Supporting Information for: Vibrational Excitations and Low Energy Electronic Structure of Epoxidedecorated Graphene

E.C. Mattson^{1*}, J.E. Johns², K. Pande¹, R.A. Bosch³, S. Cui⁴, M. Gajdardziska-Josifovska¹, M. Weinert¹, J.H. Chen⁴, M.C. Hersam^{5,6} and C.J. Hirschmugl¹

¹University of Wisconsin-Milwaukee, Physics Dept., Milwaukee, WI 53211

²University of Minnesota, Chemistry Dept, Minneapolis, MN 55455

³Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589

⁴University of Wisconsin-Milwaukee, Mechanical Engineering Dept., Milwaukee, WI 53211

⁵Northwestern University, Chemistry Dept., Evanston, IL 60208

⁶Northwestern University, Materials Science and Engineering Dept., Evanston, IL 60208

Figure S1: Reflection spectra of EG from the C-face referenced to that of the C-face of SiC. Note that the frequency-dependence observed in Figs. 1A and 2A that was associated with the buffer layer is absent.

Figure S2: IR absorption spectra of thermally-reduced GO. The spectrum was collected without polarization in the transmission geometry. As with the chemically reduced GO, there are two clearly observable bands superimposed in the 1000-1300 cm-1 region. The sample was prepared by annealing a multilayer GO film in vacuum (10^{-7} torr) up to 750° C as described elsewhere.¹

References

(1). Mattson, E. C.; Pu, H. H.; Cui, S. M.; Schofield, M. A.; Rhim, S.; Lu, G. H.; Nasse, M. J.; Ruoff, R. S.; Weinert, M.; Gajdardziska-Josifovska, M., et al. Evidence of Nanocrystalline Semiconducting Graphene Monoxide during Thermal Reduction of Graphene Oxide in Vacuum. *ACS Nano* **2011**, *5*, 9710-9717.