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Computational issues of GC

In the theoretical definition of GC, one assumes that the data length of time
series and the regression order in autoregressive processes are both infinite [1].
In practice, however, the measured time series in experiment has only finite
length. With finite-length data, some important issues have to be addressed.
The first issue is how to choose a correct regression order since the total length
of data is finite. It has been shown that an improper choice of regression order
can cause large errors in linear regression models [2, 3]. The second issue is
to determine whether the causal influence between time series is statistically
significant or arises from statistical error introduced by finite-length data and
finite regression orders in the numerical computation of GC.

In the following, we discuss the methodology to address the above issues
along with the numerical algorithm of evaluating GC for a given set of empirical
time series {xi(t)}Ni=1. Let Xt = [x̂1(t), x̂2(t), · · · , x̂N (t)]T be an N dimensional
time series with L being the length for simultaneously recorded {xi(t)}Ni=1. Here,
the notation of superscript T in Xt represents matrix transposition and x̂i(t) =
xi(t) − E[xi(t)] has a zero mean. Assuming that Xt is stationary, for a given
regression order m̂, we can construct the following regressive equations [2, 3]

Xt +A1Xt−1 + · · ·+Am̂Xt−m̂ = E(m̂)(t), (1)

where Ai are N × N regression-coefficient matrices (i = 1, 2, · · · , m̂) and

E(m̂)(t) = [ǫ
(m̂)
1 (t), ǫ

(m̂)
2 (t), · · · , ǫ(m̂)

N (t)]T is a vector of residuals which have
zero mean. The covariance matrix of E(m̂)(t), denoted by Σm̂, is given by

Σm̂ = 〈E(m̂)(t)E
T
(m̂)(t)〉. (2)

Note that the correlation between E(m̂)(t) and Xt−k (for any 1 ≤ k ≤ m̂) is
zero. Therefore, by multiplying XT

t−k (k = 1, 2, · · · , m̂) on both sides of Eqs.
(1) and then taking expectations, we can obtain the Yule-Walker equations as
follows [2, 3]

C−k +A1C−k+1 + · · ·+Am̂C−k+m̂ = 0, 1 ≤ k ≤ m̂, (3)

where Cτ = 〈XtX
T
t+τ 〉 is the covariance matrix of Xt and C−τ = CT

τ for τ ≥ 0.
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To obtain the regression coefficients A1, A2, · · · , Am̂, we rewrite Eqs. (3) as
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For simplicity, we denote the symmetrical coefficient matrix of linear equations
(4) by

Ωm̂×m̂ = [Ωij ]m̂×m̂, where Ωij = Ci−j , (5)

the regression coefficient matrices by

Λm̂ = [A1,A2, · · · ,Am̂]T , (6)

and the right hand side of Eqs. (4) by

Bm̂ = −[CT
1 ,C

T
2 , · · · ,CT

m̂]T . (7)

Equations (4) then becomes Ωm̂×m̂Λm̂ = Bm̂. Note that (i) Eqs. (4) contain a
total number of m̂N2 unknown regression coefficients in Λm̂ and we have exactly
the same number of linear equations; (ii) the coefficient matrix Ωm̂×m̂ in linear
equations (4), in general, should be positive definite when the data length L is
infinite.

Construction of positive definite matrix Ω
m̂×m̂

As is well known, the properties of the coefficient matrix, e.g., symmetric and
positive definiteness, play an important role in determining the robustness of
numerical solutions to linear equations [4, 5]. Mathematically, the coefficient
matrix Ωm̂×m̂ in Eqs. (4) is positive definite when the length of time series
L is infinite. In numerical computations, however, if we first compute each
covariance matrix function Ck, k = 0, 1, · · · , m̂ − 1, and then construct the
coefficient matrix Ωm̂×m̂ as in Eqs. (4) and (5), due to statistical effects caused
by finite data length, Ωm̂×m̂ is not guaranteed to be positive definite. Therefore,
when solving linear equations (4) to obtain the regression coefficients Λm̂, one
may obtain an incorrect inference of the causal connectivities between neurons.

To numerically construct Ωm̂×m̂ that preserves the property of positive def-
initeness, we define Yt = [XT

t+m̂−1, X
T
t+m̂−2, · · · , XT

t ]
T , which is an m̂N di-

mensional vector. The coefficient matrix Ωm̂×m̂ can be obtained by

Ωm̂×m̂ = 〈YtY
T
t 〉 = 1

L− m̂+ 1

L−m̂+1
∑

t=1

YtY
T
t . (8)

In our cases, numerical simulations have shown that the coefficient matrix
Ωm̂×m̂ as constructed in Eqs. (8) is always positive definite when the length of
time series L is finite (L > m̂N). After this, Eqs. (4) can be solved by many
robust numerical algorithms such as the conjugate gradient method, Cholesky
decomposition method or successive relaxation method [4, 5, 6].
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Regression order

To obtain a good estimate of GC, it is important to determine a correct regres-
sion order m in linear regression models [7]. Some criteria have been proposed
based on the information theory [8, 9]. One is the Akaike Information Criterion
(AIC), which is defined by minimizing the AIC function with respect to m̂. The
AIC function is defined as

AIC(m̂) = ln[det(Σm̂)] +
2m̂N2

L
, (9)

where det(Σm̂) is the determinant of the covariance matrix Σm̂ as defined in
Eqs. (2). The other criterion is the Bayesian Information Criterion (BIC) and
the regression order m̂ is chosen by minimizing the BIC function as

BIC(m̂) = ln[det(Σm̂)] +
m̂N2 lnL

L
. (10)

It has been shown that the AIC function sometimes cannot achieve a minimum
when the total number of data points L is large. However, the BIC criterion can
compensate for the large number of data points and usually performs better in
neural applications [1]. In our study, both AIC and BIC criteria have been tested
to determine the regression order m̂, and m̂ determined by the AIC criterion is
usually larger than that obtained by using the BIC criterion. However, the final
results about the inference of causal interactions between time series remain the
same for both criteria.

Statistical significance

In numerical computations, due to finite data length L and finite regression
order m, we can only obtain an estimate of GC, denoted by F̂ . Therefore, we
should perform significance tests to determine whether the calculated nonzero
F̂ is statistically significant or it arises from statistical error. Under the null
hypothesis that there is no causal influence from x2 to x1, the conventional
large-sample distribution theory can be used [10, 2, 3] to show that F̂x2→x1

is
asymptotically χ2 distributed as LF̂x2→x1

∼ χ2(m). We can obtain a threshold
for GC magnitude from x2 to x1 (similarly for the GC F̂x1→x2

) through a p-
value test [11, 2, 3]. In most of our cases, p is chosen to be 0.001 in numerical
simulations.

In addition, if we want to obtain the confidence interval for the theoretically
defined but unknown GC, denoted by F [11, 12], The statistical significance
can be similarly analyzed by using the χ2 statistic, which is asymptotically
monotonically related to the F -statistic [11, 13]. For ease of discussion, we
consider the significance test for two time series x1(t) and x2(t). However, this
test can be straightforwardly extended to the multivariate case.

Suppose Fx1→x2
and Fx2→x1

are the theoretical GC, whereas F̂x1→x2
and
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F̂x2→x1
are the estimate of GC from empirical time series, we have

LF̂x1→x2
∼ χ′2(m,LFx1→x2

),

LF̂x2→x1
∼ χ′2(m,LFx2→x1

),
(11)

where χ′2(n, λ) is a noncentral χ2 distribution with mean λ and the degree
of freedom n. In practice, a direct numerical evaluation of the noncentral χ2

distribution is usually difficult. However, there are some good approximations
[14, 15]. For instance, if x ∼ χ′2(n, λ), then

√

x− (n− 1)/3 ∼ N(
√

λ+ (2n+ 1)/3, 1) for x ≥ (n− 1)/3.

Using these approximations, one can obtain an approximate 95 percent confi-
dence interval for Fx1→x2

and Fx2→x1
as

φl(F̂x1→x2
,m, L) <Fx1→x2

< φr(F̂x1→x2
,m, L),

φl(F̂x2→x1
,m, L) <Fx2→x1

< φr(F̂x2→x1
,m, L),

where the functions φl(·) and φr(·) are defined as

φl(x,m,L) = (

√

x− m− 1

3L
− 1.96√

L
)2 − 2m+ 1

3L
,

φr(x,m,L) = (

√

x− m− 1

3L
+

1.96√
L
)2 − 2m+ 1

3L
.

Minimal data length for GC reconstruction

Here, we discuss the minimal data length that is needed for a successful GC
reconstruction. As an illustration of this issue, we study the two-neuron net-
work as shown in Fig. 1A. From the conventional large-sample distribution
theory [2, 3, 10], the numerical computed GC values F̂x1→x2

and F̂x2→x1
are

asymptotically χ2 distributed as shown in Eq. (11) and we record their proba-
bility distribution function as ρ1(x) (with causal influence) and ρ0(x) (without
causal influence), respectively. As discussed in the main text, we can determine
a GC threshold FT by performing the p-value test. Therefore, the probability
of correct topology reconstruction for this network is

P [correct] =

∫ FT

0

ρ0(x)dx

∫ +∞

FT

ρ1(x)dx (12)

Note that, the distributions ρ1(x) and ρ0(x) depend on the theoretical GC values
Fx1→x2

and Fx2→x1
, respectively. As discussed above, Fx1→x2

and Fx2→x1
are

theoretically defined using infinite length of time series. Therefore, we compute
GC values by using sufficiently long time series (∼ 200mins) until our numerical
results are convergent and can well approximate those theoretical GC values.
For a given level of correctness P [correct] (e.g., 90%), Eq. (12) is an implicit
function of time length [See Eq. (11)] and we can solve it using an iterative
method to obtain the minimal data length Lmin for the GC reconstruction as
shown in Fig. S8.
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