Supplemental Material

Salaverria et al

Contents

I.	Members of the network project of the Deutsche Krebshilfe "Molecular Mechanisms in
	Malignant Lymphomas"Page 2
II.	Supplemental material and methodsPage 3
III.	Supplemental results and discussionPage 11
IV.	Supplemental tablesPage 14
V.	Supplemental figuresPage 36
VI.	Supplemental referencesPage 47

I. Members of the Network Project of the Deutsche Krebshilfe "Molecular Mechanisms in Malignant Lymphomas" (Alphabetical order)

Pathology group: Thomas F.E. Barth¹, Heinz-Wolfram Bernd², Sergio B. Cogliatti³, Alfred C. Feller², Martin L. Hansmann⁴, Michael Hummel⁵, Wolfram Klapper⁶, Peter Möller¹, Hans-Konrad Müller-Hermelink⁷, Ilske Oschlies⁶, German Ott²⁰, Andreas Rosenwald⁷, Harald Stein⁵, Monika Szczepanowski⁶, Hans-Heinrich Wacker⁶. **Genetics group:** Thomas F.E. Barth¹, Petra Behrmann⁸, Peter Daniel⁹, Judith Dierlamm⁸, Eugenia Haralambieva⁷, Jose-Ignacio Martín-Subero¹⁰, Paul-Martin Holterhus¹¹, Ralf Küppers¹², Dieter Kube¹³, Peter Lichter¹⁴, Peter Möller¹, Eva M. Murga-Peñas¹⁰, German Ott²⁰, Claudia Philipp¹², Christiane Pott¹⁵, Armin Pscherer¹⁴, Julia Richter¹⁰, Andreas Rosenwald⁷, Carsten Schwaenen¹⁶, Reiner Siebert¹⁰, Heiko Trautmann¹⁵, Martina Vockerodt¹⁷, Swen Wessendorf¹⁶ **Bioinformatics group:** Stefan Bentink¹⁸, Hilmar Berger¹⁹, Christian W Kohler¹⁸, Dirk Hasenclever¹⁹, Markus Kreuz¹⁹, Markus Loeffler¹⁹, Maciej Rosolowski¹⁹, Rainer Spang¹⁸. **Project coordination:** Benjamin Stürzenhofecker¹³, Lorenz Trümper¹³, Lorenz Trümper¹³.

¹Institute of Pathology, University Hospital of Ulm, Germany, ²Institute of Pathology, University Hospital Schleswig-Holstein Campus Lübeck, Germany, ³Institute of Pathology, Kantonsspital St. Gallen, Switzerland, ⁴Institute of Pathology, University Hospital of Frankfurt, Germany, ⁵Institute of Pathology, Campus Benjamin Franklin, Charité–Universitäts-medizin Berlin, Germany, ⁶Institute of Hematopathology, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Germany, ⁷Institute of Pathology, University of Würzburg, Germany, ⁸University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ⁹Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Germany, ¹⁰ Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany, ¹¹Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany, ¹²Institute for Cell Biology (Tumor Research), University of Duisburg-Essen, Germany, ¹³Department of Hematology and Oncology, Georg-August University of Göttingen, Germany, ¹⁴German Cancer Research Center (DKFZ), Heidelberg, Germany, ¹⁵ Second Medical Department, University Hospital Schleswig-Holstein Campus Kiel/ Christian-Albrechts University Kiel, Germany, ¹⁶Klinikum Esslingen, Esslingen, Germany, ¹⁷Department of Pediatrics I, Georg-August University of Göttingen, Germany, ¹⁸Institute of Functional Genomics, University of Regensburg, Germany, ¹⁹Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany²⁰ Institute of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.

II. Supplemental Material and Methods

Lymphoma samples

Lymphoma samples were derived from the Molecular Mechanisms in Malignant Lymphoma (MMML) cohort and a Polish cohort (Cytogenetic Laboratory The Maria Skłodowska-Curie Memorial Institute and Oncology Centre, Warsaw).^{1,2} Additional samples were collected from single diagnostic institutions. Molecular profiling of the cases included in the MMML cohort has been published recently.³

Cohort 1: Lymphomas called by both GEP classifiers (mBL and BL-PAP classifiers) Burkitt Lymphomas (n=59)

In order to identify *MYC*-negative lymphomas with a BL gene expression profiling (GEP), two independently developed gene expression classifiers, the molecular-BL (mBL) index³ and the BL-pathway activation pattern (BL-PAP classifier)⁴ were applied to a cohort of 753 previously characterized lymphomas from the Molecular Mechanisms in Malignant Lymphoma (MMML) Network. The two algorithms selected a total of 59 BL by GEP (Cohort 1). Two of these cases lacked a *MYC* translocation and were thus considered true *MYC*-negative BL.

Cohort 2: High-grade B-cell lymphomas and cell lines with features of BL, MYC negative (n=14)

Twelve *MYC*-negative lymphomas were included for cytogenetic and genetic analyses, five of which were previously reported.^{1,5,6} Of the total of 12 cases, eleven were included in the cohort 2 based on the diagnosis of BL/high-grade B-cell lymphoma and *MYC* break negativity and/or presence of 11q aberration. Cases 1-3 were collected from the Institute of Human Genetics, Kiel, cases 4-7 from the Polish study,^{1,2} and cases 8-9 and 11-12 from other institutions (National Institute of Health Bethesda, Institute Biology Grenoble, Institute of Pathology Tübingen). The diagnosis of BL was based on morphological criteria and the typical immunophenotype CD20+/CD10+/BCL2-/Ki67>90 (Table 1 and supplemental Table 2)(Klapper and Szczepanowski, unpublished).

The remaining case (case 10) was recruited from a recently published study on pediatric follicular lymphoma⁶ because of the prior knowledge of 11q-gain/loss pattern by CGH-array. This case simultaneously displayed follicular and diffuse growth pattern. Although its cytology

showed features of BL, it was classified as follicular lymphoma grade 3 (minor component) with simultaneous diffuse large B-cell lymphoma (major compartment) and it is because of this that was included in the previous series of pediatric lymphomas already published (supplemental Figure 1).

Finally HT and SU-DHL-5 cell lines (www.dsmz.de) were selected because they were negative for *BCL2* and *MYC* breaks and had cytogenetic evidences of the 11q-gain/loss pattern. Karpas-422 carrying also 11q-gain/loss pattern was excluded as a potential model because of the presence of t(14;18). Two additional cases from the Polish cohort that showed features resembling the other cases included in the present study (CD20+, CD10+, BCL6+, BCL2-, Ki67 100%) (cases 9 and 10 from Rymkiewicz et al.²) were initially included in the present but failed copy number (CN) analyses due to bad DNA quality and were therefore not further followed (data not shown). All biopsy specimens were evaluated by at least two hematopathologists (WK and IO, ESJ, PA or GR) according to the WHO classification⁷ (Table 1 and supplemental Table 2). Minimal regions of gain and loss in chromosome 11q were defined in this series (hg18).

Cohort 3: MMML cases with 11q gain/loss pattern determined by CGH-array (n=6)

A total of 514 MMML cases with available comparative genomic hybridization (CGH)-array data were screened for aberrations in the minimal regions previously described in the cohort 2. The region of gain was covered with 15 clones in the CGH-array whereas the region of loss had 8 clones. Those cases showing at least a partial gain and a partial loss within these regions were selected. The cases displaying non-mBL GEP were excluded. Excluding one relapse sample and one case of *IG/MYC*-positive mBL, *IGH/BCL2*-positive diffuse large B-cell lymphoma (DLBCL) and *BCL6* break-positive DLBCL, a total of six cases in which the 11q-gain/loss pattern could have been the initial event were selected. Gene expression, immunohistochemical and genetic features of these cases were compared with two different sets of reference samples. First set included all samples that exhibited mBL like GEP, *IG-MYC* positivity (n=46). The second set was comprised of DLBCL samples (n=198). All cases selected had not aberrations in the minimal 11q regions. Therefore, the probability of having one "true case" with the typical 11 pattern in the control cohort was very low.

Institutional Review Board approval

This study was performed as part of the MMML Network Project of the Deutsche Krebshilfe for which approval was obtained by the Institutional Review Board of the Medical Faculty Kiel under 403/05 as well as the study central. The protocols of the Berlin-Frankfurt-Münster (BFM) clinical trials have also been approved by central and local review boards.

FISH

The Digital image acquisition, processing, and evaluation were performed using ISIS digital image analysis system version 5.0 (Metasystems, Altlussheim, Germany). Methods on cases 4-7 have been previously published.¹

For FISH analyses, commercially available *MYC* BAP, *BCL6* BAP, *BCL2* BAP, *IGH* BAP, *MALT* BAP, *CCND1* BAP, *IGH/MYC/CEP8* and *IGH/CCND1* (all Abbott/Vysis, Downers Grove, IL) and the previously published probes *MYC* BAP 1,³ *MYC* BAP 2,³ FDX (+LSI ATM/CEP11)⁸ were used. In order to detect the deletion of chromosome 11q23~24 by FISH, a probe consisting of CEP11 (CEP11 [D11Z1, Spectrum aqua, Abbot, IL, USA]), RP11-453I14 containing the genes *PKN0X2* and *FEZ1* at 11q24.1 [Spectrum Orange] and RP11-349F17 containing the *NTM* gene at 11q25 [Spectrum Green]) was designed. FISH was observed according to standard procedures. The digital image acquisition, processing, and evaluation were performed using ISIS digital image analysis system version 5.0 (Metasystems, Altlussheim, Germany). FISH methods on samples 4-7 have been previously published.¹

DNA extraction

DNA extraction from the lymph node, paraffin material or cells in fixative was performed using standard protocols. DNA from SU-DHL-5 and HT cell lines (provided by DSMZ) was extracted from cultured cells.

Copy number analyses

GeneChip Mapping SNP 6.0 (Affymetrix, Santa Clara, CA) was used in cases 1-3 and 8 as previously described.⁹ Cases 4-7 and 9-12 were analyzed using the Agilent Human CGH Microarray platform (244K, only case 9 on 180K; Agilent Technologies, Santa Clara, CA) due to methodological requirements for formalin fixed paraffin embedded (FFPE) tissues. Genotyping Console (Affymetrix inc) was used to analyze copy number changes of SNP 6.0 array whereas Agilent arrays were analyzed using DNA Analytics (Agilent Technologies inc.) and/or Nexus CN 6.0 Discovery Edition (BioDiscovery, El Segundo, CA). Gains and losses on MPI samples (MMML Cohort) were analyzed as previously described.¹⁰ Additionally, the chromosome 11 was analyzed in all samples from the 'cohort 2' and 'cohort 3' (except MPI-315 and MPI-382) using Nexus 6.0 beta Discovery Edition (BioDiscovery, El Segundo, CA). Genetic complexity was defined as the number of CN aberrations per tumor sample.

Mutational analyses

PCR and direct sequencing of the PCR products were performed using the Big Dye Terminator v1.1 Cycle Sequencing Kit and the 3100-Avant Genetic Analyzer. Primers are summarized in supplemental Table 3. Polymorphic variants referenced in NCBI dbSNP Build 132 (http://www.ncbi.nlm.nih.gov/projects/SNP/) and 1000 genomes Project (http://www.1000genomes.org/page.php) were excluded. Non-synonymous mutations were tested for their functional consequences *in silico* by using different aminoacid substitution prediction algorithms, including SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism Phenotyping).

Bisulfite pyrosequencing analyses

Methylation levels of hsa-mir-34b were studied in cases 1-7 from cohort 2 and SU-DHL-5 cell line, and in six *MYC*-positive BL and three *MYC*-positive BL cell lines (Ca-46, Daudi, Raji). Bisulfite conversion and pyrosequencing was performed according to standard methods. The results were evaluated with the analysis software Pyro Q-CpG 1.0.9 (Biotage AB, Uppsala, Sweden), which was also used to quantify the percentage of methylated cytosines at the analyzed CpG sites. All assays were optimized and validated using one complete methylated commercial available DNA (Millipore, Schwalbach, Germany) as positive control and an unmethylated pooled DNA isolated from 10 male and female controls as negative control. Primer sequences are shown in supplemental Table 3. Heterogeneous methylation patterns of hsa-mir-34b were found in the seven cases from the cohort 2 (Supplemental Figure 3). Cases 1, 3 and 7 displayed low levels of methylation (mean: 7, 7 and 3.5% respectively), whereas cases 2, 4, 5 and 6 showed higher levels of methylation (mean: 33, 36, 41 and 45%, respectively). The SU-DHL-5 cell line presented high levels of methylation (mean: 92%), similarly to the *IG-MYC*-positive BL cell lines (mean: 87%), and one primary case *IG-MYC*-positive BL (mean: 66%).

Exome sequencing data processing and Single Nucleotide Variant (SNV) and Small Indel Detection

For each sequencing lane, read pairs were mapped to the human reference genome (hg19, NCBI build 37.1, downloaded from the UCSC genome browser at http://genome.ucsc.edu/) using BWA version 0.5.9-r16 with default parameters and maximum insert size set to 1 kb. Samtools¹¹ was used to generate a chromosomal coordinate-sorted BAM file. PCR duplicates were removed using Picard tools (version picard-1.48, http://picard.sourceforge.net). Only uniquely aligned reads (minimum mapping quality of 1) overlapping on-target regions were considered for downstream analysis. Coverage calculations following duplicate removal considered all informative bases of the reference genome (excluding Ns). A mean Phred-scaled base quality of at least 25 across the length of the read was required. Detection of single nucleotide variants (SNVs) and small indels was done as described before.^{12,13} Filtered calls were functionally annotated using Annovar¹⁴ gene annotation and annotated for overlaps with dbSNP build 135 SNPs and variants from the 1000 Genomes project using BED Tools.¹⁵

Gene expression analyses

To evaluate the impact of 11q alterations in the GEP, differential gene expression analysis was performed using linear models for microarrays as implemented in the Bioconductor package

limma¹⁶ version 3.8.0. False discovery rates (FDR) were calculated according to Benjamini and Hochberg.¹⁷ Lists of differentially expressed genes were generated such that the FDR of the entire list is below .05.

To evaluate the direct impact of CN alterations, expression levels of genes within the minimal gained and lost region on chromosome 11 were compared between lymphomas with 11q gain/loss pattern and control groups.

The expression levels were compared by Student's t-test using R package multitest.¹⁸ A FDR cut-off of 0.1 was applied adjusting for the number of probesets within gain and loss region separately.

The differentially expressed genes between 11q-gain/loss and DLBCL or BL were investigated for significant over-representation by a hypergeometric test. Hereby, a list of differential genes is tested against a given set of genes contributing to particular Gene Ontology (GO) term which in turn is a subset of a GO category. A GO term is termed significant of the individual hypergeometric test results in a P-value below .05. Correction for multiple testing was performed by adjusting the P-values according to the procedure of Benjamini-Hochberg.¹⁷ The three GO categories - Molecular Function (MF), Biological Process (BP) and Cellular Component (CC) with their respective GO term - were tested separately.

MicroRNAs expression analysis

Test for overrepresentation of microRNA (miRNA) targets within a list of differentially expressed genes was performed in multiple hypergeometric tests as implemented in the HTSanalyzeR package (version 2.8.0).¹⁹ In this setting, the 'universe' is represented by the entire amount of probe sets on the hg133A chip (n=22283), whereas the number of differentially expressed genes constitute the 'observed hits'. We use the miRNA target sets within the gene set collection 'C3-motif gene sets' provided by the Broad Institute (<u>http://www.broadinstitute.org</u>), consisting of a total of 221 miRNA target gene sets. As a prerequisite, we require that each gene set contains at least 15 elements. Hence, a total of 213 gene sets remain for hypergeometric testing in this overrepresentation analysis. Each miRNA target set is tested for

enrichment in the list of differentially expressed genes. Statistical significance for overrepresentation of the individual miRNA target set ('expected hits') is assessed at the 0.05 level. Correction for multiple testing was performed by adjusting the *P*-values according to the procedure of Benjamini-Hochberg.¹⁷

Survival analysis

Survival curves were estimated by the Kaplan-Meier method. Survival differences were analyzed with the log-rank test. P values $\leq .05$ were considered to indicate statistical significance.

Western Blot

Preparation of whole cell lysates from cell lines was done using RIPA buffer as described in the literature. Protein samples, suspended in water and 5x Lämmli buffer, were separated using Any kD Criterion TGX gels (Bio-Rad, München, Germany) and transferred to Immobilon-P Transfer Membrane (Millipore, Darmstadt, Germany). Membrane was blocked in 6% milk buffer-TBS-T for one hour at room temperature and afterwards incubated with the primary antibody PAFAH1B2 mouse monoclonal antibody (M01A, clone 2FA-1C10, Abnova, Heidelberg, Germany). Lamin B1 (ab16048, Abcam, Cambridge, UK) and monoclonal anti-β-actin (Sigma-Aldrich, Steinheim, Germany) acted as reference genes. After washing, membranes were incubated for one hour at room temperature with HRP-conjugated donkey anti-rabbit IgG (DkxRb-003-DHRPX, ImmunoReagents Inc., Raleigh, USA) or donkey anti-mouse IgG (DkxMu-003-DHRPX, ImmunoReagents Inc.) and developed in Luminara Forte Western HRP Substrate (Millipore, Darmstadt, Germany). Signals were detected using Hyperfilm ECL (GE Healthcare, München, Germany).

Cell lines

Human BL cell lines BL-2, BL-41, BL-70, BLUE-1, Ca-46 and U-698-M, human DLBCL cell lines Karpas-422, SU-DHL-6 and SU-DHL-10 and cell lines with 11q-gain/loss pattern HT, SU-DHL-5

and MLMA (latter described by the Sanger Center) were obtained from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture, except MLMA which was obtained from the Japanese Collection of Research Bioresources Cell Bank and cultivated according to the company's indications. Identity of cell lines was verified using Stem Elite ID (Promega, Mannheim, Germany).

III. Supplemental Results and Discussion

FISH validation

FISH analyses validated the array-based data and confirmed the presence of 11q gains and losses in the 'cohort 2' (Table 2). In contrast, the reported t(11;14) translocation in cases 6 and 7^1 was not confirmed by the use of a *CCND1* break apart probe. In case 3, the combination of R-banding and SNP-array data allowed the identification of the marker chromosome as a der(11)t(11;18)(q23;q21). The high frequency of 18q21-q22 breaks present in 4/12 cases is remarkable. A recent study has pointed *TCF4* gene, located in 18q21.2, as a candidate gene involved in an alternative mechanism to *ID3* mutations in the pathogenesis of BL.¹³ There was no evidence for involvement of the *MALT1* or *BCL2* oncogenes in the breakpoint region although two cases (1 and 3) presented gain of these genes.

hsa-mir-34b methylation levels

Recently, hsa-mir-34b was described to be down-regulated in BL cases that were negative for *MYC* translocation.²⁰ Remarkably, the hsa-mir-34b is located in 11q23.1 (chr11:110,888,873-110,888,956bp, hg18) and, thus, in the recurrently gained rather than the lost region. Thus, we analyzed the DNA-methylation of hsa-mir-34b. Heterogeneous methylation patterns of hsa-mir-34b were found in cases 1-7 from the cohort 2 (supplemental Figure 3). Additionally, we found no significant enrichment of hsa-mir-34b annotated target genes (Molecular Signatures Database, MSigDB) among the genes that were differentially expressed between cases with the 11q-gain/loss pattern and *IG-MYC*-positive mBL, nor between these cases and DLBCL.

Supplemental discussion

Screening the Mitelman (<u>http://cgap.nci.nih.gov/Chromosomes/Mitelman</u>) and Progenetix database (<u>www.Progenetix.org</u>) (17th September 2012) for pediatric lymphomas, 10 out of 31 cases (32%) diagnosed as BL/Atypical without the t(8;14) translocation or variants presented alterations on chromosome 11

Specifically, two carried the duplication dup(11)(q13q23) and four presented additions at 11q23 or add(11)(q?).²¹⁻²⁴ On the other hand, *Pienkowska-Grela et al* reported an inversion of the gained region 11q13-q23 in four *MYC*-negative cases with typical BL morphology.¹ We also confirmed this in one additional case. Whether this cytogenetic change juxtaposes regulatory elements with a putative proto-oncogene is unknown. Breakpoints between the regions of gain and loss were not conserved in this series, but all of them were placed near the common fragile site FRA11G and the rare fragile site FRA11B, both located at 11q23.²⁵ However, there was no evidence that breakpoints were directly affecting these fragile sites (supplemental Figure 4B).

Remarkably, the *ATM* gene which is assumed to be a tumor suppressor gene 26 was located in the region of gain in 13/19 samples. With the exception of case 1 (that was known to have the AT syndrome), in which additionally to the gain a simultaneous mutation and CNN-LOH was detected, clinically no evidence of AT or immunodeficiency was reported in the remaining cases. Moreover, exome sequencing failed to identify *ATM* mutations in the cell lines investigated rendering a major role of *ATM* in the aberration unlikely.

Regarding the *ETS1* mutational analysis, case 5 (mutation G331G) and case 7 (mutation E22K) displayed a low fraction of the mutated allele. Surprisingly, both cases also showed mutations in other exons in which the mutated allele was the predominant. These results together with the fact that these cases showed a deletion in 11q including the *ETS1* gene, lead us to speculate about the possible presence of subclones. Moreover, our attempts to model the effect of the mutations yielded no striking results due to the low number of mutations found in our series, and the fact that none of the point mutations were within resolved three-dimensional structures. However, both $P \rightarrow A$ (case 5) and $E \rightarrow K$ (case 7) lie at the N-terminus of the protein, and are close (in two of three isoforms of ETS1) to the Pnt domain which could influence the interaction with other proteins.²⁷ In contrast, the $Y \rightarrow X/del$ (case 8) which removes the DNA binding domain, and the S \rightarrow F mutation, which lays 10 residues N-terminal to this domain, are more likely to influence the DNA binding.

Concerning the genes involved in the frequent co-deletions of 6q observed in this series, the *EPHA7* gene (6q16) has been recently described as a tumor suppressor in follicular lymphoma with interesting therapeutical involvements.²⁸ Moreover, inactivating mutations in *PRDM1* (6q21) that result in the generation of a severely truncated non functional protein, are found in about 20% of the DLBCLs.²⁹

IV. Supplemental Tables

0	Manakalania fasturas			11q alteration	11q-gain/loss pattern	Defense
Case	Morphologic features	IHC features	MYC-negativity	by cytogenetics	by arrays	Reference paper
Case 1	x	Х	x			
Case 2	x	х	х			
Case 3	x	х	х			
Case 4	x	х	х	х		Pienkowska-Grela et al ¹
Case 5	x	х	x	x		Pienkowska-Grela et al ¹
Case 6	x	х	x	x		Pienkowska-Grela et al ¹
Case 7	x	х	x	x		Pienkowska-Grela et al ¹
Case 8			х	х		
Case 9	x	Х	x			
						Oschlies et al/ Martin-
Case 10			Х		Х	Guerrero et al ^{5,6}
Case 11	x	х	х			
Case 12	x	х	х			
HT			х	x		
SU-DHL-5			x	x		

*Case 10 displayed simultaneously a follicular and diffuse growth pattern. Although its cytology showed features of BL, it was classified as follicular lymphoma grade 3 (minor component) with simultaneous diffuse large B-cell lymphoma (major compartment).^{5,6}

BL: Burkitt Lymphoma; IHC: immunohistochemical.

14

Case	Quality	Growth pattern	Cytology			Bystander		
	morphologic quality	starry sky	cell size	cell polymorphism	cytoplasm	nuclear shape	Burkitt like- chromatin/nucleoli	bystander cells
Case 1/MPI- 626	poor	na	na	Na	na	na	na	na
Case 2	good	1	1	1	1	1	2	1
Case 3	good	1	1	2	1	1	1	1
Case 4	good	1	1	1	1	1	1	1
Case 5	reduced	1	1	1	1	1	1	1
Case 6	poor	1	1	2	1	1	2	na
Case 7	good	1	1	1	1	1	1	1
Case 8	poor	2	1	1	na	1	1	1
Case 9	good	1	1	2	na	1	1	na
Case 10	good	1	1	1	1	1	1	1
Case 11	good	1	1	1	1	2	1	1
Case 12	good	1	1	1	1	1	1	1
MPI-078	good	1	1	1	1	2	2	1
MPI-086	poor	na	na	Na	na	na	na	na
MPI-148	reduced	1	1	1	1	1	2	1
MPI-315	reduced	2	2	1	1	1	2	1
MPI-382	good	1	1	1	1	2	1	1

Supplemental Table 2. Morphological characteristics of the samples included in the study (cohort 2 and cohort 3)

Morphological scoring criteria: in bold=pro-Burkitt/ italics=against Burkitt

growth pattern

starry sky

1= yes (cohesive growth, tingible body macrophages) , 2= no

15

cytology	
----------	--

cell size	1= medium (nuclei similar or smaller than those of histiocytes), 2= large (nuclei larger than those of histiocytes)
cell polymorphism	1= no, 2=yes
cytoplasm	1= narrow , 2= abundant
nuclear shape Burkitt-like chromatin/nucleoli	 1= round, 2= irregular 1= yes (moderately dense chromatin, inconspicuous nucleoli), 2= no (Similar to other lymphomas Centroblastic-like, Immunoblastic-like, Lymphoblastic-like)
bystander	
bystander cells	1= scattered, 2= moderate (clusters >10 cells), 3= abundant (outweigthing lymphoma cells)

na: not available

	Supplemental Table 5. Primer mormation for mutational and methylation analysis				
Exon	Sequence (5´-3´)	length (bp)			
FLI1_exon1_F	TGTAACCGGGTCAATGTGTG	176			
FLI1_exon1_R	GAGAGAGGCCACGTCTTCC				
FLI1_exon2_F	TGAAGAGTGACACTGGGCTTT	298			
FLI1_exon2_R	TTTGTGCCTTCCCCCAAT				
FLI1_exon3_F	GCCTCTGGGCTTTGTCTCTT	206			
FLI1_exon3_R	GCAGCCTGGTTCTCGAATTA				
FLI1_exon4_F	TGCTAACAACGTCTTCTCCTCT	250			
FLI1_exon4_R	GGTACTTGGGCGGCACTTAC				
FLI1_exon5_F	TCCCTCCTCATGTCATCTCC	235			
FLI1_exon5_R	CAAGCTGGTTTTCTGCAACA				
FLI1_exon6_F	GAAGCAGGCGATGCTAATGT	176			
FLI1 exon6 R	CCTGTTCTCCAATCCTGTCC				
FLI1_exon7_F	TGCATTTCTTTCCCTCTTGC	136			
FLI1_exon7_R	TCAACAACTGTGCAGGAAGC				
FLI1 exon8 F	GGTTTTCTTATGGTTGGTACGG	220			
FLI1 exon8 R	CCCACTCAGGTGTCTGGACT				
FLI1 exon9a F	TCTCTGGGCTGAGGTGTTCT	214			
FLI1 exon9a R	ATTCATGTTGGGCTTGCTTT				
FLI1 exon9b F	AAAGCAAGCCCAACATGAAT	264			
FLI1 exon9b R	AGGAAGTGACAGGCATGGAG				
FLI1 exon9c F	CTCCATGCCTGTCACTTCCT	212			
FLI1 exon9c R	TGTTGAGTCCAAAGCATCCA				
ETS1 2 F	AAGGTTCGTGTCTTCCTTGTG	273			
ETS1 2 R	AGTTCAGGTTCCTGGCTTCTC				
ETS1 3 F	AAACAAGAGTTGGCTCTGTTCTG	365			
ETS1 3 R	GAAAGAATGCAGCCCTCATC				
ETS1 4 F	AAGAAAGTCGGATTTCCCC	308			
ETS1 4 R	CTCCTGAAGAAATGCACCG				
ETS1 5 F	GCCTTCTTACAGCCCATTTG	275			
ETS1 5 R	CAGGTGAGAAAATGTGTCTTCC	-			
ETS1 6 F	GTGTCCTCTCTGAGGCTTGG	353			
ETS1 6 R	CCCACCATTGGGTGAGC				
ETS1 7 F	CCAAGATCCTTTTAGGCCAAG	232			
ETS1 7 R	GAAGGAGCCTGAGATTCACTG	-			
ETS1 8 F	GCTTGTCCCACATCATAGGG	476			
ETS1 8 R	AGATGGGAAGGCTGAAACTG				
ETS1 9 F	AATCTGTCCTCCATAAGAGGG	419			
ETS1 9 R	CCTTCCAGGACCCCACC				
ETS1 10 F	TGGGGATTAGCTGCGTAGAG	276			
ETS1 10 R	CTGGAACACGTCATTCAGGC				
ETS1 11 F	TGGGTATAGCATAGGCATAGAAAC	375			
ETS1 11 R	TTCAGAGTCCAACCAACACG	010			
hsa-mir-34h PS-FP	GTGTTTTGTTTGATGGTAGTGGAGTTAGTGATTGTAATT	185			
hsa-mir-34h PS-RP	Biotin-CCAACCATAATAAAACCTCCCCCCATAAAATAAAATC				
hsa-mir-34b PS-seq	ΑΤΑΑΤΤΑGΤΤΑΑΤGΑΤΑΤΤGΤΤΤΑΤ				

Supplemental Table 3. Primer information for mutational and methylation analysis

F: forward; R: reverse; bp: base pairs

Case No.	Alteration	Start*	Stop*	Size (Mb)
COHORT 2			-	
Case 1				
	ampl 1q21.2-q21.2	148685774	148941059	0.26
	gain 2q21.3-q22.1	136125291	137663460	1.54
	gain 3q27.3-q28	189042530	191120493	2.08
	gain 3q29	195204051	199293383	4.09
	loss 4q21.21-q22.1	81489318	93269598	11.78
	gain 4q23-q24	102280753	104354915	2.07
	loss 6q13-q22.2	74993911	118220610	43.23
	gain 7p21.3	11240265	11413684	0.17
	gain 7q34-qter	140514593	158812469	18.30
	gain 8q23.1-q24.22	109813698	134442702	24.63
	gain 11q12.1-q23.3	59689284	119681559	59.99
	loss 11q23.3-qter	119707054	134452384	14.74
	ampl 12q12-q13.12	42863301	47443460	4.58
	gain 13q22.3-q33.2	76775526	104991992	28.22
	loss 13q33.2-qter	104993812	114125098	9.13
	loss 14q32.33	105149735	105346366	0.20
	gain 14q32.33	105613310	106247258	0.63
	gain 18q12.1	28544883	28653780	0.11
	gain 18q12.3-q22.1	39073072	60244448	21.17
	ampl 18q21.1-q22.1	45653539	60244448	14.59
	loss 18q22.1-qter	60252055	76116029	15.86
Case 2				
	gain 1p34.3	35106424	35228372	0.12
	gain 1p14	70156025	70275477	0.12
	loss 2q32.1	188942379	189076699	0.13
	gain 3q21.3	131213377	131327230	0.11
	gain 3q25.32	159758744	159865413	0.11
	gain 3q27.1	184795403	184968811	0.17
	gain 3q29	199232833	199380402	0.15
	gain 7p21.3	11040165	11203172	0.16
	gain 7p15.2	27081809	27213804	0.13
	gain 7p12.3	47931639	48054390	0.12
	gain 7q22.1	98389903	98512841	0.12
	gain 8q24.3	141603380	141717824	0.11
	gain 8q24.3	145924264	146099639	0.18
	gain 10p15.3	62797	903825	0.84
	loss 10q23.2-q23.32	89293858	94120662	4.83
	gain 11q12.1-q23.3	57719840	119962965	62.24

Supplemental Table 4. Global table of copy number alterations (cohort 2 + cohort 3)

	ampl 11q23.3	115475451	119962965	4.49
	loss 11q23.3-qter	119973847	134452384	14.48
	gain 12q24.33	131911167	132064588	0.15
	gain 13q31.3	90765745	91159861	0.39
	gain 14q32.33	105190672	105391419	0.20
	loss 14q32.33	105601397	105867261	0.27
	gain 14q32.33	106255229	106356482	0.10
	gain 15q15.2	41054903	41376506	0.32
	gain 18q21.2	49304445	51292535	1.99
Case 3				
	gain 1q32.1	201704327	202879427	1.18
	gain 3pter-q13.11	237715	105278073	105.04
	ampl 3q12.1-q13.11	99899652	105278073	5.38
	loss 3q13.11-q22.1	105545355	135653661	30.11
	gain 3q22.1-qter	135661150	199380402	63.72
	loss 6q14.3-q24.2	86506785	145521066	59.01
	gain 7p22.2	2375274	2757211	0.38
	loss 8q12.3-q13.2	63919515	69504641	5.59
	gain 10q24.32-q26.3	103736630	135356682	31.62
	loss 11p11.2	44661682	47027619	2.37
	loss 11q23.3-qter	120136046	134452384	14.31
	gain 14q32.33	105196431	106147535	0.95
	loss 15q15.3-q21.1	42638536	42851097	0.21
	gain 18q21.1-q23	43506879	76021279	32.51
	gain 22q12.2	29401354	30291713	0.89
	loss Xp22.33-qter	297864	153177486	152.88
Case 4				
	gain 11q13.1-q23.3	65143127	119833054	54.69
	loss 11q23.3-qter	119874121	134452384	14.58
Case 5				
	gain 7q34-qter	137991760	158811327	20.82
	gain 11q13.4-q24.1	72339170	123014463	50.67
	loss 11q24.1-qter	123021426	134445937	11.42
	gain 12 whole chromosome			
	loss 13q14.3-qter	52139320	114123908	61.98
	loss 17q24.3	65705035	66940878	1.24
Case 6				
	gain 11q13.1-q23.3	64641564	119519782	54.88
	ampl 11q23.3	115922770	119519782	3.60
	loss 11q23.3-qter	119538171	134452384	14.91
	gain 19pter-p13.2	231880	7573593	7.34

Case 7

	gain 11q13.1-q24.1	63779666	121499506	57.72
	loss 11q24.1-qter	121516192	134452384	12.94
	gain 12 whole chromosome			
Case 8				
	gain 7q31.1-qter	113416517	1588214241	45.40
	loss 9q21.11-q31.1	70196160	103751610	33.56
	gain 11q12.1-q24.2	58680791	126956874	68.28
	loss 11q24.2-qter	126977015	135006516	8.03
	gain 12pter-p12.2	1	20891006	20.84
	loss12p12.2-p12.1	20891875	21307564	0.41
	gain 12p12.1-qter	21445461	132289534	110.84
Case 9				
	loss 2q14.3-q31.1	127122505	170503003	43.38
	gain 11q13.1-q23.3	66885327	120439037	53.37
	ampl 11q14.3-q23.3	92942578	120439037	27.50
	loss 11q23.3-qter	120445525	134452384	14.01
	homoz loss 11q24.2-q24.3	127322011	128846569	1.52
Case 10				
	gain 10	0	135374737	135.37
	gain 11q12.1-q23.3	58553066	118931293	60.38
	ampl 11q23.3	117107361	118883140	1.78
	loss 11q23.3-qter	118941150	134452384	15.51
Case 11				
	loss 7p22.2-p22.1	4415401	6829674	2.41
	loss 7q11.21-q11.22	61469275	68687083	7.22
	loss 7q11.22 - q11.23	70246922	75936506	5.69
	loss 7q21.3 - q22.3	94515368	105073913	10.56
	gain 8q24.13 - q24.23	125040422	138214195	13.17
	gain 11q13.1-q23.3	66430840	117939359	51.51
	loss 11q23.3-qter	117999595	134452384	16.45
	loss 19 whole chromosome			
Case 12				
	gain 11q12.1-q23.3	58608311	118452523	59.84
	loss 11q23.3-q25	118452523	134452384	16.00
SU-DHL-5				
	loss 1p36.32-p36.31	4371886	6440078	2.07
	loss 3q13.31	117721944	118017064	0.30
	loss 6pter-p22.1	94649	27222031	27.13
	loss 6q13-qter	74812911	170824447	96.01
	loss 11q23.2	114373214	114527878	0.15
	gain 11q23.2-q23.3	114530818	117966632	3.44
	loss 11q23.3-qter	117980123	134452384	16.47

	gain 12pter-q13.11	20691	46498049	46.48
	gain 13q31.3	90128337	91984789	1.86
	loss 16p13.3	3567612	4346884	0.78
	gain 19pter-p13.2	41898	6181751	6.14
нт				
	loss 2p25.3-p24.1	0	22609737	22.6
	loss 2p23.3	25767848	27139364	1.37
	ampl 2p23.1	30621717	30833375	0.21
	loss 2p23.1-p22.3	30836938	32537678	1.70
	ampl 2p22.3	32541543	33682722	1.14
	loss 2p22.3-p16.2	33687378	53916677	20.23
	gain 2p16.2-16.1	53924856	55183842	1.26
	loss 2p16.1-p15	55194316	61240592	6.04
	ampl 2p15	61244295	61662952	0.42
	loss 2p15-p12	62359975	83064902	20.70
	loss 2q13-q24.1	111902315	155664643	43.76
	loss 4pter-p12	0	48664347	48.66
	gain 10q21.1-q22.2	55364108	75247849	19.88
	ampl 11q14.3	88144006	89725365	1.58
	ampl 11q21	93876132	95108752	1.23
	ampl 11q22.1-q22.3	99835629	103320029	3.48
	ampl 11q23.2	106152997	113742929	7.59
	loss 11q23.2	113768098	114062057	0.29
	ampl 11q23.2-q23.3	114068752	118677633	4.61
	loss 11q23.3-qter	118679677	134452384	15.77
COHORT 3				
MPI-078				
	loss 6q14.1-q21	80482703	110738634	30.26
	loss 9p22.3-p22.1	16388202	18522051	2.13
	gain 11q22.1-q23.3	88473456	118296472	29.82
	ampl11q23.3	117017708	118296472	1.28
	loss 11q23.3-qter	118322247	134452384	16.13
	gain 12pter-q13.11	152505	46627459	46.47
	loss 13q31.3-qter	92499761	113932806	21.43
	gain 14q11.2-q31.3	19570792	88183880	68.61
	loss 14q32.12-qter	91389759	105139439	13.75
	loss 15q11.2	18959894	20286790	1.33
	gain 16p12.3-p11.2	18586418	30940331	12.35
	loss Yp11.31-q11.23	2845473	26798441	23.95
MPI-086				
	loss 1p31.1	78953798	83496487	4.54

	gain 8 whole chromosome			
	loss 9p22.2-p22.1	16995146	18522051	1.53
	loss 9p21.3-p21.2	21899259	25853240	3.95
	gain 11q22.1-q24.1	86049526	115060942	29.01
	loss11q23-q23.3	115205059	115933496	0.73
	gain 11q23.3-q24.1	115933496	122263962	6.33
	loss 11q24.1-qter	122263962	134452384	12.19
	gain 12q13.11-q14.1	46569188	56455000	9.89
	gain 12q23.2-q24.32	101524012	124849229	23.33
	gain 19 whole chromosome			
	loss 20q13.2-q13.31	51561511	54897122	3.34
MPI-148				
	gain 11q12.2-q24.1	60068023	122862967	62.79
	loss 11q24.1-qter	122867926	134452384	11.58
MPI-315	gain 1q21.1-q21.3	143613589	153292828	9.68
	loss 1q32.1-qter	202748873	245280397	42.53
	loss 2pter-p16.1	2250133	60403212	58.15
	gain 2p16.1-p15	60403013	61380667	0.98
	loss 3q13.31-q21.2	117048246	127483269	10.44
	loss 4q12-q12	54654383	54825096	0.17
	loss 4q13.3-q33	74788409	172115114	97.33
	loss 5p15.32-p13.2	5500091	35078858	29.58
	gain 6pter-p25.2	352879	3427043	3.07
	loss 6p25.1-p22.3	5800622	20018591	14.22
	gain 6p22.3-p21.1	20523579	45164736	24.64
	loss 6p12.3-gter	46918395	170799954	123.88
	gain 7 whole chromosome			
	loss 8p23.3-p11.21	20005607	42333716	22.33
	loss 9p24.1-p13.2	8398602	36897415	28.50
	gain 11g23.2-g23.3	115397542	118898368	3.50
	loss 11g23.3-gter	118950353	133706190	14.76
	gain 12g13.3-g13.3	50803968	52714396	1.91
	gain 12g22-g22	92645921	93711389	1.07
	loss 12g22-g24.1	94176856	113932806	19.76
	loss 15g11.2-gter	18959894	100036184	81.08
	loss 16pter-pter	266994	4851459	4 58
	loss 17pter-p11 2	343377	19021902	18 68
	loss 17a22-ater	52616469	78374826	25 76
	loss 18nter-n11 22	168384	9587352	Q 12
	loss 22a11 21_ater	20261707	48860117	28 61
	an X_{1}	08/10200	15//822/0	56 07
	yalli Ayzz. I-yidi	30412332	104402040	50.07

	gain Yp11.31-q11.23	2845473	26798441	23.95
MPI-382				
	gain 1q21.1-qter	143613589	245280397	101.67
	loss 6q14.1-qter	80482703	170799900	90.32
	gain 11q22.3-q24.2	104674037	125152144	20.48
	loss 11q24.2-qter	126924590	133706190	6.78
	gain 13q14.3-qter	50328519	113932806	63.60
	loss 17pter-p11.2	343377	2023038	1.68
	loss 18pter-p11.22	168384	10203413	10.04
	loss 20q13.3-q13.2	48590356	49575686	0.99
	gain Xp11.4-p11.1	41107931	57113775	16.01
MPI-626 [†]				
	gain 2q33.1-33.1	200593235	201799587	1.21
	loss 6q14.1-q22.2	80482703	118016198	37.53
	gain 7q34-q35	140911726	143375452	2.46
	gain 7q35-qter	146949516	157754947	10.81
	gain 11q12.2-q14.1	59931009	78206821	18.28
	gain 11q23.2-q23.3	114823728	119763552	4.94
	loss 11q23.3-qter	119773351	133706190	13.93
	gain 12q13.11-13.11	44606441	47291634	2.69
	loss 13q33.3-qter	106527417	113932806	7.41
	gain 18q12.3-q22.1	41216561	60139386	18.92
	loss 18q22.1-qter	60417711	74870960	14.45

*Annotation hg18/NCBI 36.1; [†]Case MPI-626 corresponds to case 1 from cohort 2.

Supplemental Table 5. Regions of gain/amplification and loss in chromosome 11q and minimal region according to hg18/NCBI 36.1 (cohort 2 and cohort 3)

Analyzed using DNA Analytics/Genotyping Console/Nexus				Analyzed using Nexus			
Case	Alteration	Start	End	Case	Alteration	Start	End
1	gain 11q12.2-q23.3	59744929	119703938	1	gain 11q12.1-q23.3	59689284	119681559
2	gain 11q12.1-q23.3	57743468	119935705	2	gain 11q12.1-q23.3	57719840	119962965
2	ampl 11q23.3	115501782	119935705	2	ampl 11q23.3	115475451	119962965
4	gain 11q13.4-q23.3	72233510	118474726	4	gain 11q13.1-q23.3	65143127	119833054
5	gain 11q13.4-q24.1	72472183	122987191	5	gain 11q13.4-q24.1	72339170	123014463
6	gain 11q13.1-q23.3	64320482	119515306	6	gain 11q13.1-q23.3	64641564	119519782
6	ampl 11q23.3	115930770	119515306	6	ampl 11q23.3	115922770	119519782
7	gain 11q13.3-q24.1	70490787	121042870	7	gain 11q13.1-q24.1	63779666	121499506
8	gain 11q12.1-q24.2	58437367	126462084	8	gain 11q12.1-q24.2	58680791	126956874
9	gain 11q13.1-q23.3	66841504	120212444	9	gain 11q13.1-q23.3	66885327	120439037
9	ampl 11q14.3-q23.3	89390459	120212444	9	ampl 11q21-q23.3	92942578	120439037
10	gain 11q12.1-q23.3	58686057	118931293	10	gain 11q12.1-q23.3	58553066	118883140
10	ampl 11q23.3	117207811	118931293	10	ampl 11q23.3	117107361	118883140
11	gain 11q13.1-q23.3	66537264	117930644	11	gain 11q13.1-q23.3	66375228	117939359
12	gain 11q12.1-q23	58608311	118452523	12	gain 11q12.1-q23	58608311	118452523
SU-DHL-5	gain 11q23.2-q23.3	114528073	117977645	SU-DHL-5	gain 11q23.2-q23.3	114530818	117966632
нт	ampl 11q14.3	88135598	89721310	нт	ampl 11q14.3	88144006	89725365
HT	gain 11q21	93878519	95107104	HT	ampl 11q21	93876132	95108752
нт	ampl 11q22.1-q22.3	99775174	103373313	нт	ampl 11q22.1-q22.3	99835629	103320029
нт	gain 11q22.3-q23.2	106159402	113765153	нт	ampl 11q23.2	106152997	113742929
нт	ampl 11q22.3-q23.2	107292911	113765153				
нт	ampl 11q23.2-q23.3	114062136	118676746	нт	ampl 11q23.2-q23.3	114068752	118677633
MPI-078	gain 11q22.1-q23.3	100393958	118220300	MPI-078	gain 11q14.3-q23.3	88473456	118296472
				MPI-078	ampl 11q23.3	117017708	118296472
MPI-086	gain 11q22.1-q24.1	100393958	122299458	MPI-086	gain 11q14.2-q23.2	86049526	115060942
				MPI-086	gain 11q23.3-q24.1	115933496	122263962
MPI-148	gain 11q12.2-q14.1	61393968	78206821	MPI-148	gain 11q12.2-q24.1	60068023	122862967
MPI-148	gain 11q23.3-q24.1	116204676	122299458				
MPI-315	gain 11q23.2-q23.3	115397542	118898368	MPI-315	not analyzed by Nexus		
MPI-382	gain 11q22.3-q24.2	104674037	125152144	MPI-382	not analyzed by Nexus		
MPI-626	gain 11q12.2-q14.1	59931009	78206821	MPI-626	not analyzed by Nexus		
MPI-626	gain 11q23.2-q23.3	114823728	119763552				
Mini	mal region of gain/amplifi	cation		Minin	nal regions of gain/amplifi	cation	
		Start	End			Start	End
MR gain		114528073	117930644	MR gain		114530818	117939359
MR ampl		117207811	117930644	MR ampl		117107361	117939359

Case	Alteration	Start	End	Case Alteration		Start	End
1	loss 11q23.3-qter	119710170	134449982	1	loss 11q23.3-qter	119707054	134452384
2	loss 11q23.3-qter	119940234	134324199	2	loss 11q23.3-qter	119973847	134452384
3	loss 11q23.3-qter	120642730	134335292	3	loss 11q23.3-qter	120136046	134452384
4	loss 11q23.3-qter	119882984	134432465	4	loss 11q23.3-qter	119874121	134452384
5	loss 11q24.1-qter	122999748	134432465	5	loss 11q24.1-qter	123021426	134445937
6	loss 11q23.3-qter	119524200	134432465	6	loss11q23.3-qter	119538171	134452384
7	loss 11q24.1-qter	121083826	134432324	7	loss 11q24.1-qter	121516192	134452384
8	loss 11q24.2-qter	126482225	134451988	8	loss 11q24.2-qter	126977015	135006516
9	loss 11q23.3-qter	120445552	134451988	9	loss 11q23.3-qter	120445525	134452384
9	homoz loss 11q24.2-q24.3	127322011	128846569	9	homoz loss 11q24.2-q24.3	127322011	128846569
10	loss 11q23.3-qter	118936999	134431956	10	loss 11q23.3-qter	118941150	134452384
11	loss 11q23.3-qter	117956255	134451988	11	loss 11q23.3-qter	117999595	134452384
12	loss 11q23.3-qter	118452523	134451988	12 loss 11q23.3-qter		118452523	134452384
SU-DHL-5	loss 11q23.3	114376008	114527684	SU-DHL-5	loss 11q23.2	114373214	114527878
SU-DHL-5	loss 11q23.3-qter	117982577	134449982	SU-DHL-5	loss 11q23.3-qter	117980123	134452384
нт	loss 11q23.2	113771043	114061954	HT	loss 11q23.2	113768098	114062057
нт	loss 11q23.3-qter	118681608	134449982	HT	loss 11q23.3-qter	118679677	134452384
MPI-078	loss 11q23.3-qter	118258492	133706190	MPI-078	loss 11q23.3-qter	118322247	134452384
MPI-086	loss 11q24.1-qter	123265158	133706190	MPI-086	loss 11q23.2-q23.3	115205059	115933496
				MPI-086	loss 11q24.1-qter	122263962	134452384
MPI-148	loss 11q24.1-qter	123265158	133706190	MPI-148	loss 11q24.1-qter	122867926	134452384
MPI-315	loss 11q23.3-qter	118950353	133706190	MPI-315	not analyzed by nexus		
MPI-382	loss 11q24.2-qter	126924590	133706190	MPI-382	not analyzed by nexus		
MPI-626	loss 11q23.3-qter	119773351	133706190	MPI-626	not analyzed by nexus		
Minimal reg	ion of loss			Min	imal region of loss		
		Start	End			Start	End
MR loss		126482225	134324199	MR loss		126977015	134445937
MR homoz	loss	127322011	128846569	MR homoz loss		127322011	128846569

ampl: amplification; homoz loss: homozygous loss; MR: minimal region. Bold positions delineate minimal regions of gain and loss.

Supplemental Table 6. Comparison of immunohistochemical and genetic features between cases with 11q gain-loss pattern (cohort 3) (n=6) and *IG-MYC* mBL (n=46) and DLBCL (n=198). 11q samples and DLBCL controls were compared by Fishers exact test.

	<i>IG-MYC</i> positive mBL n=46	11q <i>MYC</i> -negative n=6	DLBCL n=198	<i>P</i> -value (11q vs DLBCL)
Gender	n (%)			
Female	11(24%)	1(17%)	89(45%)	
Male	35(76%)	5(83%)	108(55%)	
CD20				
Neg	0	1(17%)	11(6%)	
Pos	46(100%)	5(83%)	186(94%)	
CD10				
Neg	1(2%)	1(17%)	133(69%)	
Pos	43(98%)	5(83%)	59(31%)	<i>P</i> =.014
CD5				
Neg	41(93%)	5(100%)	158(86%)	
Pos	3(7%)	0(0%)	25(14%)	
BCL2				
Neg	37(86%)	4(80%)	33(17%)	<i>P</i> =.005
Pos	6(14%)	1(20%)	157(83%)	
BCL2INT				
0	34(81%)	4(80%)	20(11%)	<i>P</i> <.001
1	6(14%)	1(20%)	65(35%)	
2	1(2%)	0(0%)	71(38%)	
3	1(2%)	0(0%)	30(16%)	
BCL6				
Neg	2(5%)	0(0%)	39(21%)	
Pos	41(95%)	6(100%)	147(79%)	
MUM1				
Neg	23(56%)	3(60%)	53(28%)	
Pos	18(44%)	2(40%)	133(72%)	
HLADR				
Neg	10(24%)	2(40%)	30(17%)	
Pos	31(66%)	3(60%)	151(76%)	
KI67				
Low (<90)	3(7%)	1(17%)	145(76%)	
High (>90)	42(93%)	5(83%)	47(24%)	<i>P</i> =.005
MYC status				
IG-MYC	46(100%)	0(0%)	6(3%)	
Neg	0(0%)	6(100%)	179(90%)	
non-IG-MYC			13(7%)	
t(14;18)				
Neg	45(98%)	6(100%)	175(88%)	
Pos	1(2%)	0(0%)	23(12%)	
BCL6 break	х <i>ў</i>			
Neg	45(98%)	6(100%)	151(78%)	
Pos	0(0%)	0 (0%)	43(22%)	
MALT1 break				
Neg	45(100%)	5(100%)	188(99%)	
Pos			1(1%)	
IGH break			() -)	

Neg	2(4%)	4(67%)	117(62%)	
Pos	44(96%)	2(33%)	73(38%)	
GEP				
GCB/ABC				
ABC	0(0%)	0(0%)	61(31%)	
GCB	41(89%)	6(100%)	88(44%)	<i>P</i> =.04
unclassified	5(11%)	0(0%)	49(25%)	
Molecular				
diagnosis				
intermediate	0(0%)	3(50%)	29(15%)	
mBL	46(100%)	3(50%)	0(0%)	<i>P</i> <.001
non-mBL	0(0%)	0(0%)	169(85%)	
COMAP				
BL-PAP	46(100%)	3(50%)	0(0%)	<i>P</i> <.001
mind-L	0(0%)	2(33%)	43(22%)	
PAP-1	0(0%)	1(17%)	84(42%)	
PAP-2	0(0%)	0(0%)	23(12%)	
PAP-3	0(0%)	0(0%)	26(13%)	
PAP-4	0(0%)	0(0%)	22(11%)	

The scoring for BCL2 intensity (int) is as follows: 1=weaker than T-cells, 2=equal than T-cells, 3= stronger than T-cells.

Supplemental Table 7. Differentially expressed genes between cases with 11q-gain/loss pattern (cohort 3) (n=6) and IG-MYC mBL (n=46)						
Differentially ex	pressed gen	es in the 11q minimal region of gain between cases	with 11q-gai	n/loss pattern a	and <i>IG-MYC</i> BL	
affy_hg_u133a	symbol	description	logFC	adj.P.Val	gene expression status	Chr Band
204912_at	IL10RA	interleukin 10 receptor, alpha	1,678075	5,51E-09	upReg_in_11q	11q23
200054_at	ZNF259	zinc finger protein 259	0,527004	6,01E-06	upReg_in_11q	11q23.3
_		platelet-activating factor acetylhydrolase 1b, catalytic				
210160_at	PAFAH1B2	subunit 2 (30kDa)	0,356262	3,77E-05	upReg_in_11q	11q23
204251_s_at	CEP164	centrosomal protein 164kDa	0,307823	0,005803	upReg_in_11q	11q23.3
56256_at	SIDT2	SID1 transmembrane family, member 2	0,507588	0,034517	upReg_in_11q	11q23.3
218765_at	SIDT2	SID1 transmembrane family, member 2	0,285941	0,040985	upReg_in_11q	11q23.3
Differentially ex	pressed gen	es in the 11q minimal region of loss between cases	with 11q-gai	n/loss pattern a	and IG-MYC BL	
affy_hg_u133a	symbol	description	logFC	adj.P.Val	gene expression status	Chr Band
204236_at	FLI1	Friend leukemia virus integration 1	-0,94562	1,12E-05	downReg_in_11q	11q24.3
208703_s_at	APLP2	amyloid beta (A4) precursor-like protein 2	-0,99233	8,07E-05	downReg_in_11q	11q24
208248_x_at	APLP2	amyloid beta (A4) precursor-like protein 2	-0,85109	9,35E-05	downReg_in_11q	11q24
208704_x_at	APLP2	amyloid beta (A4) precursor-like protein 2	-0,80842	9,35E-05	downReg_in_11q	11q24
218491_s_at	THYN1	thymocyte nuclear protein 1	-0,62595	0,000474	downReg_in_11q	11q25
221669_s_at	ACAD8	acyl-CoA dehydrogenase family, member 8	-0,49925	0,001474	downReg_in_11q	11q25
212789_at	NCAPD3	non-SMC condensin II complex, subunit D3	-0,51814	0,001519	downReg_in_11q	11q25
213028_at	NFRKB	nuclear factor related to kappaB binding protein	-0,24125	0,001533	downReg_in_11q	11q25
210786 s at	FLI1	Friend leukemia virus integration 1	-0,77575	0,002557	downReg in 11g	11q24.3
202359 s at	SNX19	sorting nexin 19	-0,27369	0,006075	downReg in 11q	11q25
216905 s at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-0,66041	0,006449	downReg in 11g	11g25
206968 s at	NFRKB	nuclear factor related to kappaB binding protein	-0.34033	0.006665	downReg in 11g	11a24.3
208702 x at	API P2	amyloid beta (A4) precursor-like protein 2	-0.69365	0.007253	downReg in 11g	11a24
219515 at	PRDM10	PR domain containing 10	-1,13288	0.013345	downReg in 11g	11a25
214875 x at	API P2	amyloid beta (A4) precursor-like protein 2	-0.67563	0.013626	downReg in 11g	11a24
211404 s at	APLP2	amyloid beta (A4) precursor-like protein 2	-0 61154	0.020152	downReg in 11g	11a24
202005 at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-0 52252	0.029694	downReg in 11g	11024.3
202358 s at	SNX19	sorting nexin 19	-0 21391	0.047999	downReg in 11g	11a25
Differentially ex	pressed gen	es at 11g between cases with 11g-gain/loss pattern	and IG-MVC	BI		11920
affy ba u133a	symbol	description		adi D Val	gono expression status	Chr Band
204012 of		interleukin 10 receptor, alaba	1 679075	5 51 E 00		
204912_at	IL IUNA	glycerophosphodiester phosphodiesterase domain	1,070075	5,51L-09	upreg_in_rrq	11425
213343 s at	GDPD5	containing 5	0,688361	1,23E-07	upReg in 11q	11q13.4
217841 s at	PPME1	protein phosphatase methylesterase 1	0,444862	2,24E-07	upReg in 11q	11q13.4
202038 at	UBE4A	ubiguitination factor E4A (UFD2 homolog, yeast)	0,797761	7,37E-07	upReg in 11g	11g23.3
	GRAMD1B	GRAM domain containing 1B	0,506668	8,24E-07	upReg in 11g	11g24.1
-		glycerophosphodiester phosphodiesterase domain		,		·
32502_at	GDPD5	containing 5	0,765595	9,07E-07	upReg_in_11q	11q13.4
200054_at	ZNF259	zinc finger protein 259	0,527004	6,01E-06	upReg_in_11q	11q23.3
217958_at	TRAPPC4	trafficking protein particle complex 4	0,890066	6,23E-06	upReg_in_11q	11q23.3
201059_at	CTTN	cortactin	0,736431	1,01E-05	upReg_in_11q	11q13
204236_at	FLI1	Friend leukemia virus integration 1	-0,94562	1,12E-05	downReg_in_11q	11q24.3
49077_at	PPME1	protein phosphatase methylesterase 1	0,325646	1,28E-05	upReg_in_11q	11q13.4
201176_s_at	ARCN1	archain 1	0,841908	1,37E-05	upReg_in_11q	11q23.3
214073_at	CTTN	cortactin	0,366337	1,37E-05	upReg_in_11q	11q13
_		RAS guanyl releasing protein 2 (calcium and DAG-				
214369_s_at	RASGRP2	regulated)	-1,0788	2,11E-05	downReg_in_11q	11q13
218531_at	TMEM134	transmembrane protein 134	0,605611	2,88E-05	upReg_in_11q	11q13.2
214724_at	DIXDC1	DIX domain containing 1	0,673977	3,41E-05	upReg_in_11q	11q23.1
219304_s_at	PDGFD	platelet derived growth factor D	1,115638	3,58E-05	upReg_in_11q	11q22.3
210160 -		platelet-activating factor acetylhydrolase 1b, catalytic	0.256262	2 775 05	unBog in 11g	11000
210100_al		Suburin 2 (JUKDa)	0,000202	3,11E-00		11a22 2
21/909_S_at	IRAPPU4	tranicking protein particle complex 4	0,007000	3,30E-U5	uprceg_In_11q	11q23.3
207213_s_at	052	ubiquitin specific peptidase 2	1,013/0/	5,/1E-05	upkeg_in_11q	11q23.3
209572_s_at	EED	embryonic ectoderm development	0,810704	6,09E-05	upReg_in_11q	11q14.2

		RAS guanyl releasing protein 2 (calcium and DAG-				
208206_s_at	RASGRP2	regulated)	-0,93394	8,07E-05	downReg_in_11q	11q13
208703_s_at	APLP2	amyloid beta (A4) precursor-like protein 2 ATP synthase, H+ transporting, mitochondrial Fo	-0,99233	8,07E-05	downReg_in_11q	11q24
207573_x_at	ATP5L	complex, subunit G	0,667454	9,35E-05	upReg_in_11q	11q23.3
208248_x_at	APLP2	amyloid beta (A4) precursor-like protein 2	-0,85109	9,35E-05	downReg_in_11q	11q24
208704_x_at	APLP2	amyloid beta (A4) precursor-like protein 2	-0,80842	9,35E-05	downReg_in_11q	11q24
218774_at	DCPS	decapping enzyme, scavenger ATP synthase, H+ transporting, mitochondrial Fo	-0,65704	9,35E-05	downReg_in_11q	11q24.2
208746_x_at	ATP5L	complex, subunit G dolichyl-phosphate (UDP-N-acetylglucosamine) N- acetylglucosaminephosphotransferase 1 (GlcNAc-1-	0,681039	0,00024	upReg_in_11q	11q23.3
209509_s_at	DPAGT1	P transferase) ATP synthase, H+ transporting, mitochondrial Fo	0,505537	0,00024	upReg_in_11q	11q23.3
210453_x_at	ATP5L	complex, subunit G	0,661902	0,000444	upReg_in_11q	11q23.3
218491_s_at	THYN1	thymocyte nuclear protein 1	-0,62595	0,000474	downReg_in_11q	11q25
222209_s_at	TMEM135	transmembrane protein 135	1,013816	0,000502	upReg_in_11q	11q14.2
203494_s_at	CEP57	centrosomal protein 57kDa	0,531437	0,000558	upReg_in_11q	11q21
209798_at	NPAT	nuclear protein, ataxia-telangiectasia locus	0,495181	0,000813	upReg_in_11q	11q22.3
221669_s_at	ACAD8	acyl-CoA dehydrogenase family, member 8	-0,49925	0,001474	downReg_in_11q	11q25
212789_at	NCAPD3	non-SMC condensin II complex, subunit D3	-0,51814	0,001519	downReg_in_11q	11q25
213028_at	NFRKB	nuclear factor related to kappaB binding protein	-0,24125	0,001533	downReg_in_11q	11q24.3
	ZNF202	zinc finger protein 202	-0,35395	0,001587	downReg_in_11q	11q23.3
206530 at	RAB30	RAB30, member RAS oncogene family	0,38094	0,001746	upReg in 11g	11q14.1
203330 s at	STX5	syntaxin 5	0,264077	0,001913	upReg in 11g	11g12.3
		vacuolar protein sorting 37 homolog C (S.	,	,		•
219053_s_at	VPS37C	cerevisiae)	0,313245	0,0023	upReg_in_11q	11q12.2
210786_s_at	FLI1	Friend leukemia virus integration 1	-0,77575	0,002557	downReg_in_11q	11q24.3
202996_at	POLD4	polymerase (DNA-directed), delta 4	0,798108	0,004118	upReg_in_11q	11q13
209694_at	PTS	6-pyruvoyltetrahydropterin synthase phosphatidylinositol binding clathrin assembly	0,747131	0,004316	upReg_in_11q	11q22.3
212506_at	PICALM	protein	0,415084	0,005442	upReg_in_11q	11q14
204251_s_at	CEP164	centrosomal protein 164kDa	0,307823	0,005803	upReg_in_11q	11q23.3
201494_at	PRCP	prolylcarboxypeptidase (angiotensinase C)	0,467707	0,005821	upReg_in_11q	11q14
202359_s_at	SNX19	sorting nexin 19	-0,27369	0,006075	downReg_in_11q	11q25
212568_s_at	DLAT	dihydrolipoamide S-acetyltransferase	0,653693	0,006245	upReg_in_11q	11q23.1
216905_s_at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-0,66041	0,006449	downReg_in_11q	11q24.3
206968_s_at	NFRKB	nuclear factor related to kappaB binding protein intraflagellar transport 46 homolog	-0,34033	0,006665	downReg_in_11q	11q24.3
218483_s_at	IFT46	(Chlamydomonas)	0,350362	0,006707	upReg_in_11q	11q23.3
203391_at	FKBP2	FK506 binding protein 2, 13kDa	0,335952	0,006804	upReg_in_11q	11q13.1
202076_at	BIRC2	baculoviral IAP repeat containing 2	0,431788	0,007051	upReg_in_11q	11q22
208702_x_at	APLP2	amyloid beta (A4) precursor-like protein 2 ArfGAP with RhoGAP domain, ankyrin repeat and	-0,69365	0,007253	downReg_in_11q	11q24
34206_at	ARAP1	PH domain 1	0,317264	0,007366	upReg_in_11q	11q13.4
210538_s_at	BIRC3	baculoviral IAP repeat containing 3	1,110038	0,007493	upReg_in_11q	11q22
216250_s_at	LPXN	leupaxin	0,610693	0,007722	upReg_in_11q	11q12.1
201119_s_at	COX8A	cytochrome c oxidase subunit VIIIA (ubiquitous)	0,445603	0,008009	upReg_in_11q	11q13.1
203491_s_at	CEP57	centrosomal protein 57kDa	0,518688	0,008215	upReg_in_11q	11q21
1861_at	BAD	BCL2-associated agonist of cell death	0,282945	0,008511	upReg_in_11q	11q13.1
204757_s_at	C2CD2L	C2CD2-like	0,216491	0,01	upReg_in_11q	11q23.3
 216615_s_at	HTR3A	5-hydroxytryptamine (serotonin) receptor 3A translocase of inner mitochondrial membrane 8	0,351571	0,010081	upReg_in_11q	11q23.1
218357_s_at	TIMM8B	homolog B (yeast)	0,579248	0,010347	upReg_in_11q	11q23.1
213149_at	DLAT	dihydrolipoamide S-acetyltransferase	0,555759	0,010535	upReg_in_11q	11q23.1
219515_at	PRDM10	PR domain containing 10	-1,13288	0,013345	downReg_in_11q	11q25
	ZNF202	zinc finger protein 202	-0,1852	0,013414	downReg_in_11q	11q23.3
214211 at	FTH1	ferritin, heavy polypeptide 1	0,598449	0,013606	upReg in 11q	11a13
	APLP2	amyloid beta (A4) precursor-like protein 2 MRE11 meiotic recombination 11 homolog A (S	-0,67563	0,013626	downReg_in_11q	11q24
205395_s_at	MRE11A	cerevisiae)	0,380975	0,014142	upReg_in_11q	11q21

203252_at	CDK2AP2	cyclin-dependent kinase 2 associated protein 2	0,578801	0,014145	upReg_in_11q	11q13
209364_at	BAD	BCL2-associated agonist of cell death	0,299575	0,014521	upReg_in_11q	11q13.1
203620_s_at	FCHSD2	FCH and double SH3 domains 2	-0,5122	0,014803	downReg_in_11q	11q13.4
208289_s_at	EI24	etoposide induced 2.4 mRNA	-0,3896	0,015367	downReg_in_11q	11q24
218314_s_at	C11orf57	chromosome 11 open reading frame 57	0,288811	0,015399	upReg_in_11q	11q23.1
220964_s_at	RAB1B	RAB1B, member RAS oncogene family myeloid/lymphoid or mixed-lineage leukemia	0,265311	0,015707	upReg_in_11q	11q12
212080_at	MLL	(trithorax homolog, Drosophila)	0,440896	0,015933	upReg_in_11q	11q23
209428_s_at	ZFPL1	zinc finger protein-like 1	0,189295	0,017234	upReg_in_11q	11q13
219806_s_at	C11orf75	chromosome 11 open reading frame 75	0,644553	0,017642	upReg_in_11q	11q21
200748_s_at	FTH1	ferritin, heavy polypeptide 1	0,565409	0,017656	upReg_in_11q	11q13
219021_at	RNF121	ring finger protein 121	0,208214	0,019922	upReg_in_11q	11q13.4
211404_s_at	APLP2	amyloid beta (A4) precursor-like protein 2 ATP synthase, H+ transporting, mitochondrial Fo	-0,61154	0,020152	downReg_in_11q	11q24
208745_at	ATP5L	complex, subunit G membrane-spanning 4-domains, subfamily A,	0,452209	0,020371	upReg_in_11q	11q23.3
217418_x_at	MS4A1	member 1 membrane-spanning 4-domains, subfamily A,	-0,9361	0,022052	downReg_in_11q	11q12
210356_x_at	MS4A1	member 1	-0,94168	0,022471	downReg_in_11q	11q12
220934_s_at	TMEM223	transmembrane protein 223 nuclear paraspeckle assembly transcript 1 (non-	0,325398	0,024934	upReg_in_11q	11q12.3
214657_s_at	NEAT1	protein coding) protein phosphatase 1, catalytic subunit, alpha	0,383265	0,02784	upReg_in_11q	11q13.1
200846_s_at	PPP1CA	isozyme	0,428579	0,0292	upReg_in_11q	11q13
202005_at	ST14	suppression of tumorigenicity 14 (colon carcinoma)	-0,52252	0,029694	downReg_in_11q	11q24.3
210656_at	EED	embryonic ectoderm development	0,450205	0,029694	upReg_in_11q	11q14.2
203040_s_at	HMBS	hydroxymethylbilane synthase ArfGAP with RhoGAP domain, ankyrin repeat and	0,395019	0,030187	upReg_in_11q	11q23.3
212516_at	ARAP1	PH domain 1	0,275375	0,030918	upReg_in_11q	11q13.4
214251_s_at	NUMA1	nuclear mitotic apparatus protein 1	-0,6312	0,032008	downReg_in_11q	11q13
56256_at	SIDT2	SID1 transmembrane family, member 2	0,507588	0,034517	upReg_in_11q	11q23.3
214074_s_at	CTTN	cortactin	0,177746	0,03607	upReg_in_11q	11q13
203532_x_at	CUL5	cullin 5	0,235816	0,036078	upReg_in_11q	11q22.3
205436_s_at	H2AFX	H2A histone family, member X	0,54258	0,037799	upReg_in_11q	11q23.3
217002_s_at	HTR3A	5-hydroxytryptamine (serotonin) receptor 3A leucine rich repeat and fibronectin type III domain	0,275376	0,037823	upReg_in_11q	11q23.1
219491_at	LRFN4	containing 4	-0,60122	0,03893	downReg_in_11q	11q13.2
211150_s_at	DLAT	dihydrolipoamide S-acetyltransferase	0,568386	0,040695	upReg_in_11q	11q23.1
218765_at	SIDT2	SID1 transmembrane family, member 2 myeloid/lymphoid or mixed-lineage leukemia	0,285941	0,040985	upReg_in_11q	11q23.3
216624_s_at	MLL	(trithorax homolog, Drosophila)	0,238159	0,043089	upReg_in_11q	11q23
202358_s_at	SNX19	sorting nexin 19	-0,21391	0,047999	downReg_in_11q	11q25
209581_at	PLA2G16	phospholipase A2, group XVI tRNA methyltransferase 11-2 homolog (S.	0,371652	0,049396	upReg_in_11q	11q12.3
217774_s_at	TRMT112	cerevisiae)	0,364092	0,049559	upReg_in_11q	11q13.1
204164_at	SIPA1	signal-induced proliferation-associated 1	0,357053	0,049819	upReg_in_11q	11q13

logFC: log fold change; adj.P.Val: adjusted p-value; downReg: downregulated; upReg: upregulated

Supplemental T	able 8. Differe	ntially expressed genes between cases with 11q-ga	ain/loss pattern	(cohort 3) (n=6) and DLBCL (n=198)	
Differentially ex	pressed gene	es in the 11q minimal region of gain between cas	ses with 11q-g	ain/loss patte	rn and DLBCL	
affy_hg_u133a	symbol	description	logFC	adj.P.Val	gene expression status	Chr Band
210160 at	PAFAH1B2	catalytic subunit 2 (30kDa)	0 3549459	3 47E-05	upRea in 11a	11a23
200054 at	7NF259	zinc finger protein 259	0 6010693	6.65E-05	upReg in 11g	11a23.3
204251 s at	CEP164	centrosomal protein 164kDa	0 3548958	0,002,00	upReg_in_11g	11023.3
Differentially ex	pressed gene	es in the 11g minimal region of loss between cas	es with 11a-a	ain/loss patter	rn and DI BCI	11925.5
	pressea gene		ses with rid g		gene expression	
affy_hg_u133a	symbol	description	logFC	adj.P.Val	status	Chr Band
221669_s_at	ACAD8	acyl-CoA dehydrogenase family, member 8	-0,602787	4,07E-05	downReg_in_11q	11q25
204236_at	FLI1	Friend leukemia virus integration 1	-0,942324	0,0007944	downReg_in_11q	11q24.3
219515_at	PRDM10	PR domain containing 10	0,4111526	0,0031113	upReg_in_11q	11q25
218491_s_at	THYN1	thymocyte nuclear protein 1	-0,584312	0,0062082	downReg_in_11q	11q25
202359_s_at	SNX19	sorting nexin 19	-0,319848	0,0116245	downReg_in_11q	11q25
202358_s_at	SNX19	sorting nexin 19	-0,277251	0,0117535	downReg_in_11q	11q25
210786_s_at	FLI1	Friend leukemia virus integration 1 ADAM metallopeptidase with thrombospondin	-0,689029	0,0150662	downReg_in_11q	11q24.3
20677_s_at	ADAMTS8	type 1 motif, 8	-0,152753	0,0494953	downReg_in_11q	11q25
Differentially ex	pressed gene	es at 11q between cases with 11q-gain/loss patte	ern and DLBC	L		
					gene expression	
affy_hg_u133a	symbol	description	logFC	adj.P.Val	status	Chr Band
207213_s_at	USP2	ubiquitin specific peptidase 2	0,9782071	1,75E-12	upReg_in_11q	11q23.3
205412_at	ACAT1	acetyl-CoA acetyltransferase 1 ATP synthase, H+ transporting, mitochondrial Fo	1,2478204	3,53E-09	upReg_in_11q	11q22.3
207573_x_at	ATP5L	complex, subunit G	0,9815732	5,59E-09	upReg_in_11q	11q23.3
208746_x_at	ATP5L	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit G	1,0297151	1,05E-08	upReg_in_11q	11q23.3
210453 x at	ATP5I	complex subunit G	0 9972158	1 37E-08	upRea in 11a	11a23 3
203040 s at	HMBS	hydroxymethylbilane synthase	0.8000295	5.95E-08	upReg in 11g	11a23.3
204266 s at	СНКА	choline kinase alpha	0.6064674	1 40E-07	upReg in 11g	11a13.2
218281 at	MRPI 48	mitochondrial ribosomal protein I 48	0 7914415	2 57E-06	upReg_in_11g	11013.4
222209 s at		transmembrane protein 135	0 9954209	5.62E-06	upReg_in_11g	11q10.4
209310_s_at	CASP4	caspase 4, apoptosis-related cysteine peptidase	-0,900248	1,12E-05	downReg_in_11q	11q22.3
208745 at	ATP5L	complex. subunit G	0.737387	1.21E-05	upReg in 11g	11a23.3
211150 s at	DIAT	dihydrolipoamide S-acetyltransferase	0.94146	1.25E-05	upReg in 11g	11a23.1
218314_s_at	C11orf57	chromosome 11 open reading frame 57	0,5146329	1,55E-05	upReg_in_11q	11q23.1
218483_s_at	IFT46	(Chlamydomonas)	0,4791343	2,62E-05	upReg_in_11q	11q23.3
205449_at	SAC3D1	SAC3 domain containing 1 translocase of inner mitochondrial membrane 8	0,9570918	3,06E-05	upReg_in_11q	11q13.1
218357_s_at	TIMM8B	homolog B (yeast) platelet-activating factor acetylhydrolase 1b,	0,8751176	3,07E-05	upReg_in_11q	11q23.1
210160_at	PAFAH1B2	catalytic subunit 2 (30kDa)	0,3549459	3,47E-05	upReg_in_11q	11q23
21669_s_at	ACAD8	acyl-CoA dehydrogenase family, member 8	-0,602787	4,07E-05	downReg_in_11q	11q25
200054_at	ZNF259	zinc finger protein 259	0,6010693	6,65E-05	upReg_in_11q	11q23.3
209694_at	PTS	6-pyruvoyltetrahydropterin synthase	0,9481615	7,58E-05	upReg_in_11q	11q22.3
212568_s_at	DLAT	dihydrolipoamide S-acetyltransferase	0,9515238	0,0001165	upReg_in_11q	11q23.1
217958_at	TRAPPC4	trafficking protein particle complex 4	0,7829267	0,0001208	upReg_in_11q	11q23.3
204251_s_at	CEP164	centrosomal protein 164kDa	0,3548958	0,0001943	upReg_in_11q	11q23.3
220934_s_at	TMEM223	transmembrane protein 223 polymerase (DNA directed), alpha 2 (70kD	0,429785	0,0003356	upReg_in_11q	11q12.3
<u>2</u> 04441_s_at	POLA2	subunit)	0,5943025	0,0003477	upReg_in_11q	11q13.1
204233_s_at	CHKA	choline kinase alpha	0,5190812	0,0003966	upReg_in_11q	11q13.2
214724_at	DIXDC1	DIX domain containing 1	0,5618571	0,0003994	upReg_in_11q	11q23.1
202038 at	UBE4A	ubiguitination factor E4A (UFD2 homolog, yeast)	0,6837696	0,0005622	upReg in 11g	11g23.3

213149_at	DLAT	dihydrolipoamide S-acetyltransferase
217774 s at	TRMT112	tRNA methyltransferase 11-2 homolog (S. cerevisiae)
204236 at	FLI1	Friend leukemia virus integration 1
202170 s at	AASDHPPT	aminoadipate-semialdehyde dehydrogenase- phosphopantetheinyl transferase
203103 s at	PRPF19	PRP19/PSO4 pre-mRNA processing factor 19 homolog (S. cerevisiae)
200100_0_ut	00057	cleavage and polyadenylation specific factor 7,
217000_at	CP3F7	
200957_s_at	SSRP1	structure specific recognition protein 1
201119_s_at	COX8A	cytochrome c oxidase subunit VIIA (ubiquitous)
217841_s_at	PPME1	protein phosphatase methylesterase 1 polymerase (RNA) II (DNA directed) polypeptide
202306_at	POLR2G	G
204218_at	C11orf51	chromosome 11 open reading frame 51
221712_s_at	WDR74	WD repeat domain 74
213330_s_at	STIP1	stress-induced-phosphoprotein 1
219769_at	INCENP	inner centromere protein antigens 135/155kDa myeloid/lymphoid or mixed-lineage leukemia
212076_at	MLL	(trithorax homolog, Drosophila) MRE11 meiotic recombination 11 homolog A (S.
205395_s_at	MRE11A	cerevisiae)
217959_s_at	TRAPPC4	trafficking protein particle complex 4 membrane-spanning 4-domains, subfamily A,
210356_x_at	MS4A1	member 1 membrane-spanning 4-domains, subfamily A,
217418_x_at	MS4A1	member 1
		protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin),
202065_s_at	PPFIA1	alpha 1
209032_s_at	CADM1	cell adhesion molecule 1
49077_at	PPME1	protein phosphatase methylesterase 1
204757_s_at	C2CD2L	C2CD2-like
204767_s_at	FEN1	flap structure-specific endonuclease 1
219515_at	PRDM10	PR domain containing 10
201176_s_at	ARCN1	archain 1
218734_at	NAA40	N(alpha)-acetyltransferase 40, NatD catalytic subunit, homolog (S. cerevisiae)
200918_s_at	SRPR	signal recognition particle receptor (docking protein)
212080_at	MLL	myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
219162_s_at	MRPL11	mitochondrial ribosomal protein L11
211986_at	AHNAK	AHNAK nucleoprotein
212397_at	RDX	radixin
205436_s_at	H2AFX	H2A histone family, member X
208619_at	DDB1	damage-specific DNA binding protein 1, 127kDa
209798_at	NPAT	nuclear protein, ataxia-telangiectasia locus protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin),
210236_at	PPFIA1	alpha 1
203491_s_at	CEP57	centrosomal protein 57kDa
218491_s_at	THYN1	thymocyte nuclear protein 1
217980_s_at	MRPL16	mitochondrial ribosomal protein L16 myeloid/lymphoid or mixed-lineage leukemia
216624_s_at	MLL	(trithorax homolog, Drosophila)
218774_at	DCPS	decapping enzyme, scavenger
204768_s_at	FEN1	flap structure-specific endonuclease 1
221818_at	INTS5	integrator complex subunit 5 TATA box binding protein (TBP)-associated
221580_s_at	TAF1D	factor, RNA polymerase I, D, 41kDa
202645_s_at	MEN1	multiple endocrine neoplasia I

0,7956132	0,0007382	upReg_in_11q	11q23.1
0,662946	0,0007466	upReg_in_11q	11q13.1
-0,942324	0,0007944	downReg_in_11q	11q24.3
0,6202666	0,0008132	upReg_in_11q	11q22
0,5934282	0,0009286	upReg_in_11q	11q12.2
0,4739024	0,0009613	upReg_in_11q	11q12.2
0,6256101	0,0011505	upReg_in_11q	11q12
0,554285	0,001162	upReg_in_11q	11q13.1
0,3831073	0,0012401	upReg_in_11q	11q13.4
0,6241404	0,0012498	upReg_in_11q	11q13.1
0,4460535	0,0012687	upReg_in_11q	11q13.4
0,4779026	0,0012687	upReg_in_11q	11q12.3
0,6279378	0,0014284	upReg_in_11q	11q13
0,3002023	0,001461	upReg_in_11q	11q12.3
0,4436059	0,0018087	upReg_in_11q	11q23
0,6067197	0,0018587	upReg_in_11q	11q21
0,6957569	0,0021022	upReg_in_11q	11q23.3
-1,288255	0,0021938	downReg_in_11q	11q12
-1 264078	0 0023069	downReg in 11g	11012
1,204070	0,0020000	down.cog_n_11q	11912
0.2399142	0.0023772	upReg in 11g	11a13.3
0 7988333	0 0026265	upReg in 11g	11g23 2
0.3329125	0.002796	unReg in 11g	11a13.4
0 2190684	0.0028128	unReg in 11g	11a23 3
0,2100004	0,0020120	upReg_in_11g	11012
0,7300502	0,0020400	upreg_in_11q	11072
0,4111320	0,0031113	upreg_in_11q	11420
0,5765224	0,0033718	upReg_in_11q	11423.3
0,365137	0,0040586	upReg_in_11q	11q13.1
-0,557199	0,004249	downReg_in_11q	11q24.2
0,456507	0,004249	upReg_in_11q	11q23
0,5186287	0,0042961	upReg_in_11q	11q13.3
-0,910851	0,0043516	downReg_in_11q	11q12.2
-0,886068	0,0043808	downReg_in_11q	11q23
0,8504199	0,0044803	upReg_in_11q	11q23.3
0,4281291	0,0047419	upReg in 11g	11g12.2
0 4925735	0 0049464	upReg in 11g	11a22 3
0,1020100	0,0010101	ap: :0 <u>9_</u> : :4	
0,278476	0,0053127	upReg_in_11q	11q13.3
0,6608241	0,0059996	upReg_in_11q	11q21
-0,584312	0,0062082	downReg_in_11q	11q25
0,4996882	0,0062715	upReg_in_11q	11q12.1
0.2662181	0.0069172	upReg in 11a	11a23
-0.509863	0.0071109	downRea in 11a	11a24 2
0 7525314	0.0077506	upReg in 11g	11n12
0 295263	0.0084659	upReg in 11g	110123
0,200200	0,000-000	""_""_""	11912.0
0,6899697	0,0085511	upReg_in_11q	11q21
0,439182	0,0086418	upReg_in_11q	11q13

220613_s_at	SYTL2	synaptotagmin-like 2 ZW10_kinetochore.associated_homolog	0,2965953	0,0091833	upReg_in_11q	11q14
204812 at	ZW10	(Drosophila)	0,294103	0,0094026	upReg in 11g	11g23.2
204977 at	DDX10	DEAD (Asp-Glu-Ala-Asp) box polypeptide 10	0,455369	0,0097333	upReg in 11g	11g22.3
212525 s at	H2AFX	H2A histone family, member X	0.5503475	0.0100177	upReg in 11g	11a23.3
200956 s at	SSRP1	structure specific recognition protein 1	0 6316079	0.0109471	upReg in 11g	11a12
220998 s at	UNC93B1	unc-93 homolog B1 (C. elegans)	-0.340523	0.0110751	downReg in 11g	11q12
202350 s at	SNX19	sorting nevin 19	-0 319848	0.0116245	downReg_in_11g	11025
202358 s at	SN/210	sorting nexin 10	-0,313040	0,0117535	downReg_in_11g	11q25
202030_5_at	5NA 19 0002010	protoin phosphataso 2 regulatory subunit A bota	0,277231	0,0117333	uowinteg_in_11q	11023.2
202003_5_at	FFFZNID	protein phosphatase 1, regulatory (inhibitor)	0,5070517	0,0122307	upreg_iii_i iq	11423.2
212680_x_at	PPP1R14B	subunit 14B N(alpha)-acetyltransferase 40. NatD catalytic	0,6687539	0,0129027	upReg_in_11q	11q13
222369 at	NAA40	subunit, homolog (S. cerevisiae)	0,5182417	0,0135619	upReg in 11q	11q13.1
203494_s_at	CEP57	centrosomal protein 57kDa	0,4972319	0,0137427	upReg_in_11q	11q21
		NADH dehydrogenase (ubiquinone) Fe-S protein				
203190_at	NDUFS8	8, 23kDa (NADH-coenzyme Q reductase)	0,5311954	0,0139541	upReg_in_11q	11q13
204828_at	RAD9A	RAD9 homolog A (S. pombe)	0,2119539	0,0141123	upReg_in_11q	11q13.2
53968_at	INTS5	integrator complex subunit 5	0,3620342	0,014615	upReg_in_11q	11q12.3
210786_s_at	FLI1	Friend leukemia virus integration 1	-0,689029	0,0150662	downReg_in_11q	11q24.3
209572_s_at	EED	embryonic ectoderm development	0,701465	0,0153376	upReg_in_11q	11q14.2
211042_x_at	MCAM	melanoma cell adhesion molecule	0,4593377	0,0160341	upReg_in_11q	11q23.3
202886_s_at	PPP2R1B	protein phosphatase 2, regulatory subunit A, beta	0,5394457	0,01658	upReg_in_11q	11q23.2
214074 s at	CTTN	cortactin	0,1667822	0,0166839	upReg in 11g	11q13
203119 at	CCDC86	coiled-coil domain containing 86	0.4950085	0.0189621	upReg in 11g	11a12.2
218906 x at	KLC2	kinesin light chain 2	0 2888295	0.0195307	upReg in 11g	11g13 2
		cysteine and histidine-rich domain (CHORD)	0,2000200	0,0100001	ap:::09 : : 4	
218566_s_at	CHORDC1	containing 1	0,6585327	0,0203891	upReg_in_11q	11q14.3
		NADH dehydrogenase (ubiquinone) flavoprotein				
208714_at	NDUFV1	1, 51kDa	0,4862397	0,0210139	upReg_in_11q	11q13
200846 s at		protein phosphatase 1, catalytic suburiit, alpha	0 4665403	0 0217548	unPeg in 11g	11013
200040_3_at	TTTTCA	caspase 1 apoptosis-related cysteine peptidase	0,4003403	0,0217340	upriceg_iii_ i iq	11415
209970_x_at	CASP1	(interleukin 1, beta, convertase)	-0,741733	0,0218502	downReg_in_11q	11q23
204178 s at	RBM14	RNA binding motif protein 14	0,405609	0,0230713	upReg in 11g	11g13.2
205267 at	POU2AF1	POU class 2 associating factor 1	0.8399652	0.0236727	upReg in 11g	11a23.1
208712 at	CCND1	cvclin D1	-0.498926	0.0241934	downReg in 11g	11a13
		myeloid/lymphoid or mixed-lineage leukemia	-,	-,	55	
212078_s_at	MLL	(trithorax homolog, Drosophila)	0,2568695	0,0251639	upReg_in_11q	11q23
		fucosyltransferase 4 (alpha (1,3)				
209892_at	FU14	fucosyltransferase, myeloid-specific)	-0,370716	0,0263634	downReg_in_11q	11q21
32502 at	GDPD5	domain containing 5	0 5406836	0 0268002	unRea in 11a	110134
210125 c at	BANE1	barrier to autointegration factor 1	0,5400000	0,0200002	upReg_in_11q	11013.4
210125_5_at		ordenucloses domain containing 1	0,0010000	0,0271700	upreg_in_11q	11013.1
212575_al	ENDODI		0,4900090	0,0290231	upreg_in_inq	11q21
204969_S_at	RDX	radixin NADH debydrogonaso (ubiguinono) Eo S protoin	-0,384763	0,0295712	downReg_in_11q	11q23
203189 s at	NDUES8	8 23kDa (NADH-coenzyme Q reductase)	0 4661644	0 0300055	upRea in 11a	11a13
218531 at	TMEM134	transmembrane protein 134	0.4318852	0.0303758	unReg in 11g	11013.2
210001_00	THE WIST	caspase 1, apoptosis-related cysteine peptidase	0,4010002	0,0000700	upiteg_in_i i iq	11910.2
211367 s at	CASP1	(interleukin 1, beta, convertase)	-0,806784	0,0312463	downReg in 11q	11q23
		REX2, RNA exonuclease 2 homolog (S.				
218194_at	REXO2	cerevisiae)	0,5793743	0,0314286	upReg_in_11q	11q23.2
040070		myeloid/lymphoid or mixed-lineage leukemia	0.0500.000	a aaaaa (-		44.00
212079_s_at	MLL	(trithorax homolog, Drosophila)	0,3532438	0,0328347	upReg_in_11q	11q23
203853_s_at	GAB2	GRB2-associated binding protein 2	-0,43939	0,0343981	downReg_in_11q	11q14.1
		protein tyrosine prosphatase, receptor type, f nolypentide (PTPRE) interacting protein (liprin)				
210235 s at	PPFIA1	alpha 1	0.2600899	0.0344788	upReg in 11a	11a13 3
206495 s at	HINFP	histone H4 transcription factor	0 2077073	0.0350076	upReg in 11g	11a23.3
205011 at	V/M/D5A	von Willebrand factor & domain containing 54	-0 284002	0 0358018	downReg in 11g	1102/ 1
21/780 v of	SPSES	serine/arginine_rich splicing factor 9	0,204600	0.0361394	unReg in 11g	11000
200001 c ct	DDOOF		0,5094599	0,0301304		11422
∠uuusi_s_at	RP323	nuosomai protein 525	0,4048306	0,03/1200	uprkeg_in_11q	11q23.3

214073_at	CTTN	cortactin	0,1964462	0,0372901	upReg_in_11q	11q13
	0500000	serpin peptidase inhibitor, clade G (C1 inhibitor),	4 000750	0.0074044		
200986_at	SERPING1	member 1	-1,092758	0,0374944	downReg_in_11q	11q12.1
212398_at	RDX	radixin	-0,538168	0,0380011	downReg_in_11q	11q23
200019_s_at	FAU	Finkel-Biskis-Reilly murine sarcoma virus (FBR- MuSV) ubiquitously expressed caspase 1, apoptosis-related cysteine peptidase	0,4888132	0,0381046	upReg_in_11q	11q13
206011_at	CASP1	(interleukin 1, beta, convertase)	-0,586665	0,0408942	downReg_in_11q	11q23
49111_at	ARRB1	arrestin, beta 1	-0,213388	0,0408942	downReg_in_11q	11q13
209862_s_at	CEP57	centrosomal protein 57kDa	0,4338938	0,0411261	upReg_in_11q	11q21
202978_s_at	CREBZF	CREB/ATF bZIP transcription factor phosphatidylinositol binding clathrin assembly	0,391999	0,042303	upReg_in_11q	11q14
203134_at	PICALM	protein	0,2562355	0,0423501	upReg_in_11q	11q14
210102_at	VWA5A	von Willebrand factor A domain containing 5A translocase of inner mitochondrial membrane 10	-0,28035	0,0423501	downReg_in_11q	11q24.1
218408_at	TIMM10	homolog (yeast)	0,4226004	0,0445603	upReg_in_11q	11q12.1
200619_at	SF3B2	splicing factor 3b, subunit 2, 145kDa	0,331762	0,044694	upReg_in_11q	11q13.1
209030_s_at	CADM1	cell adhesion molecule 1	0,924763	0,0455815	upReg_in_11q	11q23.2
221277_s_at	PUS3	pseudouridylate synthase 3	-0,285858	0,0466813	downReg_in_11q	11q24.2
221637_s_at	C11orf48	chromosome 11 open reading frame 48 caspase 1. apoptosis-related cysteine peptidase	0,4580805	0,0469024	upReg_in_11q	11q12.3
211366_x_at	CASP1	(interleukin 1, beta, convertase) caspase 1 apoptosis-related cysteine peptidase	-0,653807	0,0476959	downReg_in_11q	11q23
211368_s_at	CASP1	(interleukin 1, beta, convertase)	-0,750575	0,0482096	downReg_in_11q	11q23
221622_s_at	TMEM126B	transmembrane protein 126B ADAM metallopeptidase with thrombospondin	0,4878169	0,0484394	upReg_in_11q	11q14.1
220677_s_at	ADAMTS8	type 1 motif, 8	-0,152753	0,0494953	downReg_in_11q	11q25
218641_at	C11orf95	chromosome 11 open reading frame 95	0,3267782	0,0499187	upReg_in_11q	11q13

<u>218641_at</u> <u>C110r95</u> chromosome 11 open reading frame 95 0,3267782 0,0 logFC: log fold change; adj.P.Val: adjusted p-value; ; downReg: downregulated; upReg: upregulated

Case	Mutation type	Position [*]	$\mathbf{Ref} \mathbf{nt}^{\dagger}$	Obs nt	Predominant allele		Effect [‡]	SIFT prediction (score [¶])	Polyphen prediction
Case 1	unmutated	-	-	-	-	-	-	-	-
Case 2	unmutated	-	-	-	-	-	-	-	-
Case 3	splice site	127897017	G	А	mut		-	-	-
Case 4	non-mutated								
Case 5	missense	127897075	С	G	mut		P9A	Tolerated (0.07)	Probably damaging
	silent	127838731	С	Т	wt		G331G	-	-
Case 6	unmutated	-	-	-	-	-	-	-	-
Case 7	missense	127897036	G	А	wt		E22K	Tolerated (0.09)	Benign
	missense	127855487	С	Т	balanced		S267F	Tolerated (0.70)	Benign
	silent	127860006	С	Т	mut homo		D204D	-	-
Case 8	nonsense	127861193	Т	А	mut		Y154X	-	-
Case 9	not applicable#								
Case 10	unmutated	-	-	-	-	-	-	-	-
Case 11	unmutated	-	-	-	-	-	-	-	-
Case 12	not done								
MPI-078	unmutated	-	-	-	-	-	-	-	-
MPI-086	unmutated	-	-	-	-	-	-	-	-
MPI-148	not done								
MPI-315	unmutated	-	-	-	-	-	-	-	-
MPI-382	unmutated								
SU-DHL-5	unmutated	-	-	-	-	-	-		-
HT	unmutated	-	-	-	-	-	-	_	-

Supplemental Table 9. Mutational study on the ETS1 gene.

*Numbering according to the Human Genome hg18 assembly; [†]Minus strand;[‡]Numbering according to GenBank accesion No. NP_005229.1 (protein); [¶]Threshold for intolerance is 0.05; [#]Case 9 showed a homozygous deletion including *ETS1* Abbreviations: Ref nt, reference nucleotide; Obs nt, observed nucleotide.

35

V. Supplemental figures

Supplemental Figure 1. Case 10 presented with follicular (A, C, D) and diffuse (B, E, F) growth pattern. This finding including the presence of follicular dendritic cells prompted the pathology panel in the review blinded for molecular analysis to diagnose a follicular lymphoma with transformation to DLBCL. The diffuse areas however, show small blasts with a narrow rim of cytoplasm and a starry sky pattern (B). The proliferation is more than 90% (C+E). (A+B Hematoxin and Eosin, C+E Ki67, D+F CD21).

Supplemental Figure 2. 11q alterations in *MYC***-negative lymphomas classified as BL by both gene expression classifiers.** Chromosome 11 profile of MMML cases MPI-086 (A) and MPI-382 (B). (C) Proportion of gain and losses along chromosomes of cases MPI-086 and MPI-382. Blue columns indicate chromosomal gain, whereas red columns indicate loss of genetic material.

Supplemental Figure 4. 11q alterations in cohort 2 and cohort 3. Diagrams of (A) focal homozygous deletion of 11q24.2-q24.3 of case 9 from the cohort 2 (B) breakpoint region defined as change from gain to loss at chromosome 11. Fragile sites FRAG11G and FRAG11B location region according to Fechter *et al*²⁵ are indicated as green and orange lines, respectively.

Supplemental Figure 5. Survival analysis in the *MYC***-negative 11q lymphomas.** Kaplan-Meier analysis comparing cases with the 11q-gain/loss pattern (cohort 2 and cohort 3, n=16) with *IG-MYC* positive mBL cases (<=40 years, n=51).

Supplemental Figure 6. Differentially expressed genes located in the minimal region of gain chr11:114530818-117939359 (n=47 probesets). Comparison of GEP of the cases with 11q alterations (cohort 3) (n=6) *versus* (A) *IG-MYC* mBL (n=46) and (B) DLBCL (n=198). Probesets with FDR < 0.1 are shown in red. Vertical lines indicate univariate 95% confidence intervals for the fold changes between the two compared groups. (C) Western blot showing the protein expression level of the *PAFAH1B2* gene which lie within the minimal region of gain on chromosome 11q, in different cell lines. Asterisks indicate those cell lines with known 11q aberration.

Remark: The MLMA cell line also shows the typical pattern of 11q aberration identified in this paper (see: http://www.sanger.ac.uk/genetics/CGP/CellLines/, and data not shown). As it has been described as "hairy cell leukemia" or "hairy cell B-cell lymphoma" (<u>http://cellbank.nibio.go.jp/legacy/celldata/jcrb0146.htm</u>)³⁰ it has not been used for definition of the minimal regions throughout this paper.

Supplemental Figure 7. Differentially expressed genes located in the minimal region of loss chr11: 126,977,015-134,445,937 (n=44 probesets). Comparison of the GEP of the cases with 11q-gain/loss pattern (cohort 3) (n=6) *versus* (A) *IG-MYC* molecular BL (n=46) and (B) DLBCL (n=198). Probesets with FDR < 0.1 are shown in red. Vertical lines indicate univariate 95% confidence intervals for the fold changes between the two compared groups. (C) Non-synonymous mutations detected on the *ETS1* gene, corresponding to three transitions and two transversions. In total, three mutations were missense, one was located in the splice donor site of the intron 1 and another one was an inactivating mutation (p.Y154X).

Supplemental Figure 8. GEP analysis of 11q-gain/loss pattern versus *IG-MYC* BL and DLBCL. Heatmap of Top 250 differentially expressed genes (A) *IG-MYC* BL (n=46) versus cohort 3 (n=6) (B) DLBCL (n=198) versus cohort 3 (n=6).

Supplemental Figure 9. **Cluster analysis.** (A) Clear separation between 11q-gain/loss pattern (red) and *IG-MYC* BL samples (blue) with no group-interference. Distance calculation based on Top 250 differentially expressed genes. (B) Clear separation between 11q-gain/loss pattern (red) and DLBCL samples (blue) with only MPI-315 appearing closer related to the DLBCL. Distance calculation based on Top 250 differentially expressed genes.

Supplemental Figure 10. Scatter Plot of the PI3K pathway activity against MYC activation index in human BL.³¹ Cases were classified as molecular BL (mBL), intermediate, and non-mBL in the original study and shown as red, grey and blue dots respectively. Cases with 11q-gain/loss pattern are represented with a cross.

VI. Supplemental references

- 1. Pienkowska-Grela B, Rymkiewicz G, Grygalewicz B et al. Partial trisomy 11, dup(11)(q23q13), as a defect characterizing lymphomas with Burkitt pathomorphology without MYC gene rearrangement. *Med Oncol.* 2011;28(4):1589-1595.
- Rymkiewicz G, Walewski J, Blachnio K et al. MYC negative BL with a partial trisomy 11, dup(11)(q23.3q13.1). Can inverted duplication of CCND1, ATM and MLL genes be a substitute for MYC translocations? *Unpublished*. 2013
- 3. Hummel M, Bentink S, Berger H et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. *N Engl J Med.* 2006;354(23):2419-2430.
- 4. Bentink S, Wessendorf S, Schwaenen C et al. Pathway activation patterns in diffuse large B-cell lymphomas. *Leukemia*. 2008;22(9):1746-1754.
- Oschlies I, Salaverria I, Mahn F et al. Pediatric follicular lymphoma--a clinico-pathological study of a population-based series of patients treated within the Non-Hodgkin's Lymphoma--Berlin-Frankfurt-Munster (NHL-BFM) multicenter trials. *Haematologica*. 2010;95(2):253-259.
- Martin-Guerrero I, Salaverria I, Burkhardt B et al. Recurrent loss of heterozygosity in 1p36 associated with TNFRSF14 mutations in IRF4 translocation negative pediatric follicular lymphomas. *Haematologica*. 2013;98(8):1237-1241.
- 7. Swerdlow S, Campo E, Harris N et al (Editors). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, 2008.
- Nagel I, Akasaka T, Klapper W et al. Identification of the gene encoding cyclin E1 (CCNE1) as a novel IGH translocation partner in t(14;19)(q32;q12) in diffuse large B-cell lymphoma. *Haematologica*. 2009;94(7):1020-1023.
- 9. Korn JM, Kuruvilla FG, McCarroll SA et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. *Nat Genet.* 2008;40(10):1253-1260.
- 10. Kreuz M, Rosolowski M, Berger H et al. Development and implementation of an analysis tool for array-based comparative genomic hybridization. *Methods Inf Med.* 2007;46(5):608-613.
- 11. Li H, Handsaker B, Wysoker A et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. 2009;25(16):2078-2079.
- 12. Jones DT, Jager N, Kool M et al. Dissecting the genomic complexity underlying medulloblastoma. *Nature*. 2012;488(7409):100-105.
- 13. Richter J, Schlesner M, Hoffmann S et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. *Nat Genet.* 2012;44(12):1316-1320.
- 14. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 2010;38(16):e164.
- 15. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*. 2010;26(6):841-842.

- 16. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Stat Appl Genet Mol Biol.* 2004;Article 3.
- 17. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society, Series B (Methodological).* 1995;57:289-300.
- Pollard K, Dudoit S, van der Laan M. Multiple Testing Procedures: R multitest Package and Applications to Genomics. Bioinformatics and Computational Biology Solutions Using R and Bioconductor.: Springer; 2005:251-272.
- Wang X, Terfve C, Rose JC, Markowetz F. HTSanalyzeR: an R/Bioconductor package for integrated network analysis of high-throughput screens. *Bioinformatics*. 2011;27(6):879-880.
- 20. Leucci E, Cocco M, Onnis A et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. *J Pathol.* 2008;216(4):440-450.
- 21. Biggar RJ, Nkrumah FK, Henle W, Levine PH. Very late relapses in patients with Burkitt's lymphoma: clinical and serologic studies. *J Natl Cancer Inst.* 1981;66(3):439-444.
- 22. Koduru PR, Offit K, Jhanwar SC. Molecular analysis of structural chromosome changes affecting chromosome band 11q23. *Dis Markers*. 1989;7(3):145-152.
- 23. Mikraki V, Jhanwar SC, Filippa DA, Wollner N, Chaganti RS. Distinct patterns of chromosome abnormalities characterize childhood non-Hodgkin's lymphoma. *Br J Haematol.* 1992;80(1):15-20.
- 24. Poirel HA, Cairo MS, Heerema NA et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin's lymphoma: results of the FAB/LMB 96 international study. *Leukemia*. 2009;23(2):323-331.
- 25. Fechter A, Buettel I, Kuehnel E, Savelyeva L, Schwab M. Common fragile site FRA11G and rare fragile site FRA11B at 11q23.3 encompass distinct genomic regions. *Genes Chromosomes Cancer.* 2007;46(1):98-106.
- 26. Krug U, Ganser A, Koeffler HP. Tumor suppressor genes in normal and malignant hematopoiesis. *Oncogene*. 2002;21(21):3475-3495.
- 27. Mackereth CD, Scharpf M, Gentile LN et al. Diversity in structure and function of the Ets family PNT domains. *J Mol Biol.* 2004;342(4):1249-1264.
- 28. Oricchio E, Nanjangud G, Wolfe AL et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. *Cell.* 2011;147(3):554-564.
- 29. Pasqualucci L, Compagno M, Houldsworth J et al. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. *J Exp Med.* 2006;203(2):311-317.
- 30. Saito Y, Miyagawa Y, Onda K et al. B-cell-activating factor inhibits CD20-mediated and B-cell receptor-mediated apoptosis in human B cells. *Immunology*. 2008;125(4):570-590.
- 31. Sander S, Calado DP, Srinivasan L et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. *Cancer Cell.* 2012;22(2):167-179.