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Derivation of Young’s moduli Eg and Ep

Under the assumption of linear elasticity, the constitutive equations for a material are known as the

generalized form of Hooke’s law, namely

σij = Cijkmεkm (1)

where σij is the stress tensor, εkm the strain tensor, and Cijkm is the fourth-order stiffness tensor.

Although Cijkm contains 81 constants, due to various symmetries not all of them are fully independent.

Two additional properties of peptidoglycan further simplify the constitutive equations. First, because

peptidoglycan is very thin compared to the size of a bacterium, plane stress conditions are assumed,

i.e., σzx = σyz = σzz = 0. Second, peptidoglycan is orthotropic, i.e., it possesses two orthogonal planes

of elastic symmetry [1]. Under these assumptions, Eq. 1, specifically its inverse, takes the form
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where the constants Cij are now expressed in terms of traditional physical quantities, the Young’s

moduli Ex,y, shear modulus Gxy and Poisson’s ratios νxy and νyx. Expanding this equation gives for

the strains in the x and y directions

εx =
σx
Ex
− νyx

σy
Ey

(3)

εy =
σx
Ex
− νyx

σy
Ey

. (4)

By solving the equations for Ex and Ey and assigning the x axis to the peptide cross-links and the y

axis to the glycan strands, the individual elasticities are determined to be
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Eg =
σg(1− νpgνgp)

εg + νpgεp
(5)

Ep =
σp(1− νpgνgp)

εp + νgpεg
, (6)

which is precisely Eqs. 2 and 3 in the main text.

Relationships between stress and pressure

In an MD simulation, the pressures in the x, y, and z directions within the periodic simulation box can

be measured and, to some degree, also controlled. In a pure medium, by virtue of Newton’s first law,

the pressure and the stress in a given direction are opposite one another, i.e., Pi = −σi [2]. However,

for simulations of the cell wall, the simulated volume is composed of both the hydrated peptidoglycan

layer and a layer of water above and below. Thus, in these simulations, the pressures over the entire

box, which are the quantities typically reported, can be decomposed into averages over the separate

regions, the peptidoglycan layer (PG, its region given by its thickness t) and the water layers (wat.,

given by Lz − t), giving

〈Pi〉 =

∫
Lz

dzPi =

∫
Lz−t

dzPwat.
i +

∫
t
dzPPG

i =
Lz − t
Lz
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i 〉+

t

Lz
〈PPG

i 〉 (7)

where i = x, y, or z and the definition of the z-dependent pressures follows the formalism developed

in the context of membrane surface tension [3, 4]. Under hydrostatic conditions, 〈Pwat.
x 〉 = 〈Pwat.

y 〉 =

〈Pwat.
z 〉 = 〈Pwat.〉. Therefore,

〈Pi〉 =
Lz − t
Lz

〈Pwat.〉+
t

Lz
〈PPG

i 〉 =
Lz − t
Lz

〈Pwat.〉 − t

Lz
σi (8)

where σi denotes the stress resultant (averaged over the cell-wall patch) in the i direction.

For a porous material such as the cell wall, the body force due to the water pressure can be

eliminated through the definition of an effective stress, σ′i = σi + 〈Pwat.〉, for which the constitutive
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relations still hold. By substituting σ′i in Eq. 8 one obtains

〈Pi〉 =
Lz − t
Lz

〈Pwat.〉 − t

Lz
(σ′i − 〈Pwat.〉) = 〈Pwat.〉 − t

Lz
σ′i, (9)

which then can be solved for σ′i, giving

σ′i =
Lz

t
(〈Pwat.〉 − 〈Pi〉). (10)

Finally, by solving Eq. 10 for i = z, 〈Pwat.〉 can be expressed in terms of σ′z, giving for the effective

stresses in the x and y directions

σ′i =
Lz

t
(1− 〈Pi〉) + σ′z, (11)

where 〈Pz〉 is held fixed at 1 atm in all simulations, and, under plane-stress conditions, σ′z = 0. Eq. 11

is identical to Eq. 4 derived for simulations of microtubules in Wells and Aksimentiev [5].

The thickness t in Eq. 11 is that of the stress-bearing portion of the peptidoglycan layer and is

generally not identical to that based on the mass density. To measure t in each simulation, the lateral

pressure profiles in 1-Å slices along the z axis were first calculated. The resulting profiles, which are

further smoothed by averaging over of a sliding 5-Å window, display a sharp increase in the lateral

pressure in the direction of the applied strain. The stress-bearing region was taken to be that for which

the lateral pressure is more than 10% of the maximum and the corresponding width was used as t

(see Fig. S1). Due to large fluctuations in the pressure and the limited number of frames available for

post-processing, we assume the magnitude of the pressure in each individual window is insufficiently

converged for direct calculation of the stress [4]. Thus, we instead use Eq. 11 along with the pressure

over the whole box during the original simulation, which is measured every time step rather than every

frame.

Validity of plane-stress approximation

While it is common to assume a condition of plane stress in many applications, proof of its validity

is often lacking [6]. To explicitly examine this assumption, and to determine an estimate for σz,
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pressure profiles were again used. Although noise is large, there is a constant non-zero stress in the

z direction. This stress is independent of the applied strains σg and σp as shown in Fig. S2, and is

present even for a completely unstrained patch. Rather than arising from specific mechanical properties

of peptidoglycan, however, the observed σz is due to an entropic pressure, i.e., the tendency of unlinked

peptides to expand away from the central plane, akin to the pressure generated by an ideal gas.

The constant, but non-zero, σz will manifest itself in two places in the previous derivations, one

for the calculation of the stresses σ′x,y from the measured pressures and one for the calculation of the

elasticities from Hooke’s Law. In the former case, the effect is simply additive (see Eq. 11). In the

latter case, one must first consider a fully three-dimensional orthotropic material, for which the stiffness

tensor becomes sixth order. Ignoring again the shear stresses, Eq. 1 becomes


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which, when multiplied out, gives for εx

εx =
σx
Ex
− νyx

σy
Ey
− νzx

σz
Ez

(13)

with εy and εz following similarly. Thus, the term due to σz can be treated simply as a perturbation

on εx and εy in the equations derived for the plane-stress state. The elasticities in Eqs. 5 and 6 then

become

Eg =
σg(1− νpgνgp)

εg + νpgεp + fg(z)
(14)

Ep =
σp(1− νpgνgp)

εp + νgpεg + fp(z)
, (15)

where the z dependence is accounted for by

fg(z) =
σz
Ez

(νzg + νpgνzp) (16)

fp(z) =
σz
Ez

(νzp + νgpνzg). (17)

5



We recall from Eq. 11 that the determined strains σg and σp are now also dependent on σz, making

the final expressions for the elasticities

Eg =
(σ0g + σz)(1− νpgνgp)

εg + νpgεp + fg(z)
(18)

Ep =
(σ0p + σz)(1− νpgνgp)

εp + νgpεg + fp(z)
. (19)

where σ0g and σ0p denote the values under plane-stress conditions.

The elasticities are determined from the simulations by fixing one of the strains εg or εp at zero and

fitting σ0g and σ0p as a function of the remaining strain. Re-expressing Eqs. 18 and 19 in this form gives

σ0g =
Eg

(1− νpgνgp)
εg +

Egfg(z)

(1− νpgνgp)
− σz (20)

σ0p =
Ep

(1− νpgνgp)
εp +

Epfp(z)

(1− νpgνgp)
− σz. (21)

Thus, although σz may be non-zero in our simulations, because it is independent of the applied lateral

strain (see Fig. S2), it will not affect the slope of the σ0-ε fit. As the elasticity is derived from this

slope, the plane-stress approximation can safely be used here.

As another way to check the validity of the plane-stress approximation, we also consider the thick-

ness of the cell-wall patch. In order to maintain an effective zero-stress state in the z direction (dis-

counting the entropic pressure shown in Fig. S2), the thickness should respond freely to changes in

lateral dimensions such that the volume remains constant [2]. More precisely, if the dimensions of the

patch are given by Lx, Ly, and Lz and changes in each length by dx, dy, and dz, then

V = LxLyLz = (Lx,0 + dx)(Ly,0 + dy)(Lz,0 + dz) = Lx,0Ly,0Lz,0(1 + εx)(1 + εy)(1 + εz) (22)

where the strain εx is given by dx/Lx,0 (similarly for y and z). For the volume to remain constant,

(1 + εx)(1 + εy)(1 + εz) = 1 (23)

must be true. For the simulations run to determine Ep (Ex) and Eg (Ey), one of the dimensions was

held fixed, making one of either εy or εx zero. This further simplifies the connection between the strains,
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Model Lz,0 (avg.) Lz,0 (fit) frac. diff.

avg8 2.72 2.91 0.070
avg17 2.27 2.09 -0.079
avg26 2.50 1.89 -0.244
Inf1 2.64 2.58 -0.023
Inf2 2.86 2.87 0.004

Table 1: Thickness under zero strain determined by averaging the weighted thicknesses measured in
simulation (avg., see Eq. 25) or by extrapolating via a linear fit to ε = 0 (fit).

leading to the equations

εz =
−εi

1 + εi
(24)

and, thus,

t = Lz,0 + dz = Lz,0(1 + εz) =
Lz,0

(1 + εi)
(25)

where i = x or y and t is the thickness of the patch.

By extrapolating the thickness as a function of the strain ε, the predicted thickness under plane-

stress conditions, Lz,0 in Eq. 25, can be found. For each of the five cell-wall patches examined, we

measured the thickness in simulation as a function of εg and εp, weighting each by (1+ εg) and (1+ εp),

respectively. Should plane-stress conditions hold, these weighted values will be independent of ε. On

the other hand, if σz affects the thickness in a strain-dependent fashion, extrapolation of a linear fit

to ε = 0 will provide a different value of Lz,0 than the average of the weighted thicknesses from all

simulations. Table S2 compares these two metrics, i.e., the average and extrapolated values of Lz,0.

For all patches except avg26, the difference between the two metrics is less than 10% and, furthermore,

is not consistently positive or negative. Therefore, because the thickness in almost all cases responds

freely to the imposed strain in the plane, we again conclude that plane-stress conditions are a valid

approximation for the cell-wall patches simulated.

Stress-strain relationships

To calculate Young’s modulus, first the slope of the stress-strain relationship was determined based on

approximately 25 simulations for each constructed patch, divided between those probing Eg (εp = 0)

and those probing Ep (εg = 0). When this slope is weighted by (1− νpgνgp), the elasticity is recovered

(see Eqs. 4 and 5 in the main text). The average stress in each simulation is plotted as a function of
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strain in Fig. S3. For avg8, approximately 170 ns of simulation in total were used to determine Ep and

Eg due to the slow convergence of the average pressure. For the other four systems, approximately

50 ns each was sufficient.

Calculation of pore size

In order to calculate the largest effective pore size in a given patch of peptidoglycan, first a grid of

points spaced 0.3 nm apart was overlaid on the plane of the layer. At each point, the maximum-radius

sphere that could be inscribed without contacting either glycan strands or cross-linked peptides was

determined (see Fig. S4). Because it is assumed they are flexible and, thus, would not impede diffusion

through the layer, peptides that were not cross-linked were ignored. The global maximum radius was

then taken as the maximum pore size for a given structure. Although some pores are clearly irregular,

experimental estimates of pore size were also calculated under the assumption that the molecules

diffusing through were spherical, at least in one of two presented models [7]. Numbers reported in

Table 2 in the main text are time-averaged over the course of all simulations at the stated applied

strain.

Strain-dependent strand addition

To examine how strain may affect the placement of new strands in a growing cell wall, a new system

was constructed. Beginning with the avg17 peptidoglycan patch under an applied strain of εp = 0.2,

one of the strands was deleted. The system was then equilibrated under tension for 10 ns, permitting

the remaining strands to retract from the newly formed gap. A completely extended strand of the

same length and composition as the deleted one was then added back into this gap and its glycans

were held in place while the peptides were free to move for a 3 ns simulation, i.e., the same procedure

used for initial construction of the entire patch. Peptides side chains that came near each other during

this simulation were cross-linked, maintaining the 50% ratio of linked to unlinked as before. Finally,

the resulting new patch was simulated both under constant strain (εp = 0.2, εg = 0) for 3 ns and also

under no strain for 6 ns.

As seen in Fig. S5, some cross-links formed in new locations, resulting in a different patterning of

the strands. One immediate observation is the formation of a larger pore (3.6 nm radius vs. 2.9 nm
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originally), due to the elimination of a connection between the end of the re-added strand and one to

its left in the figure. However, the surrounding strands do not change dramatically. When allowed to

relax under zero applied tension, the new patch’s equilibrium dimensions changed slightly, becoming

19.4±0.3 × 32.4±0.3 nm2, as compared to 18.7±0.2 × 33.4±0.25 nm2 originally. Thus, while the

equilibrium area is identical (within less than 1%), the dimensions have changed by +3.7% and -3%

in the peptide and glycan directions, respectively. This change is one consequence of the decrease in

the diversity of strand-strand cross-links; whereas the original strand was connected to three others,

the re-added one is only connected to two. Although not explicitly tested, a likely consequence of this

change in cross-linking is a slightly lower Ep.
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