Supporting Information for

Synthesis, Characterization and Catalytic Activity of Ni(II) Alkyl Complexes Supported by Pyrrole-Diphosphine Ligands

Gopaladasu T. Venkanna, Swetha Tammineni, Hadi D. Arman, and Zachary J. Tonzetich*

Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249

zachary.tonzetich@utsa.edu

Contents	Pages
Figure S1. ¹ H NMR spectrum of H(P ₂ ^{Cy} Pyr) (2).	S2
Figure S2 . Electronic absorption spectrum of 4 in CH_2Cl_2 .	S2
Figure S3 . CV of 4 in THF displaying the cathodic events observed at low potentials.	S3
Figure S4. Comparison of the cathodic events observed by CV for 3 and 4 in THF.	S3
Figure S5 . CV of 4 in CH_2Cl_2 displaying the anodic events observed at higher potentials.	S4
Figure S6 . Thermal ellipsoid drawing of $[Ni(CH_3)(P_2^{Cy}Pyr)]$ (6).	S4
Figure S7. ¹ H NMR spectrum of $[Ni(\eta^1-C_3H_5)(P_2^{Cy}Pyr)]$ (14).	S5
Figure S8. ¹ H NMR and IR spectra of the reaction of 5 with CO.	S 5
Figure S9. ¹ H NMR spectrum of [NiH(P ₂ ^{Cy} Pyr)] (15).	S 6
Figure S10. ¹ H NMR spectrum of the reaction of 15 with CO ₂ .	S6
Table S1. Crystallographic data and refinement parameters for 4, 6, and 7.	S7
Table S2. Crystallographic data and refinement parameters for 10, 11, and 14.	S 8

Figure S1. 500 MHz 1 H NMR spectrum of H(P_{2}^{Cy} Pyr) (2) in benzene- d_{6} .

Figure S2. Electronic absorption spectrum of [NiCl($P_2^{Cy}Pyr$)] (4) in CH₂Cl₂ (50 μ M).

Figure S3. Cyclic voltammogram of 3 mM [NiCl($P_2^{Cy}Pyr$)] (4) at a glassy carbon electrode in THF displaying the cathodic events observed at low potentials. Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu₄NPF₆.

Figure S4. Comparison of the cathodic events observed for $[NiCl(P_2^{Ph}Pyr)]$ (3, black) and $[NiCl(P_2^{Cy}Pyr)]$ (4, red) in THF.

Figure S5. Cyclic voltammogram of 2 mM [NiCl(P_2^{Cy} Pyr)] (4) at a glassy carbon electrode in CH_2Cl_2 displaying the anodic events observed at higher potentials. Scan rate is 50 mV/s and the supporting electrolyte is 0.1 M Bu_4NPF_6 .

Figure S6. Thermal ellipsoid drawing (50%) of $[Ni(CH_3)(P_2^{Cy}Pyr)]$ (6). Hydrogen atoms omitted for clarity. See Table 1 of the manuscript for selected bond lengths and angles.

Figure S7. 500 MHz ¹H NMR spectrum of [Ni(η^1 -C₃H₅)(P₂^{Cy}Pyr)] (**14**) in benzene- d_6 showing evidence for η^1 coordination of the allyl ligand in solution. Asterisks denote small amount of pentane and THF.

Figure S8. 500 MHz 1 H NMR spectrum of the reaction of [Ni(CH₃)(P₂^{Ph}Pyr)] (5) with excess CO (g) in benzene- d_6 showing the decrease of the methyl resonance at -0.05 ppm and growth of the acyl resonance at 1.91 ppm over 15 hrs at 50 $^{\circ}$ C. Inset displays the IR spectrum (film, KBr) of the product highlighting the new carbonyl stretch at 1614 cm⁻¹.

Figure S9. 500 MHz 1 H NMR spectrum of [NiH(P_{2}^{Cy} Pyr)] (15) in benzene- d_{6} . Asterisk denotes a small amount of silicone grease.

Figure S10. 500 MHz 1 H NMR spectrum of the reaction of [NiH(P_2^{Cy} Pyr)] (**15**) with excess CO₂ (*g*) in benzene- d_6 showing the decrease of the hydride resonance at –17.6 ppm and growth of the formate resonance at 7.9 ppm over 24 hrs at 23 $^{\circ}$ C.

Table S1. Crystallographic data and refinement parameters for compounds 4, 6, and 7.

Compound	[NiCl(P ₂ ^{Cy} Pyr)] 4	[Ni(CH ₃)(P ₂ ^{Cy} Pyr)] 6	$[Ni(C_2H_5)(P_2^{Ph}Pyr)]$ 7
Empirical formula	$C_{30}H_{50}CINNiP_2$	$C_{31}H_{53}NNiP_2$	$C_{32}H_{31}NNiP_2\cdot \frac{1}{2}C_6H_6$
Formula weight (g/mol)	580.81	560.39	589.17
Temperature (K)	98(2)	98(2)	98(2)
Crystal system, space group	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$	Triclinic, $P\overline{1}$
Unit cell dimensions (Å, deg)	a = 10.220(3) b = 18.392(5) c = 15.764(4)	a = 10.235(9) b = 18.391(2) c = 15.803(1)	a = 10.701(1) b = 14.379(2) c = 20.688(3)
	$\beta = 90.687(5)$	$\beta = 90.638(1)$	$\alpha = 99.531(2)$ $\beta = 90.677(1)$ $\gamma = 109.668(3)$
Volume (Å ³)	2962.9(1)	2975.0(3)	2948.4(7)
Z	4	4	2
Calculated density (g/cm ³)	1.302	1.251	1.324
Absorption coefficient (mm ⁻¹)	0.873	0.780	0.791
F(000)	1248	1216	1230
Crystal size (mm)	$0.20\times0.15\times0.07$	$0.29\times0.27\times0.09$	$0.29\times0.12\times0.08$
Θ range	1.99 to 26.50°	2.28 to 27.50°	2.00 to 26.00°
Limiting indices	$-12 \le h \le 12$, $-23 \le k \le 19$, $-29 \le l \le 19$	$-8 \le h \le 13$, $-23 \le k \le 15$, $-20 \le l \le 19$	$-11 \le h \le 13$, $-17 \le k \le 15$, $-25 \le l \le 25$
Reflections collected / unique	$19495 / 6124$ $[R_{int} = 0.0492]$	$12035 / 6804$ $[R_{int} = 0.0203]$	$17086 / 11533$ [$R_{int} = 0.0264$]
Completeness to Θ	99.7%	99.3%	99.4%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.742 and 1.000	0.822 and 1.000	0.786 and 1.000
Data / restraints / parameters	6124 / 0 / 316	6804 / 0 / 316	11533 / 0 / 712
Goodness-of-fit on F ²	1.031	0.996	1.016
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0467,$ $wR_2 = 0.1066$	$R_1 = 0.0357,$ $wR_2 = 0.0946$	$R_1 = 0.0390,$ $wR_2 = 0.0992$
R indices (all data)	$R_1 = 0.0525,$ $wR_2 = 0.1108$	$R_1 = 0.0392,$ $wR_2 = 0.0993$	$R_1 = 0.0435,$ $wR_2 = 0.1033$
Largest diff. peak and hole (e·Å-3)	0.678 and -0.566	0.605 and -0.569	0.783 and -0.304

^{*}Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. R₁ = $\sum ||F_o| - |F_c|| / \sum |F_o|$; wR₂ = $\{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{\frac{1}{2}}$.

Table S2. Crystallographic data and refinement parameters for compounds 10, 11 and 14.‡

Compound	$\frac{[\text{Ni}(\text{CH}_2\text{C}_6\text{H}_5)(\text{P}_{2}^{\text{Cy}}\text{Pyr})]}{10}$	$[Ni(C_6H_5)(P_2^{Ph}Pyr)]$ 11	$[\operatorname{Ni}(\eta^{1}-\operatorname{C}_{3}\operatorname{H}_{5})(\operatorname{P}_{2}^{\operatorname{Cy}}\operatorname{Pyr})]$ 14
Empirical formula	$C_{37}H_{57}NNiP_2$	$C_{36}H_{31}NNiP_2$	$C_{33}H_{55}NNiP_2$
Formula weight (g/mol)	636.49	598.27	586.44
Temperature (K)	98(2)	98(2)	98(2)
Crystal system, space group	Orthorhombic <i>Pna</i> 2 ₁	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Unit cell dimensions (Å, deg)	a = 11.562(1) b = 17.618(1) c = 16.686(1)	a = 10.0884(8) b = 15.279(1) c = 19.309(2)	a = 16.695(3) b = 15.595(3) c = 12.176(2)
		$\beta = 102.637(1)$	$\beta = 93.919(3)$
Volume (Å ³)	3399.1(5)	2904.3(4)	3163(1)
Z	4	4	4
Calculated density (g/cm ³)	1.244	1.368	1.221
Absorption coefficient (mm ⁻¹)	0.691	0.805	0.736
F(000)	1376	1248	1252
Crystal size (mm)	$0.30\times0.15\times0.10$	$0.30\times0.25\times0.20$	$0.27\times0.20\times0.05$
Θ range	2.31 to 27.50°	2.65 to 26.50°	2.61 to 27.50°
Limiting indices	$-12 \le h \le 15$, $-22 \le k \le 22$, $-21 \le l \le 21$	$-12 \le h \le 12$, $-17 \le k \le 19$, $-23 \le l \le 24$	$-21 \le h \le 21$, $-20 \le k \le 20$, $-15 \le l \le 15$
Reflections collected / unique	$22437 / 7696 [R_{int} = 0.0295]$	$20467 / 5979 [R_{int} = 0.0203]$	26998 / 7244 [R _{int} = 0.0373]
Completeness to Θ	99.4%	99.2%	99.7%
Absorption correction	multi-scan ABSCOR	multi-scan ABSCOR	multi-scan ABSCOR
Min. and max transmission	0.839 and 1.000	0.879 and 1.000	0.811 and 1.000
Data / restraints / parameters	7696 / 1 / 370	5979 / 0 / 361	7244 / 0 / 352
Goodness-of-fit on F ²	0.990	1.013	1.016
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0267,$ $wR_2 = 0.0626$	$R_1 = 0.0282,$ $wR_2 = 0.0756$	$R_1 = 0.0338,$ $wR_2 = 0.0835$
R indices (all data)	$R_1 = 0.0273,$ $wR_2 = 0.0630$	$R_1 = 0.0296,$ $wR_2 = 0.0772$	$R_1 = 0.0357,$ $wR_2 = 0.0855$
Largest diff. peak and hole (e·Å-³)	0.283 and -0.213	0.343 and -0.261	0.745 and -0.261

^{*}Refinement method was full-matrix least-squares on F²; wavelength = 0.71073 Å. $R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|$; $wR_2 = \{\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2] \}^{\frac{1}{2}}$.