ηh).
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18 SAEGUSA AND WELLNER

The derivative map of Ψmc with respect to (θ, η) at (θ0, η0, α) has compo-
nents P0{Gmc(V ;α)ψ̇ij,θ0,η0,h}, i, j = 1, 2.

Our proof proceed by verifying the conditions of Theorem 1 of [3]. The
weak convergence of

√
N(ΨN,j,mc −Ψj,mc)(θ0, η0, α0) follows from Theorem

5.3. The asymptotic equicontinuity conditions

sup
θ∈Θ,η∈H

∥∥∥√N(Ψπ
N,j,mc −Ψj,mc)(θ, η, α̂N )−

√
N(Ψπ

N,j,mc −Ψj,mc)(θ, η, α0)
∥∥∥
H

= oP ∗(1),

for j = 1, 2, follows from Lemma A.3. The other asymptotic equicontinuity
condition∥∥∥√N(Ψπ

N,j,mc −Ψj,mc)(θ̂N,mc, η̂N,mc, α0)−
√
N(Ψπ

N,j,mc −Ψj,mc)(θ0, η0, α0)
∥∥∥
H

= oP ∗(1),

for j = 1, 2, follows from the Condition 3.4 and Lemma 5.3. Thus conditions
(2) and (3) of [3] are satisfied.

The Fréchet differentiability of the map (θ, η) 7→ Φj,mc(θ, η, α) uniformly
over the neighborhood of α0 follows by the Condition 3.5 and boundedness
of G;∥∥∥Ψmc(θ, η, α)h−Ψmc(θ0, η0, α)h− Ψ̇mc((θ, η)− (θ0, η0))

∥∥∥
H

= sup
h∈H

∣∣∣E {Gmc(V ;α)
(
ψθ,η,h − ψθ0,η0,h − ψ̇θ0,η0,h((θ, η)− (θ0, η0))

)}∣∣∣
≤
{
EG2

mc(V ;α)
}1/2

sup
h∈H

[
E
{
ψθ,η,h − ψθ0,η0,h − ψ̇θ0,η0,h((θ, η)− (θ0, η0))

}2
]1/2

= oP ∗ (‖(θ, η)− (θ0, η0)‖) .

The Fréchet derivative Ψ̇α,mc of the map α 7→ {Ψmc(θ, η, α)h : h ∈ H} is

∂

∂α
Ψmc(θ, η, α)h =

∂

∂α
E [Gmc(V ;α)ψθ,η,h] = E

[
1− π0(V )

π0(V )
ZT Ġmc(V ;α)ψθ,η,h

]
.

Now proceed in the same way as [3] to obtain

√
N(θ̂N,mc − θ0)

=
√
N(θ̂N − θ0) + E

[
˜̀
θ0,η0

1− π0(V )

π0(V )
ZT Ġ(0)

]√
N(α̂N − α0) + oP ∗(1).

Because
√
N(θ̂N −θ0) = Gπ

N
˜̀
θ0,η0 +oP ∗(1) ((16) of [2]), it follows from (A.3)

and consistency and asymptotic normality of α̂N that
√
N(θ̂N,mc − θ0) =

Gπ,mc
N

˜̀
θ0,η0 + oP ∗(1). Apply Theorem 5.3 to complete the proof.

The other three cases are similar.
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Lemma A.4. Let Z1,Z2, . . . be i.i.d. stochastic processes indexed by FN
with E∗‖Z1‖FN uniformly bounded in N . Suppose that ‖SN‖FN
≡ ‖
∑N

i=1 Zi‖FN = oP ∗(1). Then

E∗‖SN‖FN → 0, N →∞.

Proof. Fix ε > 0. Let Yi be independent copies of Zi and define TN =∑N
i=1 Yi, and UN = TN−SN . Since ‖UN‖FN = oP ∗(1), lim supN P (‖UN‖FN ≥

x
√
N) ≤ lim supN P (‖UN‖FN ≥ x) = 0 by the portmanteau theorem. This

implies that there exists N0 such that for N ≥ N0

P ∗(‖UN‖FN > x
√
N) ≤ ε/x2.

Since UN is a sum of independent symmetric processes, we can apply Lévy’s
inequality to obtain

P ∗
(

max
1≤i≤n

‖Zi − Yi‖FN > x
√
N

)
≤ 2P ∗(‖UN‖FN > x

√
N) ≤ 2ε/x2.

In view of Problem 2.3.2 of [10], for every N ≥ N0,

x2NP ∗(‖Z1 − Y1‖FN > x
√
N) ≤ 4ε.

Note that on the event that ‖Z1‖FN > x, we have

βN (x) ≡ P ∗Y (‖Y1‖FN < x/2) ≤ P ∗Y (‖Z1 − Y1‖FN > x/2).

Integrating both sides with respect to Z gives

βN (x)P ∗(‖Z1‖FN > x) ≤ P ∗(‖Z1 − Y1‖FN > x/2).

By Markov’s inequality,

βN (x) = 1− P ∗(‖Y1‖FN ≥ x/2) ≥ 1− 2x−1E‖Y1‖FN
Since E‖Y1‖FN is uniformly bounded in N , it follows that, for x sufficiently
large, βN (x)−1 is uniformly bounded in N and, therefore, P ∗(‖Z1‖FN >
x
√
N) is bounded by P ∗(‖Z1 − Y1‖FN > x

√
N) up to some constant for

every N . Hence this proves that P ∗(‖Z1‖FN > x) = o(x−2).
Now we apply the Hoffmann-Jørgensen inequality to obtain

E∗‖SN‖FN . E
∗max
i≤N
‖Zi‖FN +G−1

N (u)

for an absolute constant u where

GN (t) = P ∗(‖SN‖FN ≤ t).

Since P ∗(‖Z1‖FN > x) = o(x−2), E∗maxi≤N‖Zi‖FN → 0 in view of Problem
2.3.3 of [10]. The second term goes to zero since ‖SN‖FN = oP ∗(1). This
completes the proof.
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Proof of Lemma 5.4. Define GN = {N−1/2f : f ∈ FN}. We apply
Lemma A.4 with Zi and FN in Lemma A.4 replaced by δXi − P0 and GN ,
respectively. The uniform boundedness condition of Lemma A.4 is satisfied,
because E∗‖δX1−P0‖FN <∞ for N ≥ N0, and this expectation is decreasing
in N ≥ N0. Thus, E∗‖GN‖FN = E∗‖

∑N
i=1(δXi −P )‖GN → 0. Apply Lemma

A.2, and Markov’s inequality to obtain ‖Gπ
N‖FN = oP ∗(1).

For the IPW process with modified calibration, consider the expansion
(A.3) of (Gπ,mc

N −Gπ
N )f . Then the first term is oP ∗(1) by Lemma A.3. Sup-

pose that f = fN ∈ FN converges to zero pointwise. Since (π0(V )−1 −
1)ZĠmc is bounded, the second term in the expansion (A.3) is oP ∗(1) by
the dominated convergence theorem and Proposition A.1. Suppose instead
that f = fN ∈ FN converges to zero in L1(P0). Then the same conclusion
that the second term in the expansion (A.3) is oP ∗(1) follows directly. Apply
the triangle inequality to conclude

∥∥Gπ,mc
N

∥∥
FδN

= oP ∗(1).

The proofs for Gπ,e
N , Gπ,c

N and Gπ,cc
N are similar.

Proof of Theorem 3.2. We only consider the WLE with modified cal-
ibration, θ̂N,mc. The other four cases are similar.

We evaluate the stochastic order of
√
NPπ,mcN

˙̀
θ0,η0 +

√
NP0

˙̀
θ̂N,mc,η̂N,mc

.

Because Pπ,mcN
˙̀
θ̂N,mc,η̂N,mc

= oP ∗(N
−1/2) by assumption and P0

˙̀
θ0,η0 = 0, we

have
√
NPπ,mcN

˙̀
θ0,η0 +

√
NP0

˙̀
θ̂N,mc,η̂N,mc

= −Gπ,mc
N ( ˙̀

θ̂N,mc,η̂N,mc
− ˙̀

θ0,η0) +

oP ∗(1). Let δN ↓ 0 be arbitrary and define FN ≡ { ˙̀
θ,η − ˙̀

θ0,η0 : |θ − θ0| ≤
δN , ‖η−η0‖ ≤ N−β}. Then f ∈ FN converges to zero either pointwise point-
wise or in L1(P0) by Condition 3.8 as N → ∞. Moreover, it follows from
Condition 3.8 that ‖GN‖FN = oP ∗(1) and that there exists some N0 that FN
is Glivenko-Cantelli for N ≥ N0. Apply Lemma 5.4 to obtain ‖Gπ,mc

N ‖FN =

oP ∗(1) and conclude
√
NPπ,mcN

˙̀
θ0,η0 +

√
NP0

˙̀
θ̂N,mc,η̂N,mc

= oP ∗(1). Similarly,
√
NPπ,mcN Bθ0,η0 [h∗] +

√
NP0Bθ̂N,mc,η̂N,mc [h

∗] = oP ∗(1). These stochastic or-

ders and Condition 3.9 imply that

P0

{
− ˙̀

θ0,η0( ˙̀T
θ0,η0(θ̂N,mc − θ0) +Bθ0,η0 [η̂N,mc − η0])

}
+ o

(
|θ̂N,mc − θ0|

)
+O (‖η̂N,mc − η0‖α) + Pπ,mcN

˙̀
θ0,η0

= P0{− ˙̀
θ0,η0( ˙̀T

θ0,η0(θ̂N,mc − θ0) +Bθ0,η0 [η̂N,mc − η0])− ˙̀
θ̂N,mc,η̂N,mc

+ ˙̀
θ0,η0}

+ o
(
|θ̂N,mc − θ0|

)
+O (‖η̂N,mc − η0‖α) + P0

˙̀
θ̂N,mc,η̂N,mc

+ Pπ,mcN
˙̀
θ0,η0

= oP ∗(N
−1/2),(A.4)
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and, furthermore, that

P0

{
−Bθ0,η0 [h∗] ( ˙̀T

θ0,η0(θ̂N,mc − θ0) +Bθ0,η0 [η̂N,mc − η0])
}

+ o
(
|θ̂N,mc − θ0|

)
+O (‖η̂N,mc − η0‖α) + Pπ,mcN Bθ0,η0 [h∗]

= oP ∗(N
−1/2).(A.5)

By Condition 3.6 and αβ > 1/2,
√
NOP ∗ (‖η̂N − η0‖α) = oP ∗(1). So by

Condition 3.7 and taking the difference of (A.4) and (A.5), we have

−P0

({
˙̀
θ0,η0 −Bθ0,η0 [h∗]

}
˙̀T
θ0,η0

)(
θ̂N,mc − θ0

)
+ o

(
|θ̂N,mc − θ0|

)
+oP (N−1/2)− oP (N−1/2) + Pπ,mcN

(
˙̀
θ0,η0 −Bθ0,η0 [h∗]

)
= oP (N−1/2)− oP (N−1/2),

or
−I0(θ̂N,mc − θ0) = Pπ,mcN

(
˙̀
θ0,η0 −Bθ0,η0 [h∗]

)
+ oP ∗(N

−1/2).

It follows by the invertibility of I0 that

√
N
(
θ̂N,mc − θ0

)
= −
√
NPπ,mcN I−1

0

(
˙̀
θ0,η0 −Bθ0,η0 [h∗]

)
+ oP (1).

Now, we recognize that the summand inside Pπ,mcN is the efficient influence
function for θ and apply Theorem 5.3.

Proof of Theorem 3.3. Theorem 3.1 for cases for θ̂BernN and θ̂BernN,e are

proved in [2; 3]. We only consider the WLE with modified calibration, θ̂N,mc.
The other four estimators for both theorems are similar.

Under stratified Bernoulli sampling, independence of sampling indicators
allows us to proceed in the same as in the proofs of Theorems 3.1 and 3.2 to
conclude

√
N(θ̂BernN,mc−θ0) =

√
NPπ,mcN

˜̀
0 +oP ∗(1) and asymptotic linearity of

α̂N in Proposition A.1. In view of (A.3),
√
N(θ̂BernN,mc−θ0) =

√
NPNf+oP ∗(1)

where

f(X,V, ξ) =
ξ

π0(V )
˜̀
0 −

ξ − π0(V )

π0(V )
Qmc ˜̀0.(A.6)
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Apply the central limit theorem and compute

ΣBern
mc = Var(f)

= Var

(
E

[
ξ

π0(V )
˜̀
0 −

ξ − π0(V )

π0(V )
Qmc ˜̀0

∣∣∣∣X,V ])
+E

[
Var

(
ξ

π0(V )
˜̀
0 −

ξ − π0(V )

π0(V )
Qmc ˜̀0

∣∣∣∣X,V )]
= Var(˜̀

0) + E

[
Var

(
ξ

π0(V )
(I −Qmc)˜̀

0

∣∣∣∣X,V )]
= I−1

0 + E

[
1− π0(V )

π0(V )
{(I −Qmc)˜̀

0}⊗2

]
= I−1

0 +
J∑
j=1

νj
1− pj
pj

P0|j{(I −Qmc)˜̀
0}⊗2.

Proof of Corollary 3.2. We only consider the WLE with modified
calibration, θ̂N,mc. The other two cases are similar.

Let Qmc ˜̀0 ≡ AZ where A = A1A2 with A1 ≡ P0[(π−1
0 (V )− 1)˜̀

0Z
T ] and

A2 ≡ {P0[(π−1
0 (V )− 1)Z⊗2]}−1. Recall that ΣBern = Var{(ξ/π0(V ))˜̀

0}. In
view of (A.6), it suffices to show that Cov{(ξ/π0(V ))˜̀

0, (ξ/π0(V ) − 1)AZ}
is equal to Var ((ξ/π0(V )− 1)AZ). This is true since

Cov

{
ξ

π0(V )
˜̀
0,
ξ − π0(V )

π0(V )
AZ

}
= E

{
ξ

π0(V )
˜̀
0
ξ − π0(V )

π0(V )
Z

}
AT

= E

[
˜̀
0ZE

{
ξ

π0(V )

ξ − π0(V )

π0(V )

∣∣∣∣X,V}]AT
= E

[
1− π0(V )

π0(V )
˜̀
0Z

]
AT = A1A2A

T
1 ,

and

Var

(
ξ − π0(V )

π0(V )
AZ

)
= AVar

(
ξ − π0(V )

π0(V )
Z

)
AT

= AE

[
Var

(
ξ − π0(V )

π0(V )
Z

∣∣∣∣X,V )]AT
+AVar

(
ZE

[
ξ − π0(V )

π0(V )

∣∣∣∣X,V ])AT
= AE

[
Z⊗2 1− π0(V )

π0(V )

]
AT + 0 = A1A2A

T
1 .
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Proof of Corollary 3.3. (1). We first consider stratified Bernoulli
sampling. The case for θ̂N,c was proved in [1]. We only consider the WLE

with modified calibration, θ̂N,mc. The other two cases, θ̂N,e and θ̂N,cc, are
similar.

For Z̃ ≡ (Z(1), . . . , Z(J))T with Z(j) ≡ I(V ∈ Vj)ZT , we compute Ã1 ≡
P0[(π−1

0 (V )−1)˜̀
0Z̃

T ] and Ã2 ≡ {P0[(π−1
0 (V )−1)Z̃⊗2]}−1. Note thatQmc ˜̀0 =

Ã1Ã2Z̃. The matrix Ã1 = [Ã1,1, . . . , Ã1,J ] is a partitioned matrix where

Ã1,j ≡ P0

(
1− π0(V )

π0(V )
˜̀
0Z

(j)

)
= νjP0|j

(
1− pj
pj

˜̀
0Z

T

)
∈ Rp×k.

and the matrix Ã2 is the block diagonal matrix the jth block of which is

Ã2,j ≡
{
P0

1− π0(V )

π0(V )
[(Z(j))T ]⊗2

}−1

=

{
νjP0|j

1− pj
pj

Z⊗2

}−1

∈ Rk×k.

Thus, the matrix Ã ≡ Ã1Ã2 is a partitioned matrix Ã = [Ã1, . . . , ÃJ ] where

Ãj = Ã1,jÃ2,j = P0|j

(
˜̀
0Z

T
){

P0|jZ
⊗2
}−1

.

It follows by the definition of the Z(j)’s that

P0|j

{
(I −Qmc)˜̀

0

}⊗2
= P0|j

{
˜̀
0 − ÃZ̃

}⊗2

= P0|j

{
˜̀
0 − ÃjZ

}⊗2
= P0|j

{
(I −Q(j)

c )˜̀
0

}⊗2
.

Since

P0|j

(
ÃjZ

)⊗2
= ÃjP0|jZ

⊗2ÃTj = P0|j

(
˜̀
0Z

T
){

P0|jZ
⊗2
}−1

P0|j

(
˜̀
0Z

T
)T

,

and

P0|j

(
˜̀
0Z

T
)
ÃTj = P0|j

(
˜̀
0Z

T
){

P0|jZ
⊗2
}−1

P0|j

(
˜̀
0Z

T
)T

,

it follows that

P0|j

{
(I −Q(j)

c )˜̀
0

}⊗2
= P0|j ˜̀

⊗2
0 − P0|j{Q(j)

c
˜̀
0}⊗2.

Substitution of this into (3.11) gives (3.12).
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(2). Next, we consider the second part of Corollary 3.3 concerning strat-
ified sampling without replacement. For Z̃ ≡ (Z(1), . . . , Z(J))T with Z(j) ≡
I(V ∈ Vj)ZT , we compute B̃1 ≡ P0[(π−1

0 (V ) − 1)˜̀
0(Z̃ − µZ̃)T ] and B̃2 ≡

{P0[(π−1
0 (V ) − 1)(Z̃ − µZ̃)⊗2]}−1. Note that Qcc ˜̀0 = B̃1B̃2Z̃ and µZ̃ =

(µTZ,1, . . . , µ
T
Z,J)T . The matrix B̃1 = [B̃1,1, . . . , B̃1,J ] is a partitioned matrix

where

B̃1,j ≡ P0

(
1− π0(V )

π0(V )
˜̀
0(Z(j) − µTZ,j)

)
= νjP0|j

(
1− pj
pj

˜̀
0(Z − µZ,j)T

)
.

and the matrix B̃2 is the block diagonal matrix the jth block of which is

B̃2,j ≡
{
P0

1− π0(V )

π0(V )
[(Z(j))T − µZ,j ]⊗2

}−1

=

{
νjP0|j

1− pj
pj

(Z − µZ,j)⊗2

}−1

.

Thus, the matrix B̃ ≡ B̃1B̃2 is a partitioned matrix B̃ = [B̃1, . . . , B̃J ] where

B̃j = B̃1,jB̃2,j = P0|j

(
˜̀
0(Z − µZ,j)T

){
P0|j(Z − µZ,j)⊗2

}−1
.

It follows by the definition of Z(j)’s that

Var0|j

{
(I −Qcc)˜̀

0

}
= Var0|j

{
˜̀
0 − B̃(Z̃ − µZ̃)

}
= Var0|j

{
˜̀
0 − B̃j(Z − µZ,j)

}
= Var0|j

{
(I −Q(j)

cc )˜̀
0

}
.

Then, since

Var0|j

(
B̃j(Z − µZ,j)

)
= B̃jVar0|j(Z)B̃T

j

= P0|j

(
˜̀
0(Z − µZ,j)T

){
Var0|j(Z)

}−1
P0|j

(
˜̀
0(Z − µZ,j)T

)T
,

and

Cov0|j

(
˜̀
0, B̃j(Z − µZ,j)

)
= P0|j

(
˜̀
0(Z − µZ,j)T

)
B̃T
j

= P0|j

(
˜̀
0(Z − µZ,j)T

){
Var0|j(Z)

}−1
P0|j

(
˜̀
0(Z − µZ,j)T

)T
,

it follows that

Var0|j

{
(I −Q(j)

c )˜̀
0

}
= Var0|j

(
˜̀
0

)
−Var0|j{Q(j)

c
˜̀
0}.

Substitution of this last identity into (3.8) gives (3.13).
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Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. We only consider the WLE with modified cal-
ibration. Proofs for the other four estimators are similar. Our proof closely
follows the consistency proof for the MLE for complete data in [8].

Because of the assumption on τ , we restrict our attention to the in-
terval [0, τ ]. For a bounded function h ∈ L2(Λ), define a perturbation
dΛ̂N,mc,t = (1+ th)dΛ̂N,mc of Λ̂N,mc. The weighted log likelihood with modi-

fied calibration, Pπ,mcN `θ,Λ, evaluated at (θ̂N,mc, Λ̂N,mc,t) viewed as a function
of t is maximal at t = 0 by the definition of the WLE with modified cali-
bration. Thus, differentiating at t = 0 yields Pπ,mcN Bθ̂N,mc,Λ̂N,mch = 0, or

Pπ,mcN ∆h(Y ) = Pπ,mcN eθ̂
T
N,mcX

∫
[0,Y ]

hdΛ̂N,mc

=

∫
Pπ,mcN

{
eθ̂
T
N,mcXI[Y≥s]

}
h(s)dΛ̂N,mc(s).

Let M̂N,0(s) = Pπ,mcN eθ̂
T
N,mcXI(Y ≥ s). Replacing h in the above display by

h/M̂N,0 yields

Λ̂N,mch =

∫
h(s)

M̂N,0(s)
Pπ,mcN

{
eθ̂
T
N,mcXI(Y ≥ s)

}
dΛ̂N,mc(s) = Pπ,mcN

∆h(Y )

M̂N,0(Y )
.

Similar reasoning via P0B0h = 0 leads to Λ0h = P0∆h(Y )/M0(Y ). Let
Λ̃Nh = Pπ,mcN ∆h(Y )/M0(Y ). Since P (T > τ) > 0 and P (C = τ) > 0, we
have for s ≤ τ that M0(s) ≥M0(τ) > 0. The function (y, δ) 7→ δh(y)/M0(y)
is bounded, and hence {δh(y)/M0(y) : h ∈ H} is Glivenko-Cantelli by the
Glivenko-Cantelli preservation theorem [9] and the fact that H is Glivenko-
Cantelli. Thus, ‖Λ̃N‖H →P ∗ ‖Pθ0,Λ0∆h(Y )/M0(Y )‖H = ‖Λ0‖H. Moreover,

since Λ̂N,mc{Yi} = Λ̂N,mcδYi = N−1(ξi/πα̂N (Vi))(∆i/M̂N,0(Yi)), and simi-

larly Λ̃N{Yi} = N−1(ξi/πα̂N (Vi))(∆i/M0(Yi)), we have Λ̂N,mc{Yi}/Λ̃N{Yi} =

M0(Yi)/M̂N,0(Yi).
Since the weighted log likelihood with modified calibration evaluated at

(θ̂N,mc, Λ̂N,mc) is larger than at (θ0, Λ̃N ), we have

0 ≤ Pπ,mcN (`θ̂N,mc,Λ̂N,mc − `θ0,Λ̃N )

= (θ̂N,mc − θ0)TPπ,mcN ∆X − Pπ,mcN (eθ̂
T
N,mcXΛ̂N (Y )− eθT0 XΛ̃N (Y ))

+ Pπ,mcN ∆ log{M0(Y )/M̂N,0(Y )}.

We take the limit of this on N . Because Θ is compact, there is a sub-
sequence of {θ̂N} that converges to θ∞ ∈ Θ. It follows by Theorem 5.1
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that along the convergent subsequence of {θ̂N}, (θ̂N − θ0)TPπ,mcN ∆X →P ∗

(θ∞ − θ0)TPθ0,Λ0∆X.

For the second term, note that Λ̂N (τ) is uniformly bounded, because

eθ
TX is uniformly bounded in θ and X, and Λ̂N (τ)Pπ,mcN eθ̂

T
NXI(Y = τ) ≤

Pπ,mcN eθ̂
T
N,mcXΛ̂N (Y ) = Pπ,mcN ∆ ≤ 1. Here we use the weighted likelihood

equation with h = 1 above. Since {Λ̂N,mc} and {Λ̃N} are both subsets of
the class of monotone, bounded cadlag functions that is Glivenko-Cantelli,
it follows by the Glivenko-Cantelli preservation theorem [9] and Theorem
5.1 that

Pπ,mcN {eθ̂
T
N,mcXΛ̂N (Y )− eθT0 XΛ̃N (Y )}

= Pθ0,Λ0{eθ
T
∞XΛ̂N (Y )− eθT0 XΛ̃N (Y )}+ oP ∗(1),(A.7)

along a subsequence of θ̂N,mc.

For the third term, note that {M̂N,0} is a subset of the class of monotone,
bounded, cadlag functions, which is Glivenko-Cantelli, and hence so is it.

Note also that M̂N,0(τ) = Pπ,mcN eθ̂
T
N,mcXI(Y = τ) is bounded away from zero

with probability tending to 1 since P (T > τ) > 0 and P (C = τ) > 0. Since
M̂N,0(t) ≥ M̂N,0(τ) for t ≤ τ , the set {δ log(M0(y)/M̂N,0(y))} is Glivenko-
Cantelli by the Glivenko-Cantelli preservation theorem again so that

Pπ,mcN ∆ log(M0(Y )/M̂N,0(Y ))

= Pθ0,Λ0∆ log(M0(Y )/M̂N (Y )) + oP ∗(1)(A.8)

by Theorem 5.1.
The set {δh(y)/M̂N,0(y) : h ∈ H} is Glivenko-Cantelli by the Glivenko-

Cantelli preservation theorem [9] so that ‖Λ̂N‖H = ‖Pθ0,Λ0∆h(Y )/M̂N,0(Y )‖H+
oP ∗(1) by Theorem 5.1. Since we have by Theorem 5.1 that

M̂N,0(s) = Pπ,mcN eθ̂
T
N,mcXI(Y ≥ s)→P ∗ Pθ0,Λ0e

θT∞XI(Y ≥ s) ≡M∞,0(s)

uniformly in s, it follows by the dominated convergence theorem that

‖Λ̂N‖H = ‖Pθ0,Λ0∆h(Y )/M̂N,0(Y )‖H + oP ∗(1)

→P ∗ ‖Pθ0,Λ0∆h(Y )/M∞,0(Y )‖H ≡ ‖Λ∞‖H,

along a subsequence of θ̂N .
Apply the dominated convergence theorem to replace Λ̂N,mc, Λ̃N , and

M̂N,0 by Λ∞, Λ0 and M∞,0 in (A.7) and (A.8) and conclude

0 ≤ (θ∞ − θ0)TPθ0,Λ0∆X − Pθ0,Λ0

(
eθ
T
∞XΛ∞(Y )− eθT0 XΛ0(Y )

)
+ Pθ0,Λ0∆ log{M0(Y )/M∞(Y )}.(A.9)
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Since M0/M∞ = dΛ∞/dΛ0, (A.9) is in fact minus one times the Kullback-
Leibler divergence

K(Pθ0,Λ0 , Pθ∞,Λ∞) ≡ Pθ0,Λ0 log {pθ0,Λ0/pθ∞,Λ∞} ≥ 0,

for the complete data model. Thus, (A.9) is exactly zero. But sinceK(Pθ0,Λ0 , Pθ,Λ)
is strictly positive unless (θ,Λ) = (θ0,Λ0) by the identifiability of parame-
ters, we must have (θ∞,Λ∞) = (θ0,Λ0). This is true for any subsequence of
θ̂N,mc, and the result follows.

We give the characterization of WLE’s for the Cox model with interval
censoring. Let n =

∑N
i=1 ξi be the number of observations sampled at phase

II. Let Y(1), . . . , Y(n) be the order statistics of Y1, . . . , YN with ξi = 1, i =
1, . . . , N . Let ∆(i), X(i), U(i), and ξ(i) correspond to Y(i); for example, if
Y(i) = Yj , then ∆(i) = ∆j . Let π(i) = π0(V(i)). Because only fully observed

subjects contribute to the weighted likelihood, Λ̂N (Yi) for subjects with
ξi = 0 does not matter in the maximization. In fact, Λ̂N (Y(i)) = Λ̂N (Y(i−1))

for subjects with ξ(i) = 0 for i ≥ 2. The WLE Λ̂N of Λ corresponds to

x = (Λ̂(1), . . . , Λ̂(N)) that maximizes

φ(θ, x) =

n∑
i=1

1

π(i)

[
log
{

1− exp
(
−eθTX(i)

)
xi

}
− (1−∆(i))e

θTX(i)xi

]
at θ̂N subject to 0 ≤ x1 ≤ · · · ≤ xn. The monotonicity constraint on x
is imposed to guarantee that an estimate of Λ is nondecreasing. Note that
φ(θ, x) is concave in x.

Without loss of generality, we can assume that ∆(1) = 1 and ∆(n) = 0.

If ∆(1) = 0 or ∆(n) = 1, then Λ̂N (Y(1)) = 0 or Λ̂N (Y(n)) = ∞, so that the
first or the last summand in φ is zero. Hence ignoring these terms does not
change the maximization of the weighted likelihood.

Lemma A.5. Assume that ∆(1) = 1 and ∆(n) = 0. Then the WLE

(θ̂N , Λ̂N ) satisfies

PπN Λ̂N (Y ) exp(θ̂TNX)XQ(Y,∆, X, θ̂N , Λ̂N (Y )) = 0,∑
j≥i

ξ(j)

π(j)
Q(Y(j),∆(j), X(j); θ̂N , Λ̂N ) exp(θ̂TNX(j)) ≤ 0, for i = 1, . . . , n,

PπNQ(Y,∆, X; θ̂N , Λ̂N ) exp(θ̂TNX)Λ̂N (Y ) = 0.

Moreover, the corresponding (in)equalities holds for the WLE’s with esti-
mated weights and (modified and centered) calibration.
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Proof. The first equation is simply the weighted score equation for θ.
For the second inequality, let 1j be the vector which has 1’s as its last j

components and zeros as its first n−j components. Let Λ̂N = (Λ̂N (Y(i)))
n
i=1.

For ε > 0, the vector Λ̂N+ε1j satisfies the monotonicity constraint. It follows
by the definition of the WLE that

0 ≥ lim
ε↓0

φ(θ̂N , Λ̂N + ε1j)− φ(θ̂N , Λ̂N )

ε

=
n∑
i=1

1

π(i)

∆(i)
e−e

θ̂TNX(i) Λ̂N (Y(i))+θ̂
T
NX(i)

1− e−e
θ̂T
N
X(i) Λ̂N (Y(i))

− (1−∆(i))e
θ̂TNX(i)

 I(i ≥ j).

Relabeling i and j gives the desired result. Note that the assumption that
∆(1) = 1 and ∆(n) = 0 guarantees that the above derivative is finite.

The last equality follows for the same reason that

lim
h→0

φ(θ̂N , Λ̂N + hΛ̂N )− φ(θ̂N , Λ̂N )

h
= 0.

Note that adding terms associated with ξi = 0 does not contribute to the
sum in the above derivative.

For the other four estimators, change weights appropriately.
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