Submitted to the Annals of Statistics

SUPPLEMENTARY MATERIAL FOR “WEIGHTED
LIKELIHOOD ESTIMATION UNDER TWO-PHASE
SAMPLING”

By TAKUMI SAEGUSA* AND JON A. WELLNER'
University of Washington

In this supplement we present the proofs for [6]. Equation and
theorem references made to the main document do not contain letters.

A. Appendix. We repeatedly use the notation for empirical measures
and processes introduced in Section 2 following [2]. The fundamental idea
of [2] is to view Gg’ N, 88 the exchangeably weighted bootstrap empirical
process corresponding to Gj n; = \/ﬁj (IP’j’N]. — Po‘j) for j =1,...,J. The
processes Gi N, converge weakly to /p;j(1 —p;)G; for independent Fy;-
Brownian bridge processes G;, j = 1,...,J, in £*°(F) for Donsker classes
F.

Asymptotic linearity and the limiting distributions of & in binary re-
gression and (modified and centered) calibration are given by the following
proposition. The proof requires a Glivenko-Cantelli theorem for P%; whose
proof is independent of Proposition A.1.

ProrosiTION A.1. Under the Condition 3.1, Gy is consistent for oy,
and

VN (ay — ao)

=5V Z ST (6~ mof1i) + o)

wslz

where G; are independent Fy;-Brownian bridge processes.
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2 SAEGUSA AND WELLNER

Under the Condition 3.2, both &%, &' and &5 are consistent, and
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where the Py ;-Brownian bridge processes, Gj, are independent.

PrOOF. We first consider estimated weights. Define My(a) = Pymg
and M(a) = Pagi where ma(Z,€) = 10g ({pa(€Z) + pao(€12)}/2) . We
again apply Theorem 5.7 of [7] for a consistency proof. Because p,(£|Z) is
a valid marginal density of a single observation & given Z, the argument of
[7], page 66, can be used to verify the second condition of the theorem. We
verify the first condition of Theorem 5.7 of [7]. Let Ge(z; o) = {Ge(2Ta) +
Ge(zTap)}/2. Then mo(z,€) = Elog Ge(z;0) + (1 — &) log(1 — Ge(z; ). We
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 3

rewrite Pym, as

Pymeg = Z& log G, (Zisa) + (1 = &) log (1 - ée(Zi; a)>

}

N
_ Njnj |1 &
Z{NN]. [Nj;njm 108 G2 50)

j=1

J N
TAV (R [ R e (-0 |
j=1 =1

Thus, if we establish that both Sy ; = {log (1 - ée(zTa)) ca e RITF V€ Vj}

and S ; = {logG (zTa):a e R/TF V € Vj} are Py-Glivenko-Cantelli for
j=1,...,J, it follows from Theorem 5.1 applied to sampled subjects and
non-sampled subjects in each stratum separately that Pym, converges in
probability to

Pym, = ZJ:Vjijo <1og GE(ZTa)) Ve Vj>
j=1

+ZJZVJ L=pp)hy (log (1= G(27a) [V € ;).
j=1

uniformly in «. Note that the method of estimated weights does not estimate
the sampling probability for the subjects in a stratum if the sampling prob-
ability is 1. Thus, we can assume that G.(Z7ag) < ¢’/ < 1. Hence we have

log(c/2) < log Ge(Z%a) < 0 and log({1 — ¢'}/2) < log (1 — ée(ZTa)) <0
forall j =1,...,J and a € R/T*. This implies that all sets Sk k= 0,1,
have integrable envelopes. Now it suffices to show that all sets are VC sub-
graph classes. Note first that {z7a : o € R/**} is a VC subgraph class by
Lemma 2.6.15 of [10]. Note also that G, and the logarithm are monotone
functions. Because a map by a monotone function, addition and multipli-
cation all preserve the property of the VC subgraph class by Lemma 2.6.17
of [10], our claim follows and hence the first condition is verified. Since we
have by concavity of the logarithm and the property of &y that

) 1 1
My(an) = SPylogpay(E]V) + 5PN logpa, (§V)

2 2
1 1
> §]P)N Ingao (f‘V) + §PN Ingao (f‘V) = MN(a0)>
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4 SAEGUSA AND WELLNER

consistency follows from Theorem 5.7 of [7].
We apply Theorem 3.3.1 of [10] to show asymptotic normality of dy.
Define

1 & Go(ZT ) Z; _
@N,e( N EZ: ZT )( Ge( )) (€z - Ge(ZlTOK)) = PN¢0¢(§> V)a
and
G.(ZT0)Z J
20) = oY Gl = G 2V €)= GelZla)

Note that ®n.(dn) = 0 because (9/0a)Pylogpn = ®n.(a). Note also
that ®.(ap) = 0 since Ge(ZTag) = p; when V € V;. It follows by the
decomposition (10) of the inverse probability weighted empirical processes
n [2] that

VN(@n,e(en) — e(ap)) = VN ()

_ Ge(ZTa0)Z
_ﬂWWMﬂmM—awmm@—@w%m

m0(V)  Ge(ZTa9)Z Ge(ZTa)Z
_‘FPNG ZTao)l—G (ZT o) ‘ﬁp — Go(ZT )

_ Z / 5 7T0 G (ZTOzQ)Z
] G ZTao) 1-— Ge(ZTOéo)

o(V) Ge(ZT ) Z
+VNPy <G (ZTag) 1) 1— Ge(zgao)‘

Since mo(V) = n;/N; and Ge(ZTap) = p; when V' € Vj, the first term
converges to

J
Z \/> /Ny Gg.Ge(ZTozo)Z ~ Z -L'-)Gjée(ZTo‘O)Z'

n; pj(1—pj)

The second term can be written as

J

n; N; 1 1 .
E:‘/N 2y, = NG(Z )7,
= (Nj pj) N p;(1 (240002

_p]) J i=1

Since nj = [N;p;] by assumption, it is easy to see that —Nj_l/2 < /Nj(n;/N;—
p;) <0, and hence y/N;(nj/N;j —p;) — 0. Since Nj_1 vazjl Ge (Z 00) 25 =
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 5

Op~(1) by the weak law of large numbers and /N;/N — |/v;, the second

term converges to zero in probability. The weak convergence of v N (Pne —
®.)(ayp) follows from Slutsky’s theorem.

For asymptotic equicontinuity of the process, it suffices to consider a com-
pact subset A. o € R7** where ay is its interior point since G is consistent.
Let

. 2
_ o (1) =2 PN ),
Pl = G T - Gy (YT e )
i 2
®2 .. Ge( TO‘)
0nal) = sy | G- w
Taylor’s theorem gives
§

Cba(fa U) - ¢a0 (ga ’U) = ¢o¢’1‘,1(v> (Oé - Oé()) + ¢a§,2(v)(a - Oé(]),

WQ(U)

where a;-‘, j =1,2, are some convex combinations of a and «ag. Thus,

VN @y — ®e) (@) = VN(@y o — Pe) ()
- \/N(PN - PO)(¢a - ¢ao) =+ \/NPO(¢04 - ¢ao)
— VN®.(a) + VN®(a)
= (P} — Po)¢a; 1 VN(a — ag) + (Py — Po)dag 2V N (o — ap)

J
(A1) + Podara | § — ijI(V e V) | VN(a — ap).

J=1

To show this is 0p« (14N (a— ap)), we first show that the set T = {¢ax :
a € Aotk = 1,2, are Glivenko-Cantelli. It is easy to see that {zTa :
a € Ao} is Glivenko-Cantelli. Since G, € C? by assumption, Gak, k =
1,2, are uniformly bounded in a € A.o. Thus, the sets 73, k = 1,2 are
both Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
For the third term in (A.1), apply the dominated convergence theorem with

Py(E|V) = 37y (nj /IN)I(V € V)) = S piI(V € V).
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6 SAEGUSA AND WELLNER
Since ® () = —Sp, apply Theorem 3.3.1 of [10] to obtain
VN (Gn — o)
— 5N f: (Z 2 (g~ G2 a0)) + ope (1)

This completes the proof.
Next we consider modified calibration with &x = &7°. The cases for

(centered) calibration (i.e., &y = &% and Gy = &%) are similar. Define

PN me(@) = PRGme(Via)Z —PyZ and $ppe(@) = Po[(Gme(V ) — 1) Z].
Note that @y yme(dn) = 0 and ¥, (0) = 0. We apply Theorem 5.7 of [7] for
a comnsistency proof. For the first condition of the theorem, we have

sup [|®nme(@) = Pme()|

aERFK
1 N
= Sup NZ( mcva) 1>Zi_PO{GmC(V;a)_1}Z
a€RF
N f
=Y —Gne(Vi;a)Z; — PoGe(;0)Z
j;lﬂgk N — 7['()(‘/;) mc( Z)a) % 0 mc(aa)
1 N
+ sup ||— Z; — Py ||,
a€cRFk N; '

where ||-|| is the Euclidean norm. Since « is a vector in R¥ and G is monotone,
{Gme(;a) : a € R¥} is a VC subgraph by Lemmas 2.6.15 and 2.6.18 of
[10]. Boundedness of G implies that the set {Gnc(v;a)z: a € RF} is Py-
Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9]. Then
the first term is op«(1) by Theorem 5.1. The second term is op=(1) by the
weak law of large numbers.
The second condition of the theorem is that for any € > 0, inf| |5 [|®me(a)|| >
0. Suppose, to the contrary, that inf|, |~ | ®me(a)|| = 0 for some € > 0. Then
there exists a sequence {a(™} C R¥ with |a(™)| > € for each m = 1,2,.. .,
such that
[ By (™) = 0.

Let ®;.(a), j =1,...,k, be the jth element of ®,,.(a). Since the norm |||
is the Euclidean norm, each element ®;.(a(™) converges to zero. If (™
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 7

converges to o) with |oz(°°)| < 00, then by the dominated convergence
theorem and Taylor’s theorem,

0= P, [{Gmc(v; a®)) — 1} z} e [(FO(V)—l )GV a*)z®2a<°°>]

for some a* with |o*| < [a(®)|. Because Py(mo(V)™! — 1)Ge(V;a*) 292 is
positive definite by assumption, a(*®) must be zero, which contradicts the
fact that |a(>)] > .

We assume that some elements of o™ diverge. Then, a further subse-
quence ™) converges to some o(°) whose elements are extended real num-
bers. Define a unit vector 3% = limy_ s ™) /[|a™)||. Then we have for
each Z on the set {mo(V) < 1} that

me m/—o0 7T0(V) ||Oém/H
M ZT () if ZzT () 5 ¢

= miZT ) if ZTp(=) < .
0 it zT () = ¢

_ N
G&)(2) 278> = lim G(l (V) gr @y m \) Z7 3>

It follows by the dominated convergence theorem applied to each element of
the vector of ®,,.(«) that

0= lim @p <a<m’>)T ) =Ry lim {Gmc (V; a<m’>) _ 1} 77T 3()

= (M1 = DRI yrgi050,m(v)<1} 2 B
+(m1 — 1)POI{ZTB(0<>)<07W0(V)<1}ZTB(OO)-

However, this is strictly positive since m; < 1 and M; > 1, which is a
contradiction. This completes the proof that &y — p« 0.

We apply Theorem 3.3.1 of [10] to show the asymptotic normality of dy.
For asymptotic equicontinuity condition, it follows by Taylor’s theorem that

\/N((I)N,mc - (I)mc)(dN) - \/N((I)N,mc - (I)mc)(QO)

=GN[Gme(Vi;aN)Z — G (V5 ) Z]

= Py — Po)(mo(V) ™' = 1)Ge(V; a*) Z22VN (G — ag)
for some a* with |a* — ag| < |&n — ag|. This term is op(1 + VN|& —ag)|) if
(P — Po)(mo(V) ™! = 1) Z%2G e (Vs ) — p 0, uniformly in a. Let A1 C
R* be a compact neighborhood of zero. Since Gy is consistent, it suffices

to show that the set {(m5 (V) — 1)Z%2G,ne(Z; ) : @ € Aper } is Glivenko-
Cantelli. Since |7y, (V) — 1| and Z are bounded, the VC subgraph class
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8 SAEGUSA AND WELLNER

{(m'(V) = )Za : a € Apmea} (Lemma 2.6.15 of [10]) is Py-Glivenko-
Cantelli. Because G is continuous and bounded, the set {Gpe(Z;0) : a €
Apmen} is Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem
of [9]. Apply the Glivenko-Cantelli preservation theorem of [9] again to
conclude {(my ' (V) = 1)Z%%2Gpe(Z;0) = a € Apmea} is Glivenko-Cantelli.
Hence, asymptotic equicontinuity follows from Theorem 5.1. We show the
weak convergence of the process v N (PNme — Pme)(a) at ap = 0. Since
Gme(v;a9) = 1, it follows from the decomposition (10) of the inverse prob-
ability weighted empirical processes in [2] that

\/>(I>ch_ )( ) \/><I>ch():\/ﬁ( %_PN)Z
/ N
_Z JN

WZ\F

( by Theorem 5.3).

The Fréchet derivative of ®,,.(ay) is

0

Bc()azag = 50 P (Gme(Via) = 1)Z = G(0)Py(mo(V) ! — 1) Z%2.

a=aq

Thus, by Theorem 3.3.1 of [10] we obtain

J
- GO Pomo(V) =122 S ;.pj G,2.
j=1 /
O

Here we give proofs of the theorems in Section 5.

PrOOF OF THEOREM 5.1. First consider P},. By the decomposition (10)
of the inverse probability weighted empirical processes in [2], we have

nj

Nj - ﬁij,Nj

1PN — Pollr < [Py — Boll7 + Z
Jj=1
The first term is op« (1) since F is Glivenko-Cantelli. Since (N;/N)(N;/n;j) —p=
vj/p;, each summand in the second term is op« (1) by the bootstrap Glivenko-
Cantelli theorem, which is an easy corollary to Lemma 3.6.16 of [10].

F
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 9

Consider P}°. Because dy — p+ a by Proposition A.1, it suffices to con-
sider a compact neighborhood K C R”** of ag. Since Z is bounded and G,
is continuous, {7, (V)}~! = {G.(aTZ)}~! is bounded in this neighborhood.
Because « is a vector in R7T* and G, is monotone, {{Ge(a)} ™ : a € K} is
a VC subgraph class by Lemmas 2.6.15 and 2.6.18 of [10]. Boundedness of
G implies that the set

{ro{Ge(-a)} ' f: f€F,ae K}

is Pp-Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
Since &y — p+ ag, we have by (5.14) that
PR — Pl = —rp+ 0, by recognizing that

N
e 1 62 WO(W) }
A Sx. b
N N;m(vi) {Ge(ol]TVZi) Xi

Consider P"“. The cases for P and Py are similar. We verified in
the proof of Proposition A.1 that {G.(-;@) : @ € R¥} is a VC subgraph
class. Boundedness of G implies that the set

{Gmc(-;a)f . feFac R’f}

is Pp-Glivenko-Cantelli by the Glivenko-Cantelli preservation theorem [9].
Since &y converges to zero in probability by Proposition A.1, the result
follows by (5.14).

O

Several lemmas are required for the proof of Theorem 5.2.

LEMMA A.1. Let F be a class of functions with Py|f| < oo for every
feF. Then,

IN.
WJI(NJ' > O)G]’,N].

Proor. Let ¢;, i = 1,..., N, be independent Rademacher variables, in-
dependent of X;,i = 1,..., N, and Nj. It follows from the symmetrization
inequality (Lemma 2.3.6) of [10]

E* S EY |Gyl g, foreach j=1,...,J

]:

E'|GnllF 2 E

~

1 N
ﬁ ; €z‘f(Xi)

_F
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10 SAEGUSA AND WELLNER
Rewrite this and use Jensen’s inequality again with E[ef(X)] = 0 to obtain

E* I(N; >0) \/>\/TZ €.if(Xj4)

=1

> B |1 N>0\/ jwa i)

f

F

Here we implicitly change the law. This can be justified by Proposition A.1
of [2].

Now applying the Lemma 2.3.6 of [10] to the jth stratum, this is further
bounded below, up to some constant, by

Nj
E* |[I(N; > 0)\/?\/% Z(f(Xj,i) — Py f)

f

— E*

I(Nj > 0) Nj/NGj,Nj
f

O]

The following is a multiplier inequality for bounded exchangeable weights.
Note that the sum of stochastic processes in the second term is divided by
n'/2 rather than k'/2.

PROOF OF LEMMA 5.1. This follows the proof of Lemma 3.6.7 of [10] up
to the last line. Since the ;’s can be split into their positive and negative
parts, we only consider the case where they are nonnegative. Thus for any
1 <ng<mn,

F J=no F
<FE | Zi E Z;
< <1Iilza<’%£’> 1 Zill 7 + Z §nZil|
i=ng
where {;),4 = 1,...,n, are the reverse order statistics of §;,¢ = 1,...,n.

To bound the second term, we substitute &) = > p_i(§) — Ee41)) With
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 11

§(n+1) = 0, and change the order of summation to obtain

Y i ZIEZEFw §(kr1)) 2
i=ng F i=ng k=1 F
n k *
= B> Ew— o) D %
k=ngo 1=ng F

It follows from the triangle inequality and the independence of the £’s and
Z;’s that this is bounded by

n k
Z E —&(k+1)) Z Z;
k=no 1=ng F
n k *
= DB € o) | D Z
k=ng i=no r
n k *
- Z E*(§ky — Eor1)) E Z Z;
k=ngo i=no ba
n k’ E3
< D B¢ - €(k+1))n0rr<1%><<nE Z Zi
k=ng == i=ng F
n k’ *
= E*) (w- f(k+1))ngr<1%><<n E* Z Zp,
k=ng == i=ng F
< _
< s |2
i=ng F

using the boundedness of the &;’s in the last line. The proof for the negative
parts of the &;’s is similar and the inequality follows. O

LEMMA A.2.  For an arbitrary set F of integrable functions,

E |Gz S B [IGnll £
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12 SAEGUSA AND WELLNER

Proor. We decompose G7; as in (2.1): thus

J
BIGHIF = B*[jEn+ 31\/];(7;) Gy,
J:

Ni (Ni) e
G

It therefore suffices to show that each E* Hmj Gy N; H F18 bounded up to some
constant by E* |Gy ||z where m; = (N;/N)Y2(N;/n;).
Rewrite G§ N, 88

J
< B'|Gwlly+ ) E°
j=1

f

s
] i=1
Now we condition on N = (Ny,...,Ny), and write Ey for E(:|IV). Since
& € {0,1}, it follows by the multiplier inequality of Lemma 5.1 applied
conditionally with ng = 1 and Z; = m;(dx,, — P; n;) that EﬂHijiN]_H]:
is bounded by

R e |
N || 1 *
1&%)1(\@‘ X n; \/N;( Xji ]7Nj) ]J

Note that N;/n; < o~ ! for some ¢ > 0 by assumption so that we can replace
N;/nj by o~ ! in the last display to obtain an upper bound. Then, apply the
triangle inequality to further bound this by

max Fx
1<k<N; N

k
1 k
Y- Pom b By | |, - Rl
=1

Since dx,, — Fy); has mean zero, it follows by Jensen’s inequality that the

first term is bounded by

N

Z P0|J = E*ﬂ

=1 F

N;

F
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 13

The second term is bounded by E}y H VN;j/NG; N, H 7 Now compute uncon-
ditionally and apply Lemma A.1 to find that both terms are bounded by
E*||Gn || O

PROOF OF THEOREM 5.2. It follows by Lemma A.2 and the assumption
on E*||Gpn||am, that

E*|GN I pmy S E7IGN ] p5 < ¢ (0)-

By application of Theorem 3.2.5 of [10], we conclude that the conclusion of
(1) of the theorem holds.

For the second statement, note that Theorem 3.2 of [4] holds in a general
setting where Pymy, and P, mg, are replaced by the deterministic function
M(6,n) and the stochastic process My, (6, n), respectively. Our parameters «
and 6 play roles of their 6 and n, respectively. Our choice of M and My is
PyGre(V; a)mg and PR “mg. The condition 5.17 corresponds to (3.5) of [4].
The condition 5.18 together with Lemma A.2 verifies their (3.6). Apply their
Theorem 3.2 to obtain d(Onme, 60) < Op« (35" + |an — apl) = Op-(331).
The cases for HAN@ 0AN7C and 0 N,cc are similar. ]

Proor oF LEMMA 5.2. We consider modified calibration. Other three
cases are similar. Because G(0) = 1 and Z is bounded, consistency of ay
implies that there exists A2 C Ape such that for some fixed constant
C >0, Gpe(v;a) > C and Gmc(v;a) > (C for every o € Ayye2 and P(ay €
Aine2) = 1. Then, for arbitrary o € Apc 2,

PoGpe(V;a)(mg —my,) = PoGpe(V; ) log 5—0
0o

< 2Py Ge(V; ) ( Po 1)

= /Gmc(v; a) {—(Jvé/2 — ) +po — peo} dp

<=C [y = o+ [{Gonelvia) = 1 n = o)

— —Cl 9oy ) + [ G307 (0) = )07 (5o = gl = ),

where o™ is some convex combination of o and «g. Because the integral in
the last display is a bounded row vector, the second term in the last display
is bounded by |a — ag|? up to some constant. Thus, the condition (5.17)
holds. O
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14 SAEGUSA AND WELLNER

The following lemma is useful when showing asymptotic equicontinuity
of processes involving PJ°, Py°, Py™ and Py

LEMMA A.3. Suppose Conditions 3.2 and 3.1 hold. Let F be a Glivenko-
Cantelli class. Then

(4.2) sup‘MN(PN—Pw{ S 5V)f}‘—0p*<1>,

feF Tay (V)" Tao(

where T4, is either an estimated or calibrated probability (with modified or
centered calibration).

PROOF. We only consider modified calibration. The cases for estimated
weights and (centered) calibration are similar. It follows by Taylor’s theorem
that

sup | V(e - { S-Sl

feF Tan (V) ﬂ-ao(
= sup|(P% — Py) (3 (V) = )27 Gme(Z50")f )| VNl = aol,
feF

for some o* with |o* — ag| < |an — apl. Because VN (ay — ag) = Op«(1)
by Proposition A.1, it follows that (A.2) is op+(1) by Theorem 5.1 and
Proposition A.1 if the set {(mo(V)™' — 1)ZTG{(r,* (V) — 1)ZTa} : a €
Ames, f € F}is Po-Glivenko-Cantelli where Ay,c3 C A is some compact
set containing ag = 0. This is easily verified in the same way as in the proof
of Proposition A.1. O

PROOF OF THEOREM 5.3. The result (5.19) follows from [2]. Consider
the IPW empirical process with modified calibration. It follows by Taylor’s
theorem that

GY"f — GRS

=Gy (mNg(V) B Waoé(V)> S+ VN (Wdzf(v) - ij)) !

-GN <wdf<v> - waf<v>> /

(A.3) + P (WZTGmc(V; a*)f) VN (ay — a),

where a* is some convex combination of &y and ag. The first term is op+(1)
by Lemma A.3. Since (mo(V)~! —1)ZTG,,. is bounded and f is integrable,
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 15

it follows from the dominated convergence theorem that

Py (1 ;OT(FO(V) ZTGmC(V;a*)f> — P <1 mo(V)

o
5 ) ? G(O)f> .

Apply the result (5.19) and Proposition A.1 to conclude the finite-dimensional
convergence

’TI'me G f+( wmc_Gﬂ—)f

—>de+2$ pJGf

j=1
_p (L=mV) . > —1{ 1_7T<3(V)®2}_1
P0< WO(V) ZTG0)f ) G0y Py )2
X:ZE:'V/Ai pj(}‘Z
! 1 —p, . 1 —pj
=Gf+ > 5 ” Gif =Y Vv b GjQmef
j=1 Jj=1
J .
=Gf+) V7 1;.p]Gj(f—chf)-
=1 !

Next, we prove asymptotic equicontinuity of Gg;mc with respect to the metric
Pme defined by

J

pac(fr9) =Po(f =9+ v L

D
= Varg;(f — 9)-
J

Jj=1

First recall that G7; is asymptotically equicontinuous with respect to the
metric p defined by

J .
p°(f,9) = o, (f —9) + Zle PNy (f - g).

j=1

The part ‘712% (f—g) corresponds to the empirical process Gy = VN (Px—Py)
in the decomposition (2.1) of the inverse probability weighted empirical pro-
cesses. However, this empirical process Gy is asymptotically equicontinuous
with respect to the Lo(P)-metric with an assumption ||Fy||r < oo in view
of Problem 2.1.2 of [10]. Thus, G% is asymptotically equicontinuous with
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16 SAEGUSA AND WELLNER

respect t0 pme. Now, it remains to verify the asymptotic equicontinuity of
GN™ —GY. Let hy € Fsy ={f —9: f,9 € F,pme(f,9) < dn} for an
arbitrary sequence dy J 0. In view of (A.3)

(GR™ = GR)hy = op+(1) + Py (1;07&)/%‘/)

where o is some convex combination of & and «g. Because each element of
a vector (mo(V) ' =1)ZT G pne(V; o) is bounded, it follows from the Cauchy-
Schwarz inequality that each element of Po{(mo(V) ™' = 1) ZTGe(V; a*) iy}
is bounded up to some constant by Py(h3;). Since pmc(f,g) — 0 implies
Po(f —g)? = 0, we have Pyh3, — 0 as N — oo. This verifies the asymptotic

ZT G (V' a*)hN) Op-(1),

equicontinuity of G and hence completes showing its weak convergence.
The cases for Gi°, Gy° and G follow analogously. O

PROOF OF THEOREM 5.4. Since F is Donsker, it follows by Lemma 2.3.11
of [10] that E*[|Gn|r,, — O for every sequence éx | 0. Thus, the result
follows from Lemma A.2. Apply Markov’s inequality to obtain ||G7,|| £ =

N

op+(1). For the second statement, consider the expansion (A.3) of Gy f —

Nf with f € Fs,. The first term is op«(1) by Lemma A.3. Since f con-
verges to zero in La(Fy), the second term is op«(1) by the dominated con-
vergence theorem and Proposition A.1. Apply the triangle inequality to con-
clude HmeCHﬁN = op«(1).

The proofs for G, G} and G are similar. O

PROOF OF LEMMA 5.3. Without loss of generality, assume that On takes
its values in O5 = {0 € © : || — fy|| < 8} because of consistency of Oy to .
Define a function f : £°(05 x H) x O — £>°(H) by f(z,0)h = z(6,h). Note
that f is continuous at every point (z,6y) such that ||z(0, h)—z(0o, h)|1 — 0,
as 8 — 6. To see this, suppose zy — z and x5 — 6. Then, for a fixed € > 0,
there exists ng such that ||zy — z|| < € and ||@n — Op|| < € for N > Ny. For
N > Ny, we have

1f(zn, 0n) = f (2, 00) 1%
< N1f(an,O0n) = f(20,0n) 12 + [|.f (20, 0n) — f (20, 00) |
< sup |an(0,h) — 2(6,h)[ + [[2(On, h) — 2(60, h)||
0€O;s,heH
< 2e.
Define a stochastic process Zy indexed by ©5 x H by
Zn(0,h) = G (Yo,n — oo,n) -
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 17

Because {1g.5, — Vo1 : |0 — bo]| < 6,0 € ©,h € H} is Donsker, Theorem 5.3
implies that the sequence Zy converges in £>°(©5 x H) to a tight Gaussian
process Z given by

1-—

pj
G;.
Dy

J
Z=G+)Y
j=1

This process has continuous sample paths with respect to the semimetric p
given by

P2 ((017 hl)a (025 h?)) - P (wel,fu - ¢00,h1 - wez,hz + ¢00,h2)2

because (05 x H, p) is totally bounded and Z is uniformly p-continuous. To
see the latter, note that

p2 ((917 h1)7 (927 hZ)) > P { (¢01,h1 - w@O,hl - 1/}02,h2 + ¢90,h2)2’ Ve V]} Vj
for each j =1,...,J. By assumption

sup p? ((0,h), (6o, h)) = sup P (g1, — Ygon +0)> — 0,
heH heH

as @ — 0p. Thus, f is continuous at almost all sample paths of Z.

By Slutsky’s theorem, (ZN,HN) ~» (Z,0p). By the continuous mapping
theorem, Zy(0n) = f(Zn,ON) ~ f(Z,00) =0 in £>°(H).

The other cases for GJ°, G°, Gy and Gy follow analogously; see
the proof of Theorem 5.3. O

With the results of Section 5 in hand, we are ready to prove the main
theorems.

PROOF OF THEOREM 3.1. The asymptotic distributions of Oy is derived
in [2]. Here we derive the asymptotic distribution of §x ,,. that is a solution
of the calibrated weighted likelihood equations with modified calibration

712171,mc(9777a a) = PyGpe(V; O‘)é&n =0,
7]:/,2,777,6(97 m, Ol)h = ]PWNGmC(Vv a)(BQ,Uh - ng”]‘Beﬁh) = 0’

for all h € H with o = G. Let Wp0(0, 1, @) = (V1 me(0,m, ), Vo pe(6, 1, @)

\Ijl,mc(ga n, a) = POGmc(V; a)éO,na
\I'Q,mc(‘ga m, Oé) = POGmC(V; Oé)(ngh - PB,UBO,nh)-
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18 SAEGUSA AND WELLNER

The derivative map of Wy, with respect to (6,7) at (6o, no, @) has compo-
nents Po{Gme(V'; @)Vij60mont: 57 = 1,2.

Our proof proceed by verifying the conditions of Theorem 1 of [3]. The
weak convergence of v/ N (¥ Njme — ¥ime)(00,M0, ) follows from Theorem
5.3. The asymptotic equicontinuity conditions

sup VN (UR e = Wime) 0.1, 6v) = V(UK e = Wime) (00, 00)| |, = 0p- (1),
0cOnecH H

for j = 1,2, follows from Lemma A.3. The other asymptotic equicontinuity

condition

|V e = i) O anes e 20) = VN (U, e = Wne) (B0 10, 0)||, = 0p-(1),

for j = 1,2, follows from the Condition 3.4 and Lemma 5.3. Thus conditions
(2) and (3) of [3] are satisfied.

The Fréchet differentiability of the map (6,7n) — ®; (0,7, &) uniformly
over the neighborhood of ag follows by the Condition 3.5 and boundedness
of G;

| 226, 1,0 = (B0 10, 0O = Frne(6,m) = (B0, m0) |,

= }Sllelg E {Gmc(V; ) (W,n,h — Pom0.h — Voo.mon (0,1) — (%ﬂ?o)))}‘

) 1/2
< {BGL(Via)}' sup {E {0mn = Voo = Yoo ((6:m) = (6o, no>>}2]
heH

= op~ ([[(8,7) — (6o, m0)]|) -
The Fréchet derivative \ifmmc of the map a — {U,,,.(0,n,a)h : h € H} is

0 9 R
S Wrne0,1,0)h = 2B [Ginel(V: )] = B [ mo(V)

T .
da 7T0(V) Z Gmc(vya)w&n,h:| .

Now proceed in the same way as [3] to obtain
VN (O me — o)
~ = 1—m(V
— Ny — 00) + E |y g V)

o) ZTG(O)} VN (an — ag) + op+(1).

Because VN (O —00) = GF Loy +0p+(1) ((16) of [2]), it follows from (A.
and consistency and asymptotic normality of dx that v N (éMmc — 0o)
meclﬁeomo + op+(1). Apply Theorem 5.3 to complete the proof.

The other three cases are similar. ]

3)
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 19

LEMMA A.4.  Let Zq,Zs, ... be i.i.d. stochastic processes indexed by Fn
with E*||Z1|| 7y uniformly bounded in N. Suppose that [|Sn|| £y
= [0, Zill 7y = op+(1). Then

IE*HSAHLFN — 0, N — oo.

PrROOF. Fix € > 0. Let Y; be independent copies of Z; and define Ty =
YL, Vi, and Uy = Ty —Sy. Since |[Un|l 7y = op+(1), limsupy P([Un||7y
v/ N) < limsupy P(||[Ux|7y > 2) = 0 by the portmanteau theorem. This
implies that there exists Ny such that for N > Ny

P*(|Ux|l7y > 2V N) < ¢/

Y

Since Uy is a sum of independent symmetric processes, we can apply Lévy’s
inequality to obtain

P* <max |1Z; — Yill 7y > x\/ﬁ> < 2P*(|Un|l7y > zVN) < 2¢/22.

1<i<n

In view of Problem 2.3.2 of [10], for every N > N,
L’ NP*(|Zy — Y1|| 7y > 2V N) < 4e.
Note that on the event that ||Z;|r, > z, we have

An(x) = Pyr(IYillzy <2/2) < Pr(Zy = Yall 7y > 2/2).

Integrating both sides with respect to Z gives
BN (@) P (|21l 7y > x) < P([|Z0 = Yall7y > 2/2).
By Markov’s inequality,
Bn(a) =1= P (IYilzy > 2/2) 21227 E|Y1||7,

Since E||Y1]| £, is uniformly bounded in N, it follows that, for = sufficiently
large, By(x)~! is uniformly bounded in N and, therefore, P*(||Z1 |7, >
xvV/N) is bounded by P*(||Z; — Y1||7, > 2v/N) up to some constant for
every N. Hence this proves that P*(||Z1||r, > ) = o(z72).

Now we apply the Hoffmann-Jgrgensen inequality to obtain

EISwlry S B* max|Zilz, + Gyt(u)

~

for an absolute constant v where
Gn(t) = P*([Snllzy <)

Since P*(||Z1]| 7y > ©) = o(x™2), E* max;<n||Z;| 7, — 0 in view of Problem
2.3.3 of [10]. The second term goes to zero since |[Sy||ry, = op+(1). This
completes the proof. ]
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20 SAEGUSA AND WELLNER

PROOF OF LEMMA 5.4. Define Gy = {N~V2f : f € Fn}. We apply
Lemma A.4 with Z; and Fx in Lemma A.4 replaced by dx, — FPp and Gy,
respectively. The uniform boundedness condition of Lemma A .4 is satisfied,
because E*||dx, —Pol||ry < oo for N > Npy, and this expectation is decreasing
in N > Ny. Thus, E*||Gy| 7y = E*|N,(6x, — P)|lgy — 0. Apply Lemma
A.2, and Markov’s inequality to obtain ||G7/|| 7y = op+(1).

For the IPW process with modified calibration, consider the expansion
(A.3) of (G — G%,)f. Then the first term is op+(1) by Lemma A.3. Sup-
pose that f = fy € Fy converges to zero pointwise. Since (mo(V)~! —
1)ZG e is bounded, the second term in the expansion (A.3) is op-(1) by
the dominated convergence theorem and Proposition A.1. Suppose instead
that f = fy € Fn converges to zero in Lq(FP). Then the same conclusion
that the second term in the expansion (A.3) is op« (1) follows directly. Apply
the triangle inequality to conclude HGTZ:,’mCH Fay = op~(1).

The proofs for G, G{° and G3* are similar. O

PROOF OF THEOREM 3.2. We only consider the WLE with modified cal-
ibration, 6 me. The other four cases are similar.

We evaluate the stochastic order of v N Pﬁmc{ﬁgom + VN PoééNym,ﬁN’mc.

Because ]PX,’mCEéN’mmﬁN‘mc = 01'3* (N~1/2) by assumptio'n and Poly, = 0, we
have AY4 NP;:;mcfgo,no + vV NPOEéN,mcvﬁN,mc = _G%mc(géw,mmﬁN,mc — 6907770) +

op+(1). Let 65 | 0 be arbitrary and define Fy = {Zg,n — 6'907770 210 — 6] <
SN, In—mnol| < N7P}. Then f € Fy converges to zero either pointwise point-
wise or in L1 (Fp) by Condition 3.8 as N — oo. Moreover, it follows from
Condition 3.8 that |G| 7y = op=(1) and that there exists some Ny that F
is Glivenko-Cantelli for N > Ny. Apply Lemma 5.4 to obtain |G| 7y =
op+(1) and conclude \/NIP’%mcfgom + \/NPOZéN,mc’ﬁN,mc
VNP By o [B*] + VNP B, [L*] = op+(1). These stochastic or-

9N,mcaﬁN,mc

ders and Condition 3.9 imply that

= op+(1). Similarly,

Po { ~ty.00 (081 (O me = 00) + B [ime — 1)) }
+ 0 (I0vme = 801) + O (livme = 10lI®) + PR Loy
= Po{—Lo9,m0 (65, 1 (On;me — 00) + Bog o 1N ,me — m0]) — ééN,mc,ﬁN,mc + Loy}
+ 0 (105me = 00]) + O (liinme = mol™) + Poly, + PN g
(Ad)= op-(N~1/2),

mesTIN,me
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 21

and, furthermore, that

Py {=Bagpo 1) (8 0 (O me = 60) + Bo o iinme — 10]) }

+ 0 (18xme — 0ol ) + O (Iinme = m0l|*) + B3 Boy (1]
(A5)  =op-(N"Y2),

By Condition 3.6 and a3 > 1/2, VNOp« (||iixy — nol|*) = op=(1). So by
Condition 3.7 and taking the difference of (A.4) and (A.5), we have

_Py ({éeomo — Booe [@*]} égm) (éN,mc - 90) + o (\éN,mc - 90|)
+or(N7Y2) = op(N"12) + I ({gyn, — Bogn [17])
=op(N"'/%) —op(N~1/2),

or
—Io(ON me — 60) = P (Eeomo — Boy,mo [ﬁ*]) +op-(N71/2),

It follows by the invertibility of Iy that

VN (éNymC - 90) = _\/prmclo—l <€907770 — Bog o [Q*D +op(1).
Now, we recognize that the summand inside Py is the efficient influence
function for ¢ and apply Theorem 5.3. O

PROOF OF THEOREM 3.3. Theorem 3.1 for cases for OE,”” and QE,‘Z” are

proved in [2; 3]. We only consider the WLE with modified calibration, 0 N,me-
The other four estimators for both theorems are similar.

Under stratified Bernoulli sampling, independence of sampling indicators
allows us to proceed in the same as in the proofs of Theorems 3.1 and 3.2 to
conclude v N (éﬁe&’z —00) = VNP ly+op+(1) and asymptotic linearity of
Gy in Proposition A.1. In view of (A.3), VN (9K —60y) = VNPy f+op«(1)
where 7

£ 5 E—m(V)

(A-G) f(X, Va‘f) = mfo - WQMCZO'
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22 SAEGUSA AND WELLNER

Apply the central limit theorem and compute
S " = Var(f)
£ 5 E—m(V)
=Var | B ly — mel
o (8| ity ~ Sy el

£ 5 E—m(V)
+F [Var <7T0(V) Eo 7T0(V) chﬁo

£
7T0(V) (I ch EO

%))
V)
V)

= Var(fy) + E [Var (

= ]0—1 +E |:17T0(V){(I _ ch)€0}®2:|

mo(V)
=1y 1y Zy]

PO|] I ch)£0}®2

O

PrROOF OF COROLLARY 3.2. We only consider the WLE with modified
calibration, éch. The other two cases are similar.

Let Qmelo = AZ where A = Ay Ay with Ay = Py[(my 1 (V) — 1)4Z"] and
Ay = {Py[(my H(V) — 1)Z®2]} 1. Recall that B8 = Var{(¢/mo(V))lo}. In
view of (A.6), it suffices to show that Cov{(&/mo(V))lo, (&/mo(V) — 1)AZ}
is equal to Var (({/mo(V) —1)AZ). This is true since

Cov { Wofv)go’ : ;072(‘)/()‘/)142} = { 7To(g‘/) 5705 7_TOT(F(‘);)V) Z} A
-z { i v

1 —mo(V) - } T
|22 G 7l AT = 4, A, AT
[ o) 14247

and

Var <f —mo(V) AZ) = AVar <5 —mo(V) Z> AT

mo(V) mo(V)
= AF [Var <5;£[€/()V)Z’X7 V)] AT
+AVar (ZE FWO‘X VD AT

1 —
_ap |72 l= W) g oA apaT,
mo(V)
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 23
O

PROOF OF COROLLARY 3.3. (1). We first consider stratified Bernoulli
sampling. The case for GNC was proved in [1]. We only consider the WLE
with modified calibration, 9N me- The other two cases, GNe and 9N cey Are
similar.

For Z = (ZW, ..., ZUNT with 2V = [(V € V;)Z"T, we compute A1 =
Po[(mg (V) =1)0p 2T and Ay = {Py[(my (V) — )Z®2]} 1. Note that Qnely =
A1 AyZ. The matrix Ay = [/1171, e ,ALJ] a partitioned matrix where

~ 1—mg(V)s . 1—p;-
Al,j = PO <7T0($/())€0Z(J)> = VjP0|j ( pjpj EozT> S RpXk.

and the matrix As is the block diagonal matrix the jth block of which is

s = R LW poyme _ [, p 1=Pi g e
2, = 0 (V) J40|j ;i )

Thus, the matrix A = A; A, is a partitioned matrix A = [/Nh, e ,AJ] where
i i i 7 T ®21~1
Aj = ArjAsy = Py (502 ) {Po; 277}
It follows by the definition of the ZU)’s that
_\®2 ~ L\ ®2
~ ~ ®2 N~

®2

Since
Poy (4;2)7 = ARy, 227 = Py, (0627) {Poy 2%} ™ Py (B02")
and
Py (102") AT = By, (0027) (P, 2%} Py (0027
it follows that
Pojj {(I - ng))%}@ = Pol5* — Po{ Q9 0}
Substitution of this into (3.11) gives (3.12).
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24 SAEGUSA AND WELLNER

(2). Next, we consider the second part of Corollary 3.3 concerning strat-
ified sampling without replacement. For Z = (Z (1),~. s UNT with ZEj) =
I(V € V;)ZT, we compute By = Py[(my ' (V) — )lo(Z — pz)T] and By =

{(Po[(mg (V) — 1)(Z — pu3)®?]} L. Note that Qecly = Bi1B2Z and py; =

(N§,1a .. 7M£J)T~ The matrix By = [Ble e ,BLJ] is a partitioned matrix
where

5 1—m(V); ) T l—pj; T
Bij=h <770(V)EO(Z(]) —uz;) | =viPy; —(Z — pzy) |-

and the matrix By is the block diagonal matrix the jth block of which is

-1

- . 1 — D -1
By = {PO [(ZD)T — uz,j]®2} = {Vjpolj y L(Z - Mz,j)®2} :
J

Thus, the matrix B = B; By is a partitioned matrix B = [Bl, e BJ} where
Bj = Bi1;By; = Py, (EO(Z - ,UZ,j)T> {Poi(Z — pzy)®2} "
It follows by the definition of ZU)’s that
Var; {(I - Qcc)go} = Varg; {570 - B(Z - Mz)}
= Var; {570 — By(Z - Mz,j)} = Var; {(I - Qf;]é))go} :
Then, since
Var; (Bj(z - Mz,j)> = B;Varg;(2)B]
= Py (go(Z - #Z,j)T) {Varg;(2)} " Py (ZO(Z - ,UZ,j)T)Ta
and
Covoyj (o, Bi(Z = 1z4)) = Poy ((Z = )" BY
= Py; (go(Z - uz,j)T) {Val"o|j(Z)}_1 P (EO(Z - MZ,j)T)Ta
it follows that
Varg|; {(1 - ng))go} = Varg); (%) — Varg; {QY) o }.
Substitution of this last identity into (3.8) gives (3.13). O
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SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 25
Now we give the proof of Theorem 4.1.

PROOF OF THEOREM 4.1. We only consider the WLE with modified cal-
ibration. Proofs for the other four estimators are similar. Our proof closely
follows the consistency proof for the MLE for complete data in [8].

Because of the assumption on 7, we restrict our attention to the in-
terval [0,7]. For a bounded function h € Ly(A), define a perturbation
AAN met = (L4+th)dA N me of AN me. The weighted log likelihood with modi-
fied calibration, P ¢y », evaluated at (éMmc, A N.me,t) viewed as a function
of ¢t is maximal at ¢ = 0 by the definition of the WLE with modified cali-
bration. Thus, differentiating at ¢ = 0 yields P;{}mCBéN’mC, AN,mch =0, or

PUCAR(Y) = PLmCelNmeX / hdA N e
0.Y]

- / P {eomeX Iy } (5)AAN nels).
Let MN,O(S) = P%mceeﬁvchI(Y > s). Replacing h in the above display by
h/Mpy o yields
Anmeh = / _Nls)_prme {eeﬁvchI(Y > s)} AR mels) = Prme ST
Mno(s) My o(Y)

Similar reasoning via PyBoh = 0 leads to Agh = PyAh(Y)/Mo(Y). Let
Axh = P AWY)/My(Y). Since P(T > 7) > 0 and P(C = 1) > 0, we
have for s < 7 that My(s) > My(7) > 0. The function (y,d) — 0h(y)/Mo(y)
is bounded, and hence {dh(y)/My(y) : h € H} is Glivenko-Cantelli by the
Glivenko-Cantelli preservation theorem [9] and the fact that H is Glivenko-
Cantelli. Thus, [|[An|lx —p+ || Pag.ao ARY)/Mo(Y)|l2 = ||Aollz. Moreover,
since Anme{Yi} = Anmedy, = N1 &/ man (Vi) (Ai/Mpo(Y;)), and simi-
larly An{Yi} = N1(&/may (V) (A /Mo(Y:)), we have A me{¥i} /A {Yi} =
Mo(Y;)/ My o(Y5).

Since the weighted log likelihood with modified calibration evaluated at
(éN,mc, /A\ch) is larger than at (6o, ]\N), we have

0 < PY™(

ON meANme EGOJ\N)
= (Byme — 00)TPEAX — P PhmeX Ry (V) — B X Ry (V)
+ PR Alog{Mo(Y)/My,(Y)}.
We take the limit of this on N. Because © is compact, there is a sub-
sequence of {fy} that converges to 0 € O. It follows by Theorem 5.1
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26 SAEGUSA AND WELLNER

that along the convergent subsequence of {Ox}, (G5 — 00) T PN CAX —ps
(0o — 00)T Ppy.ny AX. )

For the second term, note that Ax(7) is uniformly bounded, because
¢?" X is uniformly bounded in # and X, and /A\N(T)IP’?\;mceé%XI(Y =71) <
P%mceaﬁvch An(Y) = PL™A < 1. Here we use the weighted likelihood
equation with h = 1 above. Since {Ay .} and {Ay} are both subsets of
the class of monotone, bounded cadlag functions that is Glivenko-Cantelli,
it follows by the Glivenko-Cantelli preservation theorem [9] and Theorem
5.1 that

PT (P NmeX Ry (V) — % XAy (V)}
(A.7) = Py ao ("> AN (Y) — %X AN (Y)} + 0p-(1),
along a subsequence of 0 N,me-

For the third term, note that {My o} is a subset of the class of monotone,
bounded, cadlag functions, which is Glivenko-Cantelli, and hence so is it.

Note also that My (1) = P%mceéﬁvchI(Y = 7) is bounded away from zero
with probability tending to 1 since P(T'> 1) > 0 and P(C' = 1) > 0. Since
Mno(t) > Mpyo(7) for t < 7, the set {dlog(Mo(y)/Mn,o(y))} is Glivenko-
Cantelli by the Glivenko-Cantelli preservation theorem again so that

PR Alog(Mo(Y)/Mno(Y))
(A.8) = Py r,Alog(Mo(Y)/Mn(Y)) + op=(1)
by Theorem 5.1.

The set {dh(y)/Mno(y) : h € H} is Glivenko-Cantelli by the Glivenko-
Cantelli preservation theorem [9] so that || Ay ||l% = || Pag.ao AMY)/ M o(Y)]|l2+
op+(1) by Theorem 5.1. Since we have by Theorem 5.1 that
M o(s) = P PRmX [(V > 5) = pe Poypo€® X I(Y > 5) = Moo 0(s)
uniformly in s, it follows by the dominated convergence theorem that

IAnllse = [ PoaeAR(Y)/Myo(Y )l + 0p-(1)
=P [Py 0o ARY) /Moo o(Y) I3 = [[Acoll9¢;
along a subsequence of Oy. R 3

Apply the dominated convergence theorem to replace Ay e, An, and

MN,O by Aso, Ag and Mo in (A.7) and (A.8) and conclude
0 < (B0 — 00) Poy s AX — Pyyn,g <69°T<>XAOO(Y) — e XAO(Y)>
(A.9) + Ppy pgAlog{My(Y)/Ms(Y)}.

imsart-aos ver. 2011/05/20 file: wlesupp.tex date: August 15, 2012



SUPPLEMENT: WEIGHTED LIKELIHOOD; TWO-PHASE SAMPLING 27

Since My/Ms = dAso/dNg, (A.9) is in fact minus one times the Kullback-
Leibler divergence

K (Poo,ros Pooo,ros) = Pog, 00 108 {P09, 00 /Pboc Ao } = 0,

for the complete data model. Thus, (A.9) is exactly zero. But since K (Py, A,, Po.A)
is strictly positive unless (6,A) = (6p, Ag) by the identifiability of parame-
ters, we must have (0o, Aso) = (6o, Ag). This is true for any subsequence of
éMmc, and the result follows. ]

We give the characterization of WLE’s for the Cox model with interval
censoring. Let n = Zf\; 1 & be the number of observations sampled at phase
II. Let Y{y),...,Y(,) be the order statistics of Y1,...,Yy with § = 1,i =
L,...,N. Let Ay, X¢), Upyy, and §(;) correspond to Y(;); for example, if
Y5 = Y, then Ay = Aj. Let 7y = m0(V(;)). Because only fully observed
subjects contribute to the weighted likelihood, AN(YZ) for subjects with
& = 0 does not matter in the maximization. In fact, AN(S/(Z)) = AN(Y@_I))
for subjects with £; = 0 for ¢ > 2. The WLE Ay of A corresponds to
T = (f\(l), e ,A(N)) that maximizes

¢(0,z) = Zn: ! [log {1 — exp (—eeTX“)) wz} — (1= Ap)e’" Yoz,

=1 (@)

at éN subject to 0 < x7 < -+ < x,. The monotonicity constraint on z
is imposed to guarantee that an estimate of A is nondecreasing. Note that
¢(0, z) is concave in z.

Without loss of generality, we can assume that Ay =1 and A,y = 0.
If A(l) =0 or A(n) = 1, then JA\NO/(I)) =0or [\N(Yv(n)) = 00, so that the
first or the last summand in ¢ is zero. Hence ignoring these terms does not
change the maximization of the weighted likelihood.

LEMMA A5, Assume that Ay = 1 and Ay, = 0. Then the WLE
(On, M) satisfies

& o A |
Z QQ(YV(]%A(])?X(]),HNaAN)eXp(elj\;X(j)) < 07 fOTZ = 17 s Ny

§>i ()
QYA X;0n, Ax) exp(0F X)An(Y) = 0.

Moreover, the corresponding (in)equalities holds for the WLE’s with esti-
mated weights and (modified and centered) calibration.
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PROOF. The first equation is simply the weighted score equation for 6.

For the second inequality, let 1; be the vector which has 1’s as its last j
components and zeros as its first n—j components. Let Ay = (Ay (Yii)))ies-
For € > 0, the vector A N €l satisfies the monotonicity constraint. It follows
by the definition of the WLE that

d(On, Ay + €lj) — P(On, Ay)

0 > lim
€l0 €
n _eINEG) Ay (v ) 40T X
1 ¢ N (YY) +H08n X5y o ' '
=2 — |26 T — (1= AN X | I(i > j).
i=1 (i) 1—¢ € N (1>AN(Y(i))

Relabeling 7 and j gives the desired result. Note that the assumption that
Ay =1and A, = 0 guarantees that the above derivative is finite.
The last equality follows for the same reason that

lim d(On, Ay +hAy) — ¢(On, Ay)
h—0 h

=0.

Note that adding terms associated with & = 0 does not contribute to the
sum in the above derivative.
For the other four estimators, change weights appropriately. O
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