Supplementary Information

Supplementary Figures

Supplementary Figure 1. Relationship between net growth rates of the crustose coralline alga (CCA) *Porolithon onkodes* and dolomite abundance in bulk skeletons under the high temperature treatment (30°C).

Dolomite abundance calculated accordingly to (**a**) asymmetry method and (**b**) Rietica method (weight %). CCA samples were exposed to three levels of pCO₂ (Pre = preindustrial, Control = ambient, and High) for a period of two months in Lizard Island, GBR. Net growth rates (positive indicate calcification and negative skeletal dissolution) were normalised to the initial weight of each fragment and presented as percentage of change per 30 days. Regression analyses show positive relation between dissolution and dolomite abundance (a, $r^2 = 0.48$; P = 0.039; n=9 and b, $r^2 = 0.51$; P = 0.031; n=9). A quadratic regression line is included as it seems to better represent the trends in the data.

Supplementary Figure 2. Asymmetry and peak position.

Application of asymmetry calculations for High CO₂ and 30°C (red) (GD114 in Fig. 4 and 5 of main MS), and pre-industrial CO₂ and 28°C (blue) (GD2 in Fig. 4 of main MS). The peak position mol%'s for both are comparable 17.45 and 17.6, however once the asymmetry is incorporated then the visible difference in curve asymmetry over the Higher Mg-calcite (H-HMC) and dolomite (D) range is reflected in the higher mol% MgCO₃ (22.6) calculated for the High CO₂/30°C than for the pre-industrial/28° sample (20.2). For the asymmetry % in Fig. 2a (main MS) the peak mol% has been subtracted from the asymmetry mol% to give the net change due to asymmetry.

Supplementary Figure 3. Subtraction using a symmetrical curve to identify and quantify dolomite phases.

(a) Ambient control samples. (b) High CO_2 high temperature 30°C samples. Scans for each treatment were added and only the average is shown here. (c) Peak positions for refined mineral phases. Examples of scans overlaid for context.

Supplementary Tables

Treatment	Т	pH-	pCO ₂	TA	TC	HCO ⁻ ₃	CO_3^{2-}	Ωcal	Ωarag	ΩΗΜc	Ωdol-
	°C	SW	µatm	μmol	μmol	μmol	μmol			(16.4)	diso
				kg⁻¹	kg⁻¹	kg⁻¹	kg ⁻¹				
Pre-	28	8.15	296	2398	1978	1675	296	7.14	4.76	1.73	151.82
industrial		(0.06)	(57)	(18)	(57)	(84)	(30)	(0.71)	(0.48)	(0.17)	(30.49)
(8.15)	30	8.15	293	2402	1960	1642	311	7.54	5.06	1.88	188.41
		(0.06)	(57)	(17)	(55)	(84)	(31)	(0.75)	(0.50)	(0.19)	(38)
Ambient -	28	8.09	357	2401	2029	1754	265	6.40	4.26	1.56	121.25
Control		(0.03)	(35)	(17)	(31)	(41)	(13)	(0.31)	(0.21)	(0.08)	(11.49)
(8.09)	30	8.09	355	2406	2012	1724	280	6.78	4.55	1.69	151.22
		(0.03)	(33)	(27)	(32)	(40)	(14)	(0.35)	(0.23)	(0.09)	(15.12)
High	28	7.63	1233	2415	2285	2139	114	2.75	1.83	0.67	22.38
(7.63)		(0.02)	(60)	(21)	(17)	(15)	(5)	(0.13)	(0.09)	(0.03)	(2.074)
	30	7.64	1225	2420	2276	2123	123	2.97	1.99	0.74	29.07
		(0.02)	(77)	(35)	(37)	(37)	(5)	(0.12)	(0.08)	(0.03)	(2.281)

Supplementary Table 1. Carbonate chemistry parameters.

T: temperature; pH: pH seawater scale; pCO₂: carbon dioxide partial pressure; TA: total alkalinity; TC: total carbon; HCO₃: bicarbonate; CO₃: carbonate; Ω cal: saturation state of seawater with respect to calcite; Ω arag: aragonite saturation state; Ω HMc: High-Magnesium calcite saturation state (for 16.4 %mol MgCO₃). Ω dol-diso: disordered dolomite saturation state. Values are means of 6 samples (standard deviation).

Supplementary Table 2. Analyses of variance (ANOVA) to test for the effects of

CO2.	temperature and	tissue lav	er on <i>Por</i>	olithon o	nkodes	mineralogy.
$\mathbf{U}\mathbf{U}_{2}$	temperature and	ubbuc iuy			moucs	miner aregy.

Source of variation	Df	MS	F	Р	Conclusion (Tukey test)
Asymmetry (dolomite)					
CO ₂	2	0.32	1.45	SL = 0.131;	
				BU & 28 = 0.817	
				BU & 30 < 0.001	High > Pre = Cont
Temperature (Temp)	1	1.46	6.72	SL = 0.139	-
-				BU & $HCO_2 = 0.002$	30 > 28
Layer	1	47.81	219.46	< 0.001	BU > SL
CO ₂ *Temp	2	1.85	8.50	0.002	8
CO ₂ *Layer	2	1.94	8.90	0.001	8
Temp * Layer	1	0.09	0.40	0.532	ns
CO ₂ *Temp * Layer	2	1.7	7.80	0.002	8
Error	24	0.22			
Aragonite (%, transf.)					
CO_2	2	0.47	16.02	30 = 0.568; 28=0.001	Pre > Cont = High
Temperature	1	0.59	19.90	Pre = 0.001	28 > 30
Layer	1	0.78	26.57	< 0.001	BU > SL
CO ₂ *Temp	2	0.21	7.04	0.004	S
CO ₂ *Layer	2	0.03	1.0	0.383	ns
Temp * Layer	1	< 0.01	0.05	0.830	ns
CO ₂ *Temp * Layer	2	0.01	0.42	0.664	ns
Error	24	0.03			
$MgCO_3$					
CO_2	2	0.43	2.29	0.123	ns
Temperature	1	0.63	3.37	SL=0.004; BU=0.34	30 > 28
Layer	1	13.79	73.65	< 0.001	BU > SL
CO ₂ *Temp	2	0.10	0.52	0.604	ns
CO ₂ *Layer	2	0.30	1.59	0.226	ns
Temp * Layer	1	1.96	10.47	0.004	S
CO ₂ *Temp * Layer	2	0.22	1.19	0.322	ns
Error	24	0.19			

SL: surface layer; BU: Bulk tissue. HCO₂; High CO₂; Pre: pre-industrial. Df: degrees of

freedom, MS: mean square, F: F-ratio.

Supplementary Table 3. Mineral quantities (weight %, normalized to aragonite) in

bulk skeletons of Porolithon onkodes. Data presented for each CO2 and temperature

treatment.

CO_2	T°C	Sample			Mineral (weight %)		
		-	Mg-C	H-HMC	Dol 1	Dol 2	Dol 3	Total	BD
								Dol	
Pre	28	GD25	88.5	4.3	7.2	0.0	0.0	7.2	0.0
Pre	28	GD69	89.4	3.1	6.0	0.8	0.6	7.4	0.0
Pre	28	GD2	88.5	4.3	7.2	0.0	0.0	7.2	0.0
		average	88.8	3.9	6.8	0.3	0.2	7.3	0.0
Pre	30	GD101	86.9	4.6	4.2	3.1	1.3	8.6	0.0
Pre	30	GD40	82.2	6.3	3.4	3.2	2.8	9.4	2.5
Pre	30	GD18	78.0	15.2	6.9	0.0	0.0	6.9	0.0
		average	82.3	8.7	4.8	2.1	1.3	8.2	0.8
Cont	28	GD62	65.5	23.0	11.5	0.0	0.0	11.5	0.0
Cont	28	GD99	83.5	12.5	4.0	0.0	0.0	4	0.0
Cont	28	GD49	81.8	6.3	3.2	2.3	2.6	8.1	3.9
		average	76.9	13.9	6.2	0.8	0.9	7.9	1.3
Cont	30	GD24	83.5	11.9	4.5	0.0	0.0	4.5	0.0
Cont	30	GD36	79.5	14.2	6.3	0.0	0.0	6.3	0.0
Cont	30	GD10	78.4	5.9	3.0	1.9	3.5	8.4	7.3
		average	80.5	10.7	4.6	0.6	1.2	6.4	2.4
High	28	GD37	83.1	13.0	3.9	0.0	0.0	3.9	0.0
High	28	GD81	84.8	12.2	3.0	0.0	0.0	3	0.0
High	28	GD7	81.5	13.8	4.7	0.0	0.0	4.7	0.0
		average	83.1	13.0	3.9	0.0	0.0	3.9	0.0
High	30	GD48	79.5	6.1	4.0	3.3	3.9	11.2	3.4
High	30	GD71	80.3	7.5	3.3	3.8	3.1	10.2	2.2
High	30	GD114	76.8	7.0	4.9	4.4	4.1	13.4	2.9
		average	78.8	6.9	4.0	3.8	3.7	11.5	2.8

Mg-C: Magnesium calcite; H-HMC: Higher high magnesium calcite. Dol: dolomite.

BD: beyond dolomite.

Supplementary Table 4. Mineral quantities (weight %) in bulk skeletons of

Porolithon onkodes. Data presented for each CO₂ and temperature treatment and

CO ₂	T ^o C	Sample		Mineral (weight %)								
			Arag-	Mg-C	H-HMC	Dol 1	Dol 2	Dol 3	Total	BD		
			Sub						Dol			
Pre	28	GD25	7.5	81.8	4.0	6.7	0.0	0.0	6.7	0.0		
Pre	28	GD69	8.0	82.3	2.8	5.5	0.7	0.5	6.7	0.0		
Pre	28	GD2	4.4	84.5	4.1	6.9	0.0	0.0	6.9	0.0		
		average	6.7	82.9	3.7	6.4	0.2	0.2	6.8	0.0		
Pre	30	GD101	1.4	85.6	4.5	4.1	3.1	1.3	8.5	0.0		
Pre	30	GD40	1.5	80.9	6.2	3.3	3.1	2.7	9.1	2.4		
Pre	30	GD18	1.4	76.9	15.0	6.8	0.0	0.0	6.8	0.0		
		average	1.4	81.1	8.5	4.7	2.1	1.3	8.1	0.8		
Cont	28	GD62	2.2	64.1	22.5	11.2	0.0	0.0	11.2	0.0		
Cont	28	GD99	3.4	80.7	12.1	3.8	0.0	0.0	3.8	0.0		
Cont	28	GD49	3.9	78.6	6.0	3.1	2.2	2.5	7.8	3.7		
		average	3.1	74.5	13.5	6.1	0.7	0.8	7.6	1.2		
Cont	30	GD24	1.8	82.0	11.7	4.5	0.0	0.0	4.5	0.0		
Cont	30	GD36	2.7	77.4	13.8	6.1	0.0	0.0	6.1	0.0		
Cont	30	GD10	0.0	78.4	5.9	3.0	1.9	3.5	8.4	7.3		
		average	1.5	79.3	10.5	4.5	0.6	1.2	6.3	2.4		
High	28	GD37	0.0	83.1	13.0	3.9	0.0	0.0	3.9	0.0		
High	28	GD81	1.5	83.5	12.0	3.0	0.0	0.0	3	0.0		
High	28	GD7	1.6	80.2	13.5	4.7	0.0	0.0	4.7	0.0		
		average	1.0	82.3	12.9	3.8	0.0	0.0	3.8	0.0		
High	30	GD48	0.0	79.5	6.1	4.0	3.3	3.9	11.2	3.4		
High	30	GD71	1.5	79.1	7.4	3.2	3.7	3.0	9.9	2.1		
High	30	GD114	0.9	76.1	6.9	4.8	4.3	4.0	13.1	2.9		
		average	0.8	78.2	6.8	4.0	3.8	3.6	11.4	2.8		

includes aragonite (Arag) from subtraction method.

Mg-C: Magnesium calcite; H-HMC: Higher magnesium calcite. Dol: dolomite. BD:

beyond dolomite.

Supplementary Table 5. Analyses of variance (ANOVA) to test for the effects of CO₂ and temperature on the relative mineral quantities in bulk skeletons of *Porolithon onkodes*. Data from Supplementary Table 4.

Source of variation	Df	MS	F	Р	Conclusion (Tukey test)
Dolomite (%)					
CO_2	2	0.71	0.191	Within $28^{\circ}C = 0.172$	ns
				Within $30^{\circ}C = 0.023$	High > Cont
Temperature (Temp)	1	29.13	7.83	Within $Pre = 0.119$	ns
				Within $Cont = 0.628$	ns
				Within High $= 0.002$	30 > 28
CO ₂ *Temp	2	30.60	8.23	0.006	S
Error	12	3.72			
Aragonite (%, transf.)					
CO_2	2	0.22	6.28	0.014	Pre > High
Temperature	1	0.33	9.25	0.010	28 > 30
CO ₂ *Temp	2	0.07	2.07	0.168	ns
Error	12	0.04			
$MgCO_3$					
CO_2	2	40.86	2.13	0.162	ns
Temperature	1	0.47	0.02	0.879	ns
CO ₂ *Temp	2	31.50	1.64	0.235	ns
Error	12	19.21			

HCO₂; Pre: pre-industrial CO₂; Cont: control CO₂; High: High CO₂.

	Unit	cell param	eters	Mol % MgCO ₃			
	a	С	d-space	Ordered	Disordered		
Mg-C	4.91906	16.7439	2.986	17.5	Not applicable		
H-HMC - lower	4.87711	16.5222	2.953	28.5	~32		
H-HMC - upper	4.869	16.44	2.9428	32	~41 (range ~35.6-48.5)		
Dolomite 1	4.842	16.32	2.9247	38	~48 (range ~40-55)		
Dolomite 2	4.826	16.16	2.9045	44.8	>~54		
Dolomite 3	4.81	16.01	2.8863	50.9	no value available		
Beyond Dolomite	4.7482	15.914	2.8587	60.1	no value available		

Supplementary Table 6. Unit cell parameters after refinement in Rietica.

Disordered compositions estimated from Zhang et al. ³⁵.

Supplementary Table 7. Calibration using magnesite composition for Dolomite 3 and beyond dolomite. This is the closest calibration for the samples containing an apparent magnesite shoulder (and magnesite confirmed by SEM), however appears to result in an overestimation of Mg for the High CO₂, 30°C samples. Overall average difference (diff) = 0.38%.

CO ₂	T°C	Sample				mol%	MgCO ₃				
			17.5%	30.0%	47.0%	55.0%	95.0%	95.0%			
			HMC	H-HMC	Dol1	Dol2	Dol3	BD	calc	ICP	diff
									Mg	Mg	
Pre	28	GD25	14.3	1.2	3.1	0.0	0.0	0.0	18.7	20.3	-1.6
Pre	28	GD69	14.4	0.9	2.6	0.4	0.5	0.0	18.8	20.2	-1.4
Pre	28	GD2	14.8	1.2	3.3	0.0	0.0	0.0	19.3	18.7	0.6
Pre	30	GD101	15.0	1.3	1.9	1.7	1.2	0.0	21.2	19.8	1.4
Pre	30	GD40	14.2	1.8	1.6	1.7	2.6	2.3	24.2	25.1	-0.9
Pre	30	GD18	13.5	4.5	3.2	0.0	0.0	0.0	21.1	18.0	3.1
Cont	28	GD62	11.2	6.7	5.3	0.0	0.0	0.0	23.2	22.4	0.8
Cont	28	GD99	14.1	3.6	1.8	0.0	0.0	0.0	19.6	17.1	2.5
Cont	28	GD49	13.8	1.8	1.5	1.2	2.4	3.5	24.2	27.0	-2.8
Cont	30	GD24	14.4	3.5	2.1	0.0	0.0	0.0	20.0	18.9	1.1
Cont	30	GD36	13.5	4.1	2.9	0.0	0.0	0.0	20.5	20.0	0.5
Cont	30	GD10	13.7	1.8	1.4	1.0	3.3	7.0	28.2	29.8	-1.6
High	28	GD37	14.5	3.9	1.8	0.0	0.0	0.0	20.3	21.3	-1.0
High	28	GD81	subsam	ple not run	for ICP-A	AES					
High	28	GD7	14.0	4.1	2.2	0.0	0.0	0.0	20.3	18.8	1.5
High	30	GD48	13.9	1.8	1.9	1.8	3.7	3.2	26.3	23.7	2.6
High	30	GD71	13.8	2.2	1.5	2.1	2.9	2.0	24.5	23.4	1.1
High	30	GD114	13.3	2.1	2.3	2.4	3.8	2.8	26.6	26.0	0.6

HMC: High magnesium calcite; H-HMC: Higher magnesium calcite. Dol: dolomite. BD: beyond dolomite. Calc Mg: calculated bulk Mg as per Rietica quantification. ICP Mg: bulk Mg concentration as per Inductively Coupled Plasma – Atomic Emission Spectroscopy.

Supplementary Table 8. Calibration using 65 mol% for dolomite 3 with magnesite

samples excluded. The average difference (diff) is 0.3 mol%. Overall average

difference = 0.26%.

CO_2	T°C	Sample		mol% MgCO3								
			17.5%	27.0%	47.0%	55.0%	65.0%	95.0%				
			HMC	H-HMC	Dol1	Dol2	Dol3	BD	calc	ICP	diff	
									Mg	Mg		
Pre	28	GD25	14.3	1.1	3.1	0.0	0.0	0.0	18.5	20.3	-1.8	
Pre	28	GD69	14.4	0.8	2.6	0.4	0.3	0.0	18.5	20.2	-1.7	
Pre	28	GD2	14.8	1.1	3.3	0.0	0.0	0.0	19.2	18.7	0.5	
Pre	30	GD101	15.0	1.2	1.9	1.7	0.8	0.0	20.6	19.8	0.8	
Pre	30	GD40	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	
Pre	30	GD18	13.5	4.0	3.2	0.0	0.0	0.0	20.7	18.0	2.7	
Cont	28	GD62	11.2	6.1	5.3	0.0	0.0	0.0	22.6	22.4	0.2	
Cont	28	GD99	14.1	3.3	1.8	0.0	0.0	0.0	19.2	17.1	2.1	
Cont	28	GD49	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	
Cont	30	GD24	14.4	3.2	2.1	0.0	0.0	0.0	19.6	18.9	0.7	
Cont	30	GD36	13.5	3.7	2.9	0.0	0.0	0.0	20.1	20.0	0.1	
Cont	30	GD10	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	n/d	
High	28	GD37	14.5	3.5	1.8	0.0	0.0	0.0	19.9	21.3	-1.4	
High	28	GD81	subsam	ple not run	for ICP-A	AES						
High	28	GD7	14.0	3.7	2.2	0.0	0.0	0.0	19.9	18.8	1.1	
High	30	GD48	13.9	1.6	1.9	1.8	2.5	3.2	24.9	23.7	1.2	
High	30	GD71	13.8	2.0	1.5	2.1	2.0	2.0	23.4	23.4	0.0	
High	30	GD114	13.3	1.9	2.3	2.4	2.6	2.8	25.2	26.0	-0.8	

n/d = no data. HMC: High magnesium calcite; H-HMC: Higher magnesium calcite. Dol: dolomite. BD: beyond dolomite. Calc Mg: calculated bulk Mg as per Rietica quantification. ICP Mg: bulk Mg concentration as per Inductively Coupled Plasma – Atomic Emission Spectroscopy.