Supporting Information

Enantioselective Michael Addition/Iminium Ion Cyclization Cascades of Tryptamine-Derived Ureas

Isabelle Aillaud, David M. Barber, Amber L. Thompson and Darren J. Dixon

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

darren.dixon@chem.ox.ac.uk

Contents

1. General experimental	3
2. Practical experimental	5
2.1 Synthesis and characterisation of tryptamine derived ureas 5	5
2.2 Synthesis and characterisation of cyclised products 9	15
3. ¹ H and ¹³ C NMR spectra of tryptamine derived ureas 5	33
4. ¹ H and ¹³ C NMR spectra of cyclised products 9	61
5. HPLC traces of cyclised products 9	107
6. Single crystal X-ray diffraction data of 9r	130

1. General experimental

All non-aqueous reactions were conducted using oven-dried glassware and were magnetically stirred unless otherwise stated. Yields refer to chromatographically purified and spectroscopically pure compounds, unless otherwise stated.

1.1 Solvents and reagents

Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the appropriate pressure. Reagents used were obtained from commercial suppliers or purified according to standard procedures. Triethylamine was distilled from calcium hydride under a positive pressure of dry nitrogen and stored over potassium hydroxide. Tryptamines,¹ tryptamine-derived thiourea **5h**,² tryptamine-derived urea **5i**,³ unsaturated ketones **6c-d**⁴ and catalysts **10**⁵ were prepared according to reported procedures. Petroleum ether (PE) refers to distilled light petroleum of fraction 30 - 40 °C. Anhydrous dichloromethane and toluene were dried by filtration through activated alumina (powder ~150 mesH; pore size 58Å, basic) columns. Deuterated solvents were used as supplied.

1.2 Chromatography

Reactions were monitored by thin layer chromatography (TLC) using Merck silica gel 60 F254 plates and visualised by fluorescence quenching under UV light. In addition, TLC plates were stained with *p*-anisaldehyde. Chromatographic purification was performed on VWR 60 silica gel 40-63 µm using technical grade solvents that were used as supplied.

1.3 Melting points

Melting points were obtained on a Leica Galen III Hot-stage melting point apparatus and microscope and are uncorrected.

1.4 NMR spectra

NMR spectra were recorded on a Bruker Spectrospin spectrometer operating at 400 MHz or 500 MHz (¹H acquisitions) and 100 MHz or 125 MHz (¹³C acquisitions). Chemical shifts (δ) are reported in ppm with the solvent resonance as the internal standard (e.g. DMSO δ 2.50 ppm for ¹H and 39.52 ppm for ¹³C). Coupling constants (*J*) are reported in hertz (Hz). Data are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dt = doublet of triplets, td = triplet of doublets, m = multiplet, br. s. = broad signal, coupling constants in Hz, integration, assignment. Two-dimensional

¹ M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J. Dixon, *J. Am. Chem. Soc.* **2009**, *131*, 10796–10797.

² R. J. Herr, J. L. Kuhler, H. Meckler, C. J. Opalka, *Synthesis* **2000**, *11*, 1569-1574.

³ S. A. Rogers, D. C. Whitehead, T. Mullikin, C. Melander, Org. Biomol. Chem. 2010, 8, 3857–3859.

⁴ L. A. Batory, C. E. McInnis, J. T. Njardarson, J. Am. Chem. Soc. 2006, 128, 16054–16055.

⁵ R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84–86.

spectroscopy (COSY, HSQC and HMBC) was used to assist in the assignment. The data are not reported.

1.5 Mass spectra

Low-resolution mass spectra (ESI) were recorded on a Waters LCT Premier XE Micromass mass spectrometer. High-resolution mass spectra (ESI) were recorded on Bruker Daltonics MicroTOF mass spectrometer. High-resolution mass spectra (EI) were recorded on a Bruker FT-ICR Apex III mass spectrometer.

1.6 Infrared spectra

Infrared spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer as a thin film on a sodium chloride plate. Only selected maximum absorbances are reported.

1.7 Determination of enantiomeric excesses

Enantiomeric excesses were determined using high performance liquid chromatography (HPLC) performed on Agilent Technologies 1200 Series or 1260 Infinity Series systems (column and solvent conditions are given for each compound).

1.8 Optical rotations

Optical rotations were recorded using a Perkin-Elmer 241 polarimeter; specific rotation (SR) $([\alpha]_D^{23})$ are reported in 10⁻¹ deg cm²g⁻¹; concentrations (*c*) are quoted in g/100 mL; D refers to the D-line of sodium (589 nm), temperatures (*T*) are given in degrees Celsius (°C).

All atom numbering used in this section is arbitrary and does not follow any particular convention.

2. Practical experimental

2.1 Synthesis of starting materials

2.1.1 General procedure I for the preparation of tryptamine-derived ureas 5a-g

Concentrated HCl (37% in water, 1.2 eq.) was added to tryptamine (1.0 eq.) at 0 °C and the mixture was dissolved in refluxing ethanol (1.05 mL/mmol). The solution was cooled to room temperature and added to a solution of KOCN (1.2 eq.) dissolved in distilled water (1.05 mL/mmol). The resulting mixture was stirred at room temperature for the indicated time. The reaction mixture was then concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel to afford the desired ureas **5a-g**.

2.1.1.1 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl]urea 5a

The title compound was synthesised according to general procedure **I**. Tryptamine (10.0 g, 62.4 mmol) was reacted with KOCN (6.08 g, 74.9 mmol) in ethanol (65 mL) and water (65 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **5a** in 55% yield (7.03 g) as a white powder.

m.p. 140-142 °C; **IR** (neat) v=3413, 3376, 3344, 3146, 1637, 1552, 1455, 1348, 1088, 747, 737; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.83 (br. s., 1H; NH indole), 7.55 (d, *J*=7.5 Hz, 1H; H6), 7.36 (d, *J*=7.5 Hz, 1H; H9), 7.15 (d, *J*=2.5 Hz, 1H; H11), 7.08 (td, *J*=7.5, 1.0 Hz, 1H; H8), 6.99 (td, *J*=7.5, 1.0 Hz, 1H; H7), 6.01-5.98 (m, 1H; NH urea), 5.49 (br. s., 2H; NH₂ urea), 3.30 (q, *J*=7.5 Hz, 2H; H2), 2.81 (t, *J*=7.5 Hz, 2H; H3); ¹³**C NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =158.8 (C1), 136.3 (C10), 127.3 (C5), 122.6 (C11), 120.9 (C8), 118.4 (C7), 118.2 (C6), 112.0 (C4), 111.4 (C9), 39.6 (C2), 26.1 (C3); **MS** *m*/*z* (ES+) 226 ([M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₁H₁₃N₃NaO⁺) requires *m*/*z* 226.0951, found *m*/*z* 226.0956.

2.1.1.2 Synthesis and characterisation of 1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea 5b

The title compound was synthesised according to general procedure **I**. 5-Methoxytryptamine (500 mg, 2.63 mmol) was reacted with KOCN (256 mg, 3.16 mmol) in ethanol (2.8 mL) and water (2.8 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5b** in 52% yield (307 mg) as a brown powder.

m.p. 141-143 °C; **IR** (neat) v=3489, 3385, 3184, 1655, 1608, 1491, 1455, 1215, 800, 702; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.65 (br. s., 1H; NH indole); 7.23 (d, *J*=8.5 Hz, 1H; H10), 7.10 (d, *J*=1.5 Hz, 1H; H12), 7.04 (d, *J*=2.0 Hz, 1H; H6), 6.72 (dd, *J*=8.5, 2.0, Hz, 1H; H9), 5.96 (br. s., 1H; NH urea), 5.45 (br. s., 2H; NH₂ urea), 3.76 (s, 3H; H8), 3.28-3.25 (m, 2H; H2), 2.76 (t, *J*=7.0 Hz, 2H; H3); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =158.7 (C1), 152.9 (C7), 131.4 (C11), 127.6 (C5), 123.3 (C12), 111.9 (C10), 111.8 (C4), 111.0 (C9), 100.2 (C6), 55.3 (C8), 39.5 (C2), 26.1 (C3); **MS** *m*/*z* (ES+) 489 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₂H₁₅N₃NaO₂⁺) requires *m*/*z* 256.1056, found *m*/*z* 256.1058.

2.1.1.3 Synthesis and characterisation of 1-[2-(5-fluoro-1H-indol-3-yl)ethyl]urea 5c

The title compound was synthesised according to general procedure **I**. 5-Fluorotryptamine (500 mg, 2.81 mmol) was reacted with KOCN (274 mg, 3.37 mmol) in ethanol (3.0 mL) and water (3.0 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5c** in 53% yield (330 mg) as a brown powder.

m.p. 159-161 °C; **IR** (neat) v=3501, 3343, 3305, 1694, 1634, 1580, 1118, 935, 774; ¹H NMR (500 MHz, $[D_6]DMSO$, 25 °C) δ =10.92 (br. s., 1H; NH indole); 7.33 (dd, *J*=9.0, 4.5 Hz, 1H; H8), 7.30 (dd, *J*=10.0, 2.5 Hz, 1H; H6), 7.22 (d, *J*=2.0 Hz, 1H; H11), 6.91 (td, *J*=9.0, 2.5 Hz, 1H; H9), 5.96 (br. s., 1H; NH urea), 5.44 (br. s., 2H; NH₂ urea), 3.23-3.19 (m, 2H; H2), 2.75 (t, *J*=7.0 Hz, 2H; H3); ¹³C NMR (125 MHz, $[D_6]DMSO$, 25 °C) δ =158.7 (C1), 156.1 (d, *J*=229 Hz, C7),

132.9 (C5), 127.5 (d, J=10 Hz, C10), 124.8 (C11), 112.4 (d, J=5 Hz, C4), 112.2 (d, J=10 Hz, C8), 108.9 (d, J=25 Hz, C9), 103.0 (d, J=25 Hz, C6), 48.6 (C2), 26.0 (C3); **MS** m/z (ES+) 465 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₁H₁₂FN₃NaO⁺) requires m/z 244.0857, found m/z 244.0862.

2.1.1.4 Synthesis and characterisation of 1-[2-(5-chloro-1H-indol-3-yl)ethyl]urea 5d

The title compound was synthesised according to general procedure **I**. 5-Chlorotryptamine (500 mg, 2.16 mmol) was reacted with KOCN (211 mg, 2.59 mmol) in ethanol (2.3 mL) and water (2.3 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5d** in 49% yield (252 mg) as a pale yellow powder.

m.p. 169-171 °C; **IR** (neat) v=3481, 3440, 3345, 1646, 1553, 1333, 1100, 796, 662; ¹H NMR (500 MHz, $[D_6]DMSO$, 25 °C) δ =11.06 (br. s., 1H; NH indole), 7.59 (d, *J*=2.0 Hz, 1H; H6), 7.36 (d, *J*=8.5 Hz, 1H; H9), 7.23 (s, 1H; H11), 7.06 (dd, *J*=8.5, 2.0 Hz, 1H; H8), 5.97 (br. s., 1H; NH urea), 5.49 (br. s., 2H; NH₂ urea), 3.26-3.22 (m, 2H; H2), 2.76 (t, *J*=7.5 Hz, 2H; H3); ¹³C NMR (125 MHz, $[D_6]DMSO$, 25 °C) δ =158.7 (C1), 134.6 (C10), 128.4 (C5), 124.6 (C11), 122.9 (C7), 120.8 (C8), 117.7 (C6), 112.8 (C9), 112.1 (C4), 39.5 (C2), 25.9 (C3); MS *m/z* (ES+) 497 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for $[M+Na]^+$ (C₁₁H₁₂ClN₃NaO⁺) requires *m/z* 260.0561, found *m/z* 260.0559.

2.1.1.5 Synthesis and characterisation of 1-[2-(6-fluoro-1H-indol-3-yl)ethyl]urea 5e

The title compound was synthesised according to general procedure **I**. 6-Fluorotryptamine (400 mg, 2.25 mmol) was reacted with KOCN (218 mg, 2.69 mmol) in ethanol (2.4 mL) and water (2.4 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5e** in 52% yield (260 mg) as a brown powder.

m.p. 161-163 °C; **IR** (neat) v=3500, 3359, 3334, 1638, 1577, 1566, 1134, 1097, 800; ¹H NMR (500 MHz, $[D_6]DMSO$, 25 °C) δ =10.89 (br. s., 1H; NH indole), 7.53 (dd, *J*=8.5, 5.5 Hz, 1H; H6), 7.14 (d, *J*=2.5 Hz, 1H; H11), 7.10 (dd, *J*=10.0, 2.0 Hz, 1H; H9), 6.83 (td, *J*=8.5, 2.5 Hz, 1H; H7), 5.93 (br. s., 1H; NH urea), 5.42 (br. s., 2H; NH₂ urea), 3.28-3.21 (m, 2H; H2), 2.75 (t, *J*=7.0 Hz, 2H; H3); ¹³C NMR (125 MHz, $[D_6]DMSO$, 25 °C) δ =158.79 (d, *J*=231 Hz, C8), 158.7 (C1), 136.0 (d, *J*=10 Hz, C4), 124.1 (C5), 123.2 (C11), 119.3 (d, *J*=10 Hz, C6), 112.3 (C10), 106.6 (d, *J*=25 Hz, C7), 97.2 (d, *J*=25 Hz, C9), 39.5 (C2), 26.0 (C3); MS *m*/*z* (ES+) 465 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for $[M+Na]^+$ (C₁₁H₁₂FN₃NaO⁺) requires *m*/*z* 244.0857, found *m*/*z* 244.0859.

2.1.1.6 Synthesis and characterisation of 1-[2-(7-methyl-1H-indol-3-yl)ethyl]urea 5f

The title compound was synthesised according to general procedure **I**. 7-Methyltryptamine (1.00 g, 5.74 mmol) was reacted with KOCN (561 mg, 6.91 mmol) in ethanol (6.0 mL) and water (6.0 mL) for 60 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5f** in 55% yield (0.690 g) as a white powder.

m.p. 144-146 °C; **IR** (neat) v=3402, 3392, 3322, 3201, 1643, 1607, 1516, 777, 743; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.78 (br. s., 1H; NH indole), 7.38 (d, *J*=7.5 Hz, 1H; H6), 7.14 (d, *J*=2.5 Hz, 1H; H12), 6.92-6.87 (m, 2H; H7 and H8), 5.96 (t, *J*=5.5 Hz, 1H; NH urea), 5.46 (br. s., 2H; NH₂ urea), 3.31-3.27 (m, 2H; H2), 2.79 (t, *J*=7.0 Hz, 2H; H3), 2.45 (s, 3H; H10); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =158.8 (C1), 135.8 (C11), 126.9 (C5), 122.3 (C12), 121.4 (C8), 120.4 (C9), 118.4 (C7), 116.0 (C6), 112.4 (C4), 39.6 (C2), 26.2 (C3), 16.8 (C10); MS *m/z* (ES+) 457 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₂H₁₅N₃NaO⁺) requires *m/z* 240.1107, found *m/z* 240.1110.

2.1.1.7 Synthesis and characterisation of 1-[2-(7-ethyl-1H-indol-3-yl)ethyl]urea 5g

The title compound was synthesised according to general procedure **I**. 7-Ethyltryptamine (1.00 g, 5.31 mmol) was reacted with KOCN (517 mg, 6.37 mmol) in ethanol (5.6 mL) and water (5.6 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **5g** in 59% yield (0.730 g) as a brown powder.

m.p. 164-166 °C; **IR** (neat) v=3390, 3322, 3206, 2964, 1643, 1607, 1097, 1081, 799, 742; ¹**H NMR** (400 MHz, [D₆]DMSO, 25 °C) δ =10.77 (br. s., 1H; NH indole), 7.36 (d, *J*=7.0 Hz, 1H; H6), 7.11 (d, *J*=2.0 Hz, 1H; H13), 6.93-6.85 (m, 2H; H7 and H8), 5.93 (br. s., 1H; NH urea), 5.42 (br. s., 2H; NH₂ urea), 3.30-3.24 (m, 2H; H2), 2.86-2.81 (m, 2H; H10), 2.89-2.75 (m, 2H; H3), 1.25 (t, *J*=7.5 Hz, 3H; H11); ¹³**C NMR** (100 MHz, [D₆]DMSO, 25 °C) δ =159.6 (C1), 135.8 (C12), 128.0 (C9), 127.6 (C5), 123.1 (C13), 120.5 (C8), 119.4 (C7), 116.9 (C6), 113.3 (C4), 39.5 (C2), 27.1 (C3), 24.6 (C10), 15.3 (C11); **MS** *m*/*z* (ES+) 485 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₃H₁₇N₃NaO⁺) requires *m*/*z* 254.1264, found *m*/*z* 254.1265.

2.1.2 General procedure II for the preparation of tryptamine-derived ureas 5j-p

Tryptamine (1.0 eq.) was dissolved in CH_2Cl_2 at room temperature. Triethylamine (2.0 eq.) was added and the reaction mixture was cooled to 0 °C. Isocyanate (0.90 eq.) was then added dropwise and the reaction mixture was allowed to slowly warm to room temperature over the indicated time. The resulting precipitate was filtered off washing with CH_2Cl_2 and dried under vacuum to afford the desired ureas **5j-p**. The ureas were used in the next step without further purification.

2.1.2.1 Synthesis and characterisation of 1-[2-(7-ethyl-1H-indol-3-yl)ethyl)-3-(ethyl]urea 5j

The title compound was synthesised according to general procedure **II**. 7-Ethyltryptamine (500 mg, 2.66 mmol) was reacted with ethylisocyanate (0.190 mL, 2.39 mmol) in CH_2Cl_2 (50 mL) for 14 hours. Product **5j** was isolated in 99% yield (623 mg) as a brown powder.

m.p. 142-144 °C; **IR** (neat) v=3317, 3063, 2971, 2874, 1571, 1450, 1256, 738, 657; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.76 (br. s., 1H; NH indole), 7.36 (d, *J*=7.5 Hz, 1H; H8), 7.10 (d, *J*=2.0 Hz, 1H; H15), 6.93-6.88 (m, 2H; H9 and H10), 5.83-5.78 (m, 1H; NH urea), 5.75-5.71 (m, 1H; NH urea), 3.31-3.23 (m, 2H; H4), 3.04-2.99 (m, 2H; H2), 2.83 (q, *J*=7.5 Hz, 2H; H12), 2.77 (t, *J*=7.5 Hz, 2H; H5), 1.25 (t, *J*=7.5 Hz, 3H; H13), 0.98 (t, *J*=7.0 Hz, 3H; H1); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =158.0 (C3), 134.9 (C14), 127.1 (C11), 126.7 (C7), 122.2 (C15), 119.6 (C10), 118.5 (C9), 116.0 (C8), 112.4 (C6), 39.5 (C4), 34.0 (C2), 26.2 (C5), 23.7 (C12), 15.7 (C1), 14.4 (C13); MS *m*/*z* (ES+) 541 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₂₁N₃NaO⁺) requires *m*/*z* 282.1577, found *m*/*z* 282.1585.

2.1.2.2 Synthesis and characterisation of 1-[2-(1H-indol-3-yl)ethyl)-3-(dodecyl]urea 5k

The title compound was synthesised according to general procedure **II**. Tryptamine (1.00 g, 6.24 mmol) was reacted with dodecylisocyanate (1.35 mL, 5.62 mmol) in CH_2Cl_2 (100 mL) for 14 hours. Product **5k** was isolated in 70% yield (1.62 g) as a white powder.

m.p. 110-112 °C; **IR** (neat) v=3431, 3353, 3322, 2920, 2848, 1618, 1583, 735; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.74 (br. s., 1H; NH indole), 7.52 (d, *J*=7.5 Hz, 1H; H18), 7.33 (d, *J*=7.5 Hz, 1H; H21), 7.10 (d, *J*=2.0 Hz, 1H; H23), 7.06 (td, *J*=7.5, 1.0 Hz, 1H; H20), 6.96 (td,

J=7.5, 1.0 Hz, 1H; H19), 5.87 (t, *J*=5.5 Hz, 1H; NH urea), 5.82 (t, *J*=5.5 Hz, 1H; NH urea), 3.28-3.24 (m, 2H; H14), 2.97-2.93 (m, 2 H; H12), 2.77 (t, *J*=7.0 Hz, 2H; H15), 1.35-1.30 (m, 2H; H11), 1.28-1.14 (m, 18H; H2-H10), 0.83 (t, *J*=7.0 Hz, 3H; H1); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =158.4 (C13), 136.2 (C22), 127.2 (C17), 122.6 (C23), 120.9 (C20), 118.3 (C19), 118.2 (C18), 112.0 (C16), 111.3 (C21), 40.2 (C14), 39.2 (C12), 31.2 (1C of C2-C10), 29.9 (C11), 29.0 (1C, C2-C10), 29.0 (1C of C2-C10), 28.9 (1C of C2-C10), 28.9 (1C of C2-C10), 28.7 (1C of C2-C10), 28.6 (1C of C2-10), 26.3 (1C of C2-C10), 26.0 (C15), 22.0 (1C of C2-C10), 13.9 (C1); **MS** *m*/*z* (ES+) 743 ([2M+H]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₃H₃₇N₃NaO⁺) requires *m*/*z* 394.2829, found *m*/*z* 394.2832.

2.1.2.3 Synthesis and characterisation of 1-[2-(*1H*-indol-3-yl)ethyl)-3-(4fluorophenyl]urea 5l

The title compound was synthesised according to general procedure **II**. Tryptamine (1.00 g, 6.24 mmol) was reacted with 4-fluorophenylisocyanate (0.640 mL, 5.62 mmol) in CH_2Cl_2 (100 mL) for 14 hours. Product **5I** was isolated in 99% yield (1.67 g) as a white powder.

m.p. 172-174 °C; **IR** (neat) v=3368, 3292, 2918, 2877, 1623, 1556, 1505, 1219, 838, 738; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.84 (br. s., 1H; NH indole), 8.52 (s, 1H; C4-NH urea), 7.58 (d, *J*=8.0 Hz, 1H; H12), 7.41-7.38 (m, 2H; H3 and H5), 7.35 (d, *J*=8.0 Hz, 1H; H15), 7.18 (d, *J*=2.0 Hz, 1H; H17), 7.09-7.03 (m, 3H; H2, H6 and H14), 6.98 (td, *J*=8.0, 1.5 Hz, 1H; H13), 6.11 (t, *J*=5.5 Hz, 1H; C8-NH urea), 3.42-3.36 (m, 2H; H8), 2.86 (t, *J*=7.5 Hz, 2H; H9); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =156.8 (d, *J*=236 Hz, C1), 155.3 (C7), 136.9 (C4), 136.3 (C16), 127.2 (C11), 122.7 (C17), 120.9 (C14), 119.2 (d, *J*=8 Hz, C3 and C5), 118.3 (C13), 118.2 (C12), 115.1 (d, *J*=21 Hz, C2 and C6), 111.7 (C10), 111.4 (C15), 39.5 (C8), 25.8 (C9); **MS** *m/z* (ES+) 617 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₁₆FN₃NaO⁺) requires *m/z* 320.1170, found *m/z* 320.1166.

2.1.2.4 Synthesis and characterisation of 1-[2-(7-methyl-*1H*-indol-3-yl)ethyl)-3-(4fluorophenyl]urea 5m

The title compound was synthesised according to general procedure **II**. 7-Methyltryptamine (500 mg, 2.87 mmol) was reacted with 4-fluorophenylisocyanate (0.290 mL, 2.58 mmol) in CH_2Cl_2 (50 mL) for 14 hours. Product **5m** was isolated in 53% yield (476 mg) as a white powder.

m.p. 164-166 °C; **IR** (neat) v=3414, 3322, 1630, 1570, 1506, 1215, 832, 748; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.81 (br. s., 1H; NH indole), 8.52 (s, 1H; C4-NH urea), 7.42-7.38 (m, 3H; H3, H5 and H12), 7.17 (d, *J*=2.0 Hz, 1H; H18), 7.07-7.04 (m, 2H; H2 and H6), 6.87-6.92 (m, 2H; H13 and H14), 6.10 (t, *J*=5.5 Hz, 1H; C8-NH urea), 3.46-3.39 (m, 2H; H8), 2.86 (t, *J*=7.0 Hz, 2H; H9), 2.45 (s, 3H; H16); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =156.8 (d, *J*=240 Hz, C1), 155.2 (C7), 137.0 (C4), 135.8 (C17), 126.9 (C11), 122.5 (C18), 121.4 (C14), 120.4 (C15), 119.1 (d, *J*=8 Hz, C3 and C5), 118.5 (C13), 116.0 (C12), 115.1 (d, *J*=21 Hz, C2 and C6), 112.2 (C10), 39.5 (C8), 26.0 (C9), 16.8 (C16); **MS** *m*/*z* (ES+) 645 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₁₈FN₃NaO⁺) requires *m*/*z* 334.1326.

2.1.2.5 Synthesis and characterisation of 1-[2-(*1H*-indol-3-yl)ethyl)-3-(4methoxyphenyl]urea 5n

The title compound was synthesised according to general procedure **II**. Tryptamine (1.00 g, 6.24 mmol) was reacted with 4-methoxyphenylisocyanate (0.730 mL, 5.62 mmol) in CH_2Cl_2 (100 mL) for 14 hours. Product **5n** was isolated in 99% yield (1.88 g) as a white powder.

m.p. 165-167 °C; **IR** (neat) v=3370, 3288, 1624, 1556, 1506, 1244, 834, 745; ¹**H** NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.84 (br. s., 1H; NH indole), 8.28 (s, 1H; C5-NH urea), 7.58 (d, *J*=7.5 Hz, 1H; H13), 7.36 (d, *J*=8.0 Hz, 1H; H16), 7.29 (dd, *J*=8.0, 1.5 Hz, 2H; H4 and H6), 7.18 (d, *J*=2.0 Hz, 1H; H18), 7.08 (td, *J*=7.5, 1.5 Hz, 1H; H15), 6.99 (td, *J*=8.0, 1.5 Hz, 1H; H14), 6.82 (dd, *J*=8.0, 1.5 Hz, 2H; H3 and H7), 6.03 (t, *J*=5.5 Hz, 1H; C9-NH urea), 3.71 (s, 3H; H1), 3.40-3.38 (m, 2H; H9), 2.86 (t, *J*=7.5 Hz, 2H; H10); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =155.5 (C8), 153.9 (C2), 136.3 (C17), 133.7 (C5), 127.2 (C12), 122.7 (C18), 120.9 (C15), 119.4 (C4 and C6), 118.2 (C14), 118.2 (C13), 113.9 (C3 and C7), 111.8 (C11), 111.4 (C16), 55.1 (C1), 39.5 (C9), 25.9 (C10); MS *m*/*z* (ES+) 310 ([M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₁₉N₃NaO₂⁺) requires *m*/*z* 332.1369, found *m*/*z* 332.1369.

2.1.2.6 Synthesis and characterisation of 1-[2-(5-fluoro-*1H*-indol-3-yl)ethyl)-3-(4methoxyphenyl]urea 50

The title compound was synthesised according to general procedure **II**. 5-Fluorotryptamine (747 mg, 4.19 mmol) was reacted with 4-methoxyphenylisocyanate (0.490 mL, 3.77 mmol) in CH_2Cl_2 (75 mL) for 14 hours. Product **50** was isolated in 44% yield (605 mg) as a brown powder.

m.p. 179-181 °C; **IR** (neat) v=3369, 3278, 2917, 1622, 1553, 1505, 1200, 1108, 834, 803; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.95 (br. s., 1H; NH indole), 8.28 (s, 1H; C5-NH urea), 7.37-7.31 (m, 2H; H13 and H15), 7.29-7.26 (m, 3H; H4, H6 and H18), 6.92 (td, *J*=9.0, 2.5 Hz, 1H; H16), 6.81 (d, *J*=9.0 Hz, 2H; H3 and H7), 6.02 (t, *J*=5.5 Hz, 1H; C9-NH urea), 3.70 (s, 3H; H1), 3.40-3.36 (m, 2H; H9), 2.82 (t, *J*=7.0 Hz, 2H; H10); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =156.6 (d, *J*=231 Hz, C14), 155.4 (C8), 153.9 (C2), 133.7 (C5), 132.9 (C17), 127.5 (d, *J*=10 Hz, C12), 124.9 (C18), 119.4 (C4 and C6), 113.9 (C3 and C7), 112.2 (d, *J*=25 Hz, C15), 112.2 (C11), 109.1 (d, *J*=25 Hz, C16), 103.1 (d, *J*=21 Hz, C13), 55.1 (C1), 39.5 (C9), 25.8 (C10); **MS** *m*/*z* (ES+) 655 ([2M+H]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₁₈FN₃NaO₂⁺) requires *m*/*z* 350.1275, found *m*/*z* 350.1276.

2.1.2.7 Synthesis and characterisation of 1-[2-(7-ethyl-*1H*-indol-3-yl)ethyl)-3-(4methoxyphenyl]urea 5p

The title compound was synthesised according to general procedure **II**. 7-Ethyltryptamine (500 mg, 2.66 mmol) was reacted with 4-methoxyphenylisocyanate (0.310 mL, 2.39 mmol) in CH_2Cl_2 (50 mL) for 14 hours. Product **5p** was isolated in 45% yield (405 mg) as a pale brown powder.

m.p. 160-162 °C; **IR** (neat) v=3454, 3426, 3391, 2966, 2934, 1630, 1575, 1245, 1030, 832, 738; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.80 (br. s., 1H; NH indole), 8.27 (s, 1H; C5-NH urea), 7.40 (d, *J*=7.5 Hz, 1H; H13), 7.28 (d, *J*=9.0 Hz, 2H; H4 and H6), 7.15 (d, *J*=2.5 Hz, 1H; H20), 6.94-6.88 (m, 2H; H14 and H15), 6.81 (d, *J*=9.0 Hz, 2H; H3 and H7), 6.01 (t, *J*=5.5 Hz, 1H; C8-NH urea), 3.42-3.36 (m, 2H; H9), 3.69 (s, 3H; H1), 2.82-2.86 (m, 4H; H10 and H17), 1.26 (t, *J*=7.5 Hz, 3H; H18); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =155.5 (C8), 153.9 (C2), 135.0 (C19), 133.7 (C5), 127.1 (C16), 126.8 (C12), 122.4 (C20), 119.6 (C15), 119.4 (C4 and C6), 118.6 (C14), 116.0 (C13), 113.9 (C3 and C7), 112.2 (C11), 55.1 (C1), 39.5 (C9), 26.0 (C10), 23.7 (C17), 14.4 (C18); **MS** *m*/*z* (ES+) 697 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₀H₂₃N₃NaO₂⁺) requires *m*/*z* 360.1682, found *m*/*z* 360.1681.

2.2 General procedure III for the enantioselective synthesis of products 9

(Thio)urea derivative **5** (1.0 eq.) was suspended in dry PhMe (200 mL/mmol) and enone **6** (5.0 eq.) was added in one portion at room temperature, immediately followed by the addition of catalyst **10a** (0.10 eq.) in one portion. The resulting suspension was heated at 110 °C for the indicated time. The solvent was removed *in vacuo* and the residue was purified by flash column chromatography on silica gel to afford the desired cyclised products **9a-w**. [Racemic samples were synthesised in an analogous manner to general procedure **III**, replacing catalyst **10a** with *p*-TsOH (0.10 eq.).]

2.2.1 Synthesis and characterisation of (*R*)-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9a

The title compound was synthesised according to general procedure **III**. Urea derivative **5a** (61 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **9a** in 76% yield (58 mg) as a white powder.

73% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major) = 19.3$ min; $t_r (minor) = 38.0$ min); $[\alpha]_D^{23} = +50$ (*c*=0.08, MeOH).

m.p. 178-180 °C; **IR** (neat) v=3406, 3284, 3228, 1633, 1508, 743; ¹**H NMR** (500 MHz, $[D_6]DMSO, 25$ °C) δ =10.92 (br. s., 1H; NH indole), 7.40 (d, *J*=8.0 Hz, 1H; H8), 7.32 (d, *J*=8.0 Hz, 1H; H11), 7.06 (td, *J*=8.0, 1.0 Hz, 1H; H10), 6.97 (td, *J*=8.0, 1.0 Hz, 1H; H9), 6.45 (d, *J*=4.0 Hz, 1H; NH urea), 4.62 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.35-3.30 (m, 1H; H2'), 3.21-3.14 (m, 1H; H2), 2.93 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.66-2.60 (m, 1H; H5'), 2.59-2.53 (m, 1H; H5), 2.40-2.37 (m, 1H; H1'), 1.75 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.54 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.3 (C3), 139.3 (C13), 135.9 (C12), 126.3 (C7), 120.9 (C10), 118.5 (C9), 117.9 (C8), 111.0 (C11), 106.1 (C6), 53.7 (C14), 35.9 (C4), 35.4 (C2), 33.8 (C1), 23.7 (C15), 21.3 (C5); MS *m*/*z* (ES+) 533 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₇N₃NaO⁺) requires *m*/*z* 278.1264, found *m*/*z* 278.1267.

2.2.2 Synthesis and characterisation of (*R*)-12b-heptyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9b

The title compound was synthesised according to general procedure **III**. Urea derivative **5a** (20 mg, 0.10 mmol) was reacted with heptyl vinyl ketone **6c** (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **9b** in 59% yield (20 mg) as a white powder.

78% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1 mL/min, 220 nm, t_r (major)=7.9 min; t_r (minor)=18.8 min); $[\alpha]_D^{23}$ =+40 (*c*=0.16, MeOH).

m.p. 112-114 °C; **IR** (neat) v=3405, 3227, 2925, 2853, 1632, 1504, 1449, 740, 703; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.85 (br. s., 1H; NH indole), 7.34-7.30 (m, 2H; H8 and H11), 7.06 (t, *J*=7.5 Hz, 1H; H10), 6.97 (td, *J*=7.5, 1.0 Hz, 1H; H9), 6.42 (d, *J*=3.5 Hz, 1H; NH urea), 4.67 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.27 (td, *J*=12.0, 4.5 Hz, 1H; H2'), 3.12-3.08 (m, 1H; H2), 3.00 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.67-2.63 (m, 1H; H5'), 2.58-2.53 (m, 1H; H5), 2.40-2.36 (m, 1H; H1'), 2.02-1.95 (m, 1H; H15'), 1.88-1.83 (m, 1H; H15), 1.74 (td, *J*=12.5, 5.5 Hz, 1H; H1), 1.39-1.33 (m, 1H; H16'), 1.28-1.15 (m, 9H; H16-H20), 0.82 (t, *J*=7.0 Hz, 3H; H21); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.7 (C3), 137.8 (C13), 135.0 (C12), 126.2 (C7), 120.8 (C10), 118.4 (C9), 117.8 (C8), 111.1 (C11), 107.0 (C6), 56.5 (C14), 38.0 (C15), 37.0 (C4), 35.5 (C2), 32.8 (C1), 31.2 (1C of C17-C20), 29.7 (1C of C17-C20), 28.8 (1C of C17-C20), 24.6 (C16), 22.0 (1C of C17-C20), 21.0 (C5), 13.9 (C21); **MS** *m*/*z* (ES+) 701 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₁H₂₉N₃NaO⁺) requires *m*/*z* 362.2203, found *m*/*z* 362.2204.

2.2.3 Synthesis and characterisation of (*R*)-9-methoxy-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9c

The title compound was synthesised according to general procedure **III**. Urea derivative **5b** (47 mg, 0.20 mmol) was reacted with methyl vinyl ketone **6a** (81 μ L, 1.0 mmol) in PhMe (40 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9c** in 77% yield (44 mg) as a white powder.

60% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=27.9$ min; $t_r (minor)=43.8$ min); $[\alpha]_D^{23}=+71$ (*c*=0.16, MeOH).

m.p. 140-142 °C; **IR** (neat) v=3410, 3275, 2930, 1626, 1508, 1281, 1160, 800, 754; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.74 (br. s., 1H; NH indole), 7.19 (d, *J*=8.5 Hz, 1H; H12), 6.90 (d, *J*=2.5 Hz, 1H; H8), 6.70 (dd, *J*=8.5, 2.5 Hz, 1H; H11), 6.44 (d, *J*=3.5 Hz, 1H; NH urea), 4.61 (dd, *J*=13.0, 4.5 Hz, 1H; H4²), 3.75 (s, 3H; H10), 3.33-3.29 (m, 1H; H2²), 3.18-3.12 (m, 1H; H2), 2.91 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.61-2.53 (m, 2H; H5), 2.37-2.34 (m, 1H; H1²), 1.75 (td, *J*=13.0, 5.0 Hz, 1H; H1), 1.52 (s, 3H; H16); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.3 (C3), 153.1 (C9), 140.0 (C14), 131.0 (C13), 126.6 (C7), 111.6 (C12), 110.7 (C11), 106.0 (C6), 100.1 (C8), 55.4 (C10), 53.7 (C15), 35.9 (C4), 21.4 (C5), 35.4 (C2), 33.8 (C1), 23.7 (C16); MS *m/z* (ES+) 593 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₉N₃NaO₂⁺) requires *m/z* 308.1369, found *m/z* 308.1370.

2.2.4 Synthesis and characterisation of (*R*)-9-fluoro-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9d

The title compound was synthesised according to general procedure **III**. Urea derivative **5c** (15 mg, 0.07 mmol) was reacted with methyl vinyl ketone **6a** (28 μ L, 0.34 mmol) in PhMe (14 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9d** in 75% yield (14 mg) as a yellow powder.

70% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=22.6$ min; $t_r (minor)=49.3$ min); $[\alpha]_D^{23}=+99$ (*c*=0.09, MeOH).

m.p. 168-170 °C; **IR** (neat) v=3401, 3283, 2926, 1630, 1509, 1449, 1158, 801, 754; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =11.04 (br. s., 1H; NH indole), 7.29 (dd, *J*=9.0, 4.5 Hz, 1H;

H10), 7.09 (dd, *J*=9.5, 2.0 Hz, 1H; H8), 6.89 (td, *J*=9.0, 2.5 Hz, 1H; H11), 6.46 (d, *J*=4.0 Hz, 1H; NH urea), 4.61 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.20-3.10 (m, 1H; H2), 3.36-3.31 (m, 1H; H2'), 2.92 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.63-2.57 (m, 1H; H5'), 2.38-2.35 (m, 1H; H1'), 2.55-2.51 (m, 1H; H5), 1.75 (td, *J*=13.0, 5.5 Hz, 1H; H1); 1.53 (s, 3H; H15), ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =156.8 (d, *J*=230 Hz, C9), 154.3 (C3), 141.5 (C13), 132.6 (C12), 126.5 (d, *J*=10 Hz, C7), 111.8 (d, *J*=10 Hz, C10), 108.7 (d, *J*=26 Hz, C11), 106.6 (C6), 102.8 (d, *J*=24 Hz, C8), 53.8 (C14), 35.8 (C4), 35.3 (C2), 33.7 (C1), 23.7 (C15), 21.2 (C5); MS *m*/*z* (ES+) 569 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₆FN₃NaO⁺) requires *m*/*z* 296.1170, found *m*/*z* 296.1175.

2.2.5 Synthesis and characterisation of (*R*)-9-chloro-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9e

The title compound was synthesised according to general procedure **III**. Urea derivative **5d** (24 mg, 0.10 mmol) was reacted with methyl vinyl ketone **6a** (41 μ L, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9e** in 77% yield (23 mg) as a pale brown powder.

68% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 300 nm, t_{r (major)}=21.4 min; t_{r (minor)}=51.9 min); [α]_D²³=+96 (c=0.09, MeOH).

m.p. 160-162 °C; **IR** (neat) v=3305, 3188, 2917, 1632, 1507, 1433, 800, 759; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =11.16 (br. s., 1H; NH indole), 7.44 (d, *J*=2.0 Hz, 1H; H8), 7.32 (d, *J*=8.5 Hz, 1H; H11), 7.06 (dd, *J*=8.5, 2.0 Hz, 1H; H10), 6.47 (br. s., 1H; NH urea), 4.61 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.32-3.37 (m, 1H; H2'); 3.20-3.10 (m, 1H; H2), 2.91 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.67-2.58 (m, 1H; H5'), 2.57-2.53 (m, 1H; H5), 2.38-2.35 (m, 1H; H1'), 1.75 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.53 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.2 (C3), 141.2 (C13), 134.4 (C12), 127.4 (C7), 123.1 (C9), 120.7 (C10), 117.3 (C8), 112.5 (C11), 106.3 (C6), 53.7 (C14), 35.8 (C4), 35.3 (C2), 33.6 (C1), 23.6 (C15), 21.1 (C5); MS *m*/*z* (ES-) 288 ([M-H]⁻, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₆ClN₃NaO⁺) requires *m*/*z* 312.0874, found *m*/*z* 312.0869.

2.2.6 Synthesis and characterisation of (*R*)-10-fluoro-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9f

The title compound was synthesised according to general procedure **III**. Urea derivative **5e** (20 mg, 0.09 mmol) was reacted with methyl vinyl ketone **6a** (37 μ L, 0.45 mmol) in PhMe (18 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9f** in 73% yield (20 mg) as a yellow oil.

67% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_{r (major)}=20.8 min; t_{r (minor)}=42.0 min); [α]_D²³=+70 (c=0.13, MeOH).

IR (neat) v=3275, 2966, 2924, 2854, 1629, 1505, 1472, 1378, 1282, 1259, 1114, 954; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =11.06 (br. s., 1H; NH indole). 7.39 (dd, *J*=8.5, 5.5 Hz, 1H; H8), 7.09 (dd, *J*=10.0, 2.0 Hz, 1H; H11), 6.83 (ddd, *J*=10.0, 8.5, 2.0 Hz, 1H; H9), 6.45 (d, *J*=4.0 Hz, 1H; NH urea), 4.61 (dd, *J*=12.5, 4.0 Hz, 1H; H4'), 3.19-3.11 (m, 1H; H2), 3.38-3.31 (m, 1H; H2'), 2.91 (td, *J*=12.5, 4.0 Hz, 1H; H4), 2.66-2.59 (m, 1H; H5'), 2.57-2.53 (m, 1H; H5), 2.38-2.35 (m, 1H; H1'), 1.74 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.52 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =158.7 (d, *J*=233 Hz, C10), 154.3 (C3), 139.9 (C13), 135.8 (d, *J*=10 Hz, C12), 123.1 (C7), 118.9 (d, *J*=10 Hz, C8), 106.7 (d, *J*=25 Hz, C9), 106.4 (C6), 97.2 (d, *J*=25 Hz, C11), 53.7 (C14), 35.8 (C4), 35.3 (C2), 33.7 (C1), 23.6 (C15), 21.2 (C5); MS *m*/*z* (ES+) 547 ([2M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₆FN₃NaO⁺) requires *m*/*z* 296.1170, found *m*/*z* 296.1164.

2.2.7 Synthesis and characterisation of (*R*)-11,12b-dimethyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9g

The title compound was synthesised according to general procedure **III**. Urea derivative **5f** (65 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9g** in 78% yield (63 mg) as a white powder.

92% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=12.2$ min; $t_r (minor)=14.4$ min); $[\alpha]_D^{23}=+133$ (*c*=0.22, MeOH).

m.p. 170-172 °C; **IR** (neat) v=3284, 3218, 2972, 1630, 1506, 1439, 1351, 1153, 778, 745; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.57 (br. s., 1H; NH indole), 7.22 (d, *J*=7.5 Hz, 1H; H8), 6.92-6.85 (m, 2H; H9 and H10), 6.43 (d, *J*=4.0 Hz, 1H; NH urea), 4.61 (dd, *J*=13.0, 4.0 Hz, 1H; H4'), 3.41-3.37 (m, 1H; H2'), 3.20-3.17 (m, 1H; H2), 2.92 (td, *J*=13.0, 4.0 Hz, 1H; H4), 2.66-2.54 (m, 3H; H1' and H5), 2.46 (s, 3H; H12), 1.74 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.57 (s, 3H; H16); ¹³**C NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =154.3 (C3), 139.1 (C14), 135.4 (C13), 125.9 (C7), 120.2 (C11), 121.6 (C10), 118.7 (C9), 115.4 (C8), 106.6 (C6), 53.8 (C15), 35.8 (C4), 35.4 (C2), 33.6 (C1), 23.5 (C16), 21.4 (C5), 17.0 (C12); **MS** *m/z* (ES+) 561 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₉N₃NaO⁺) requires *m/z* 292.1420, found *m/z* 292.1419.

2.2.8 Synthesis and characterisation of (*R*)-12b-ethyl-11-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9h

The title compound was synthesised according to general procedure **III**. Urea derivative **5f** (65 mg, 0.30 mmol) was reacted with ethyl vinyl ketone **6b** (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **9h** in 74% yield (63 mg) as a brown powder.

92% ee (Chiralcel AD 95:5 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=29.9$ min; $t_r (minor)=50.9$ min); $[\alpha]_D^{23}=+103$ (*c*=0.13, MeOH).

m.p. 158-160 °C; **IR** (neat) v=3412, 3283, 2967, 2936, 1632, 1505, 798, 741; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.46 (br. s., 1H; NH indole), 7.23 (d, *J*=7.5 Hz, 1H; H8), 6.90-6.85 (m, 2H; H9 and H10), 6.41 (d, *J*=3.0 Hz, 1H; NH urea), 4.68 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.32-3.21 (m, 1H; H2'), 3.13-3.06 (m, 1H; H2), 3.01 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.65-2.60 (m, 1H; H5'), 2.58-2.54 (m, 2H; H1' and H5), 2.47 (s, 3H; H12), 2.03 (q, *J*=7.5 Hz, 2H; H16), 1.78 (td, *J*=13.0, 5.5 Hz, 1H; H1), 0.88 (t, *J*=7.5 Hz, 3H; H17); ¹³**C NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =155.0 (C3), 137.4 (C14), 135.5 (C13), 126.0 (C7), 121.6 (C10), 120.2 (C11), 118.6 (C9), 115.3 (C8), 107.8 (C6), 57.0 (C15), 37.2 (C4), 35.5 (C2), 32.6 (C1), 30.8 (C16), 21.0 (C5), 17.1 (C12), 9.7 (C17); **MS** *m*/*z* (ES+) 589 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₁N₃NaO⁺) requires *m*/*z* 306.1577, found *m*/*z* 306.1564.

2.2.9 Synthesis and characterisation of (*R*)-11-methyl-12b-heptyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9i

The title compound was synthesised according to general procedure **III**. Urea derivative **5f** (22 mg, 0.10 mmol) was reacted with heptyl vinyl ketone **6c** (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **9i** in 54% yield (19 mg) as a yellow powder.

90% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r _{(major)}=7.7$ min; $t_r _{(minor)}=11.8$ min); $[\alpha]_D^{23}=+42$ (c=0.25, MeOH).

m.p. 187-189 °C; **IR** (neat) v=3309, 3286, 3195, 2921, 2853, 1633, 1513, 1449, 1026, 746, 700; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.47 (br. s., 1H; NH indole), 7.31 (d, *J*=7.5 Hz, 1H; H8), 6.90-6.85 (m, 2H; H9 and H10), 6.41 (d, *J*=3.0 Hz, 1H; NH urea), 4.68 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.33-3.25 (m, 1H; H2'), 3.12-3.10 (m, 1H; H2), 2.97 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.66-2.60 (m, 1H; H5'), 2.56-2.51 (m, 1H; H5), 2.50-2.48 (m, 1H; H1'), 2.47 (s, 3H; H12), 2.00-1.94 (m, 2H; H16), 1.78 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.40-1.33 (m, 1H; H17'), 1.25-1.19 (m, 9H; H17-H21), 0.82 (t, *J*=7.0 Hz, 3H; H22); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.9 (C3), 137.7 (C14), 135.5 (C13), 125.9 (C7), 121.6 (C10), 120.2 (C11), 118.6 (C9), 115.3 (C8), 107.6 (C6), 56.7 (C15), 38.1 (C16), 37.2 (C4), 35.5 (C2), 33.1 (C1), 31.2 (1C of C18-C21), 29.6 (1C of C18-C21), 28.5 (1C of C18-C21), 24.6 (C17), 22.0 (1C of C18-C21), 21.0 (C5), 17.1 (C12), 13.9 (C22); MS *m*/*z* (ES+) 354 ([M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₂₂H₃₁N₃NaO⁺) requires *m*/*z* 376.2359, found *m*/*z* 376.2356.

2.2.10 Synthesis and characterisation of (*R*)-11-ethyl-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9j

The title compound was synthesised according to general procedure **III**. Urea derivative **5g** (23 mg, 0.10 mmol) was reacted with methyl vinyl ketone **6a** (41 μ L, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9j** in 71% yield (20 mg) as a pale brown powder.

92% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=27.6$ min; $t_r (minor)=38.8$ min); $[\alpha]_D^{23}=+98$ (*c*=0.12, MeOH).

m.p. 288-290 °C (dec.); **IR** (neat) v=3412, 3285, 2967, 2931, 1633, 1506, 1352, 1153, 794; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.57 (br. s., 1H; NH indole), 7.22 (d, *J*=7.5 Hz, 1H; H8), 6.93-6.88 (m, 2H; H9 and H10), 6.43 (d, *J*=4.0 Hz, 1H; NH urea), 4.61 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.38-3.22 (m, 1H; H2'), 3.21-3.12 (m, 1H; H2), 2.92 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.86 (q, *J*=7.5 Hz, 2H; H12), 2.60-2.55 (m, 3H; H1' and H5), 1.73 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.57 (s, 3H; H17), 1.27 (t, *J*=7.5 Hz, 3H; H13); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.3 (C3), 139.0 (C15), 134.6 (C14), 126.6 (C11), 126.1 (C7), 119.7 (C10), 118.8 (C9), 115.5 (C8), 106.6 (C6), 53.8 (C16), 35.8 (C4), 35.4 (C2), 33.6 (C1), 23.7 (C17), 23.4 (C12), 21.4 (C5), 14.5 (C13); MS *m/z* (ES+) 567 ([2M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₁N₃NaO⁺) requires *m/z* 306.1577, found *m/z* 306.1577.

2.2.11 Synthesis and characterisation of (*R*)-2,2,11,12b-tetramethyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9k

The title compound was synthesised according to general procedure **III**. Urea derivative **5f** (65 mg, 0.30 mmol) was reacted with mesityl oxide **6e** (0.17 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9k** in 78% yield (70 mg) as an off-white powder.

43% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 0.7 mL/min, 220 nm, $t_r (minor)=16.7$ min; $t_r (major)=18.6$ min); $[\alpha]_D^{23}=+91$ (c=0.09, MeOH).

m.p. 288-290 °C (dec.); **IR** (neat) v=3261, 3193, 2962, 2928, 1608, 1484, 1421, 1185, 778, 744; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.57 (s, 1H; NH indole), 7.20 (d, *J*=7.5 Hz, 1H; H9), 6.94-6.79 (m, 2H; H10 and H11), 6.46 (s, 1H; NH urea), 4.55 (dd, *J*=13.0, 5.0 Hz, 1H; H5'), 3.04 (ddd, *J*=13.0, 11.5, 5.0 Hz, 1H; H5), 2.65-2.55 (m, 2H; H6), 2.46 (s, 3H; H13), 2.34 (d, *J*=14.0, 1H; H1'), 2.23 (d, *J*=14.0, 1H; H1), 1.63 (s, 3H; H17), 1.26 (s, 3H; H3'), 0.92 (s, 3H; H3); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =155.3 (C4), 139.6 (C15), 135.2 (C14), 126.1 (C8), 121.5 (C11), 120.2 (C12), 118.6 (C10), 115.3 (C9), 106.1 (C7), 54.1 (C16), 48.3 (C2), 45.8 (C1), 36.4 (C5), 30.6 (C3'), 30.5 (C3), 27.1 (C17), 20.9 (C6), 17.0 (C13); **MS** *m/z* (ES+) 595 ([2M+H]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₂₃N₃NaO⁺) requires *m/z* 320.1733, found *m/z* 320.1724.

2.2.12 Synthesis and characterisation of (*R*)-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-thione 91

The title compound was synthesised according to general procedure **III**. Thiourea derivative **5h** (66 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **9l** in 72% yield (59 mg) as a white powder.

31% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 240 nm, $t_r _{(major)}=15.3$ min; $t_r _{(minor)}=33.5$ min); $[\alpha]_D^{23}=+38$ (c=0.40, MeOH).

m.p. 153-155 °C; **IR** (neat) v=3403, 3236, 2975, 2933, 1521, 1493, 1328, 1176, 748; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ=10.98 (br. s., 1H; NH indole), 8.26 (d, ³*J*(H,H)=4.5 Hz, 1H; NH urea), 7.43 (d, ³*J*(H,H)=7.5 Hz, 1H; H8), 7.33 (d, ³*J*(H,H)=8.0 Hz, 1H; H11), 7.08 (td, ³*J*(H,H)=8.0, 1.5 Hz, 1H; H10), 6.99 (td, ³*J*(H,H)=7.5, 1.5 Hz, 1H; H9), 5.66-5.61 (m, 1H; H4'), 3.34-3.26 (m, 2H; H2' and H4), 3.23-3.11 (m, 1H; H2), 2.69-2.65 (m, 2H; H5), 2.53-2.49 (m, 1H; H1'), 1.77 (td, ³*J*(H,H)=13.0, 5.5 Hz, 1H; H1), 1.61 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=176.5 (C3), 138.0 (C13), 136.1 (C12), 126.90 (C7), 121.1 (C10), 118.6 (C9), 118.0 (C8), 111.1 (C11), 106.4 (C6), 55.3 (C14), 43.6 (C4), 36.2 (C2), 33.0 (C1), 24.0 (C15), 20.8 (C5); MS *m*/*z* (ES+) 565 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₇N₃NaS⁺) requires *m*/*z* 294.1035, found *m*/*z* 294.1030.

2.2.13 Synthesis and characterisation of (*R*)-3-ethyl-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9m

The title compound was synthesised according to general procedure **III**. Urea derivative **5i** (69 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/Acetone 95/5$) to afford product **9m** in 73% yield (62 mg) as a yellow powder.

83% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=18.2$ min; $t_r (minor)=32.9$ min); $[\alpha]_D^{23}=+110$ (*c*=0.12, MeOH).

m.p. 263-265 °C (dec.); **IR** (neat) v=3406, 3233, 3195, 2972, 2928, 1604, 1403, 1453, 1352, 1297, 1279, 741; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ=10.92 (br. s., 1H; NH indole), 7.40 (d, *J*=8.0 Hz, 1H; H8), 7.31 (d, *J*=8.0 Hz, 1H; H11), 7.06 (td, *J*=8.0, 1.5 Hz, 1H; H10), 6.97 (td, *J*=8.0, 1.5 Hz, 1H; H9), 4.64 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.48 (td, *J*=12.5 Hz, 1H; H2'), 3.41-3.35 (m, 1H; H16'), 3.27-3.15 (m, 2H; H16 and H2), 2.93 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.64-2.59 (m, 2H; H5), 2.49-2.45 (m, 1H; H1'), 1.83 (td, *J*=12.5, 5.5 Hz, 1H; H1), 1.52 (s, 3H; H15), 0.71 (t, *J*=7.0 Hz, 3H; H17); ¹³C **NMR** (125 MHz, [D₆]DMSO, 25 °C) δ=153.8 (C3), 139.3 (C13), 136.0 (C12), 126.2 (C7), 120.9 (C10), 118.5 (C9), 117.9 (C8), 111.0 (C11), 106.2 (C6), 53.8 (C14), 42.2 (C16), 41.3 (C2), 36.6 (C4), 33.7 (C1), 23.4 (C15), 21.3 (C5), 12.6 (C17); **MS** m/z (ES+) 589 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₁N₃NaO⁺) requires m/z 306.1577, found m/z 306.1575.

2.2.14 Synthesis and characterisation of (*R*)-3,12b-diethyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9n

The title compound was synthesised according to general procedure **III**. Urea derivative **5i** (69 mg, 0.30 mmol) was reacted with ethyl vinyl ketone **6b** (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/Acetone 95/5$) to afford product **9n** in 73% yield (65 mg) as a pale yellow powder.

86% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=13.6$ min; $t_r (minor)=22.5$ min); $[\alpha]_D^{23}=+144$ (*c*=0.07, MeOH).

m.p. 188-190 °C; **IR** (neat) v=3234, 2971, 2933, 1604, 1501, 1452, 1348, 741; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.85 (br. s., 1H; NH indole), 7.41 (d, *J*=8.0 Hz, 1H; H8), 7.33 (d, *J*=8.0 Hz, 1H; H11), 7.06 (td, *J*=8.0, 1.5 Hz, 1H; H10), 6.97 (td, *J*=8.0, 1.5 Hz, 1H; H9), 4.70 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.43-3.35 (m, 1H; H2'), 3.41-3.29 (m, 1H; H17'), 3.26-3.20 (m, 1H; H17), 3.19-3.11 (m, 1H; H2), 3.04 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.67-2.63 (m, 1H; H5'), 2.60-2.52 (m, 1H; H5), 2.47-2.42 (m, 1H; H1'), 2.02-1.95 (m, 1H; H15'), 1.94-1.90 (m, 1H; H15), 1.86 (td, *J*=13.0, 4.0 Hz, 1H; H1), 1.02 (t, *J*=7.5 Hz, 3H; H18), 0.89 (t, *J*=7.5 Hz, 3H; H16); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =154.2 (C3), 137.6 (C13), 136.1 (C12), 126.2 (C7), 120.9 (C10), 118.4 (C9), 117.8 (C8), 111.1 (C11), 107.2 (C6), 56.9 (C14), 42.2 (C17), 40.5 (C2), 37.6 (C4), 32.2 (C1), 30.5 (C15), 21.0 (C5), 12.5 (C18), 9.5 (C16); MS *m*/*z* (ES+) 617 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₂₃N₃NaO⁺) requires *m*/*z* 320.1733, found *m*/*z* 320.1731.

2.2.15 Synthesis and characterisation of (*R*)-3,11-diethyl-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 90

The title compound was synthesised according to general procedure **III**. Urea derivative **5j** (78 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **9o** in 76% yield (71 mg) as a red oil.

90% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major) = 8.5$ min; $t_r (minor) = 12.0$ min); $[\alpha]_D^{23} = +109$ (*c*=0.78, MeOH).

IR (neat) v=3262, 2967, 2931, 2872, 1604, 1503, 1455, 1355, 1277, 1176, 747; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.57 (br. s., 1H; NH indole), 7.22 (d, *J*=7.5 Hz, 1H; H8), 6.93-6.88 (m, 2H; H9 and H10), 4.65 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.49 (td, *J*=12.0, 4.5 Hz, 1H; H2'), 3.45-3.38 (m, 1H; H18'), 3.25-3.18 (m, 2H; H2 and H18), 2.93 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.86 (q, *J*=7.5 Hz, 2H; H12), 2.63-2.53 (m, 3H, H1' and H5), 1.82 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.55 (s, 3H; H17), 1.27 (t, *J*=7.5 Hz, 3H; H13), 1.04 (t, *J*=7.5 Hz, 3H; H19); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =153.8 (C3), 139.0 (C15), 134.6 (C14), 126.6 (C11), 126.0 (C7), 119.7 (C10), 118.8 (C9), 115.5 (C8), 106.7 (C6), 56.9 (C16), 42.2 (C18), 40.4 (C2), 36.5 (C4), 33.5 (C1), 23.7 (C12), 23.12 (C17), 21.4 (C5), 14.5 (C13), 12.6 (C19); MS *m*/*z* (ES+) 645 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₉H₂₅N₃NaO⁺) requires *m*/*z* 334.1880.

2.2.16 Synthesis and characterisation of (*R*)-3-dodecyl-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9p

The title compound was synthesised according to general procedure **III**. Urea derivative **5k** (0.11 g, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9p** in 75% yield (95 mg) as an orange oil.

87% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_{r (major)}=11.3 min; t_{r (minor)}=19.1 min); [α]_D²³=+80 (c=0.56, MeOH).

IR (neat) v=3231, 2923, 2852, 1602, 1502, 1453, 1352, 1297, 1275, 1173, 739; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ=10.91 (br. s., 1H; NH indole), 7.39 (d, *J*=8.0 Hz, 1H; H8), 7.31 (d, *J*=8.0 Hz, 1H; H11), 7.06 (td, *J*=8.0, 1.0 Hz, 1H; H10), 6.97 (td, *J*=8.0, 1.0 Hz, 1H; H9), 4.65 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.47 (td, *J*=13.0, 4.0 Hz, 1H; H2'), 3.41-3.36 (m, 1H; H16'), 3.24-3.19 (m, 1H; H2), 3.15-3.07 (m, 1H; H16), 2.94 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.65-2.60 (m, 1H; H5'), 2.58-2.54 (m, 1H; H5), 2.46-2.39 (m, 1H; H1'), 1.83 (td, *J*=13.0, 5.5 Hz, 1H; H1), 1.52 (s, 3H; H15), 1.49-1.42 (m, 2H; H17), 1.29-1.20 (m, 18H; H18-H26), 0.86 (t, *J*=7.5 Hz, 3H; H27); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ=154.0 (C3), 139.3 (C13), 136.0 (C12), 126.2 (C7), 120.9 (C10), 118.4 (C9), 117.9 (C8), 111.0 (C11), 106.2 (C6), 53.8 (C14), 47.5 (C16), 41.0 (C2), 36.7 (C4), 33.7 (C1), 31.3 (1C of C18-C26), 29.0 (1C of C18-C26), 29.0 (1C of C18-C26), 29.1 (1C of C18-C26), 29.0 (1C of C18-C26), 29.1 (1C of C18-C26), 29.1 (1C of C18-C26), 23.5 (C15), 22.1 (1C of C18-C26), 21.3 (C5), 13.9 (C27); MS *m*/z (ES+) 869 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₇H₄₁N₃NaO⁺) requires *m*/z 446.3142, found *m*/z 446.3139.

2.2.17 Synthesis and characterisation of (S)-3-dodecyl-12b-phenyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-b]indol-4(12H)-one 9q

The title compound was synthesised according to general procedure **III**. Urea derivative **5k** (37 mg, 0.10 mmol) was reacted with phenyl vinyl ketone **6d** (66 μ L, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9q** in 64% yield (31 mg) as a brown powder.

71% ee (Chiralcel AD 90:10 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major)=16.1$ min; $t_r (minor)=18.8$ min); $[\alpha]_D^{23}=-128$ (*c*=0.50, MeOH).

m.p. 187-189 °C; **IR** (neat) v=3257, 2922, 2852, 1603, 1496, 1453, 1354, 1272, 742, 701; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =11.35 (br. s., 1H; NH indole), 7.45-7.37 (m, 6H; H8, H11, H16, H17, H19 and H20), 7.34-7.28 (m, 1H; H18), 7.11 (td, *J*=7.5, 1.0 Hz, 1H; H10), 6.99 (td, *J*=7.5, 1.0 Hz, 1H; H9), 4.74 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.45-3.39 (m, 1H; H2'), 3.17-3.01 (m, 2H; H2 and H21'), 2.99-2.89 (m, 1H; H21), 2.82 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.74-2.66 (m, 2H; H1' and H5'), 2.62-2.58 (m, 1H; H5), 2.30 (td, *J*=13.0, 5.0 Hz, 1H; H1), 1.43-1.35 (m, 2H; H22), 1.25-1.07 (m, 18H; H23-H31), 0.86 (t, *J*=7.5 Hz, 3H; H32); ¹³**C NMR** (125 MHz, [D₆]DMSO, 25 °C) δ =155.0 (C3), 143.4 (C15), 136.3 (C13 or C12), 136.2 (C12 or C13), 128.5 (C17 and C19), 127.2 (C18), 126.3 (C7), 125.7 (C16 and C20), 121.3 (C10), 118.7 (C9), 118.1 (C8), 111.2 (C11), 107.9 (C6), 61.3 (C14), 47.4 (C21), 41.1 (C2), 38.5 (C4), 35.4 (C1), 31.3 (C31 or C30), 29.1 (1C of C23-C29), 29.0 (1C of C23-C29), 28.9 (1C of C23-C29), 28.8 (1C of C23-C29), 28.7 (1C of C23-C29), 28.6 (1C of C23-C29), 27.0 (C22), 26.1 (1C of C23-C29), 22.1 (C30 or C31), 20.9 (C5), 14.0 (C32); **MS** *m*/*z* (ES+) 508 ([M+Na]⁺, 100%); **HRMS** (ES–) exact mass calculated for [M–H]⁻ (C₃₂H₄₂N₃O⁻) requires *m*/*z* 484.3333, found *m*/*z* 484.3332.

2.2.18 Synthesis and characterisation of (*R*)-3-(4-fluorophenyl)-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9r

The title compound was synthesised according to general procedure **III**. Urea derivative **5I** (90 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9r** in 74% yield (78 mg) as a white powder.

83% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 240 nm, $t_r (major) = 4.2$ min; $t_r (minor) = 11.6$ min); $[\alpha]_D^{23} = +100$ (*c*=0.05, MeOH).

The sample has been recrystallized from MeOH to give crystals suitable for X-Ray (99% ee). **m.p.** 190-191 °C; **IR** (neat) v=3401, 3273, 2932, 1622, 1509, 1454, 1214, 835, 745; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.99 (br. s., 1H; NH indole), 7.43 (d, *J*=7.5 Hz, 1H; H8), 7.36-7.32 (m, 3H; H11, H17 and H21), 7.17-7.14 (m, 2H; H18, H20), 7.09 (td, *J*=7.5, 1.0 Hz, 1H; H10), 6.99 (td, *J*=7.5, 1.0 Hz, 1H; H9), 4.67 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.94 (td, *J*=12.0, 4.0 Hz, 1H; H2'), 3.55 (dd, *J*=12.0, 4.0 Hz, 1H; H2), 3.06 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.72-2.61 (m, 2H; H5), 2.57-2.54 (m, 1H; H1'), 2.08 (td, *J*=12.0, 5.5 Hz, 1H; H1), 1.68 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =159.3 (d, *J*=240 Hz, C19), 153.4 (C3), 140.8 (C16), 139.1 (C13), 136.0 (C12), 128.0 (d, *J*=9 Hz, C17 and C21), 126.2 (C7), 121.0 (C10), 118.5 (C9), 118.0 (C8), 114.9 (d, *J*=23 Hz, C18 and C20), 111.1 (C11), 106.2 (C6), 54.5 (C14), 44.3 (C2), 37.0 (C4), 34.0 (C1), 24.3 (C15), 21.2 (C5); MS *m*/*z* (ES+) 721 ([2M+Na]⁺, 100%); HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₂₁H₂₀FN₃NaO⁺) requires *m*/*z* 372.1483, found *m*/*z* 372.1488.

2.2.19 Synthesis and characterisation of (*R*)-3-(4-fluorophenyl)- 12b-heptyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9s

The title compound was synthesised according to general procedure **III**. Urea derivative **5I** (30 mg, 0.10 mmol) was reacted with heptyl vinyl ketone **6c** (77 mg, 0.5 mmol) in PhMe (20 mL) for

15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH$ 95/5) to afford product **9s** in 55% yield (24 mg) as a white powder.

85% ee (Chiralcel AD 80:20 Hexane:Isopropanol, 1.0 mL/min, 220 nm, t_{r (major)}=5.8 min; t_{r (minor)}=15.4 min); [α]_D²³=+118 (*c*=0.31, MeOH).

m.p. 108-110 °C; **IR** (neat) v=3270, 2924, 2853, 1616, 1596, 1509, 1448, 1215, 835, 743; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.92 (br. s., 1H; NH indole), 7.43 (d, *J*=7.5 Hz, 1H; H8), 7.37-7.30 (m, 3H; H11, H23 and H27), 7.19-7.13 (m, 2H; H24 and H26), 7.08 (td, *J*=7.5, 1.5 Hz, 1H; H10), 6.99 (td, *J*=7.5, 1.5 Hz, 1H; H9), 4.70 (dd, *J*=13.5, 4.5 Hz, 1H; H4'), 3.78 (td, *J*=11.5, 4.0 Hz, 1H; H2'), 3.56-3.51 (m, 1H; H2), 3.13 (td, *J*=13.5, 4.5 Hz, 1H; H4), 2.72-2.60 (m, 2H; H5), 2.59-2.51 (m, 1H; H1'), 2.12-2.06 (m, 2H; H1 and H15'), 2.03-1.98 (m, 1H; H15), 1.49-1.46 (m, 1H; H16'), 1.41-1.38 (m, 1H; H16), 1.27-1.18 (m, 8H; H17-H20), 0.84 (t, *J*=7.0 Hz, 3H; H21); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =159.3 (d, *J*=240 Hz, C25), 153.9 (C3), 140.8 (C22), 137.7 (C13), 136.1 (C12), 127.8 (d, *J*=10 Hz, C23 and C27), 126.2 (C7), 121.0 (C10), 118.5 (C9), 117.9 (C8), 114.9 (d, *J*=21 Hz, C24 and C26), 111.1 (C11), 107.1 (C6), 57.3 (C14), 44.4 (C2), 38.4 (C15), 37.8 (C4), 32.9 (C1), 31.2 (1C of C17-C20), 29.5 (1C of C17-C20), 28.6 (1C of C17-C20), 24.5 (C16), 22.0 (1C of C17-C20), 20.9 (C5), 13.9 (C21); MS *m/z* (ES+) 434 ([M+H]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₇H₃₂FN₃NaO⁺) requires *m/z* 456.2422, found *m/z* 456.2416.

2.2.20 Synthesis and characterisation of (*R*)-3-(4-fluorophenyl)-11-methyl-12b-ethyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9t

The title compound was synthesised according to general procedure **III**. Urea derivative **5m** (93 mg, 0.30 mmol) was reacted with ethyl vinyl ketone **6b** (0.15 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9t** in 75% yield (85 mg) as a white powder.

94% ee (Chiralcel AD 80:20 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major) = 7.0$ min; $t_r (minor) = 12.1$ min); $[\alpha]_D^{23} = +122$ (c = 0.10, MeOH).

m.p. 191-193 °C; **IR** (neat) v=3284, 3192, 2930, 1610, 1508, 1444, 1213, 832, 778, 746; ¹**H NMR** (500 MHz, [D₆]DMSO, 25 °C) δ =10.55 (br. s., 1H; NH indole), 7.35-7.30 (m, 2H; H19 and H23), 7.25 (d, *J*=7.5 Hz, 1H; H8), 7.18-7.13 (m, 2H; H20 and H22), 6.93-6.87 (m, 2H; H9 and H10), 4.70 (dd, *J*=13.0, 4.5 Hz, 1H; H4'), 3.77 (td, *J*=11.0, 4.5 Hz, 1H; H2'), 3.56-3.51 (m, 1H; H2), 3.14 (td, *J*=13.0, 4.5 Hz, 1H; H4), 2.69-2.61 (m, 3H; H1' and H5), 2.48 (s, 3H; H12), 2.18-2.10 (m, 3H; H1 and H16), 0.96 (t, *J*=7.5 Hz, 3H; H17); ¹³C **NMR** (125 MHz, [D₆]DMSO,

25 °C) δ =159.2 (d, *J*=239 Hz, C21), 154.2 (C3), 140.8 (C18), 137.4 (C14), 135.5 (C13), 127.8 (d, *J*=9 Hz, C19 and C23), 126.0 (C7), 121.8 (C10), 120.3 (C11), 118.7 (C9), 115.4 (C8), 114.9 (d, *J*=21 Hz, C20 and C22), 107.8 (C6), 57.8 (C15), 44.5 (C2), 38.0 (C4), 32.6 (C1), 31.2 (C16), 20.9 (C5), 17.1 (C12); 9.5 (C17); **MS** *m*/*z* (ES+) 777 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₂₃H₂₄FN₃NaO⁺) requires *m*/*z* 400.1796, found *m*/*z* 400.1798.

2.2.21 Synthesis and characterisation of (*R*)-3-(4-methoxyphenyl)-12b-methyl-1,2,3,6,7,12bhexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9u

The title compound was synthesised according to general procedure **III**. Urea derivative **5n** (93 mg, 0.30 mmol) was reacted with methyl vinyl ketone **6a** (0.12 mL, 1.5 mmol) in PhMe (60 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9u** in 76% yield (82 mg) as a white powder.

81% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major) = 5.4$ min; $t_r (minor) = 20.1$ min); $[\alpha]_D^{23} = +94(c=0.13, MeOH)$.

m.p. 122-124 °C; **IR** (neat) v=3345, 3295, 2963, 2918, 1633, 1594, 1513, 1491, 751; ¹H NMR (500 MHz, [D₆]DMSO, 25 °C) δ =10.98 (br. s., 1H; NH indole), 7.43 (d, *J*=7.5 Hz, 1H; H8), 7.34 (d, *J*=7.5 Hz, 1H; H11), 7.21 (d, *J*=9.0 Hz, 2H; H17 and H21), 7.08 (td, *J*=7.5, 1.0 Hz, 1H; H10), 6.99 (td, *J*=7.5, 1.0 Hz, 1H; H9), 6.89 (d, *J*=9.0 Hz, 2H; H18 and H20), 4.67 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.89 (td, *J*=12.0, 4.0 Hz, 1H; H2'), 3.71 (s, 3H; H22), 3.54-3.48 (m, 1H; H2), 3.04 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.68-2.62 (m, 2H; H5), 2.56-2.53 (m, 1H; H1'), 2.06 (td, *J*=13.0, 5.0 Hz, 1H; H1), 1.67 (s, 3H; H15); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =156.62 (C19), 153.60 (C3), 139.20 (C16), 137.56 (C13), 136.00 (C12), 127.48 (C17 and C21), 126.22 (C7), 120.97 (C10), 118.52 (C9), 117.95 (C8), 113.59 (C18 and C20), 111.07 (C11), 106.23 (C6), 55.21 (C22), 54.37 (C14), 44.66 (C2), 36.93 (C4), 34.11 (C1), 24.15 (C15), 21.21 (C5); MS *m/z* (ES+) 745 ([2M+Na]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+H]⁺ (C₂₂H₂₄N₃O₂⁺) requires *m/z* 362.1863, found *m/z* 362.1860.

2.2.22 Synthesis and characterisation of (*R*)-3-(4-methoxyphenyl)-9-fluoro-12b-heptyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9v

The title compound was synthesised according to general procedure **III**. Urea derivative **50** (33 mg, 0.10 mmol) was reacted with heptyl vinyl ketone **6c** (77 mg, 0.50 mmol) in PhMe (20 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: $CH_2Cl_2/MeOH 95/5$) to afford product **9v** in 60% yield (28 mg) as a yellow oil.

89% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 240 nm, $t_r (major) = 5.0$ min; $t_r (minor) = 8.6$ min); $[\alpha]_D^{23} = +101$ (c=0.21, MeOH).

IR (neat) v=3247, 2928, 2856, 1602, 1512, 1445, 1170, 1034, 831, 797, 747; ¹**H** NMR (500 MHz, [D₆]DMSO, 25 °C) δ =11.02 (br. s., 1H; NH indole), 7.33 (dd, *J*=9.0, 4.0 Hz, 1H; H10), 7.22-7.15 (m, 3H; H8, H23 and H27), 6.94-6.86 (m, 3H; H11, H24 and H26), 4.68 (dd, *J*=13.0, 5.0 Hz, 1H; H4'), 3.75 (s, 3H; H28), 3.73-3.69 (m, 1H; H2'), 3.54-3.44 (m, 1H; H2), 3.10 (td, *J*=13.0, 5.0 Hz, 1H; H4), 2.73-2.57 (m, 3H; H1' and H5), 2.15-2.02 (m, 2H; H1 and H15'), 2.01-1.96 (m, 1H; H15), 1.42-1.39 (m, 1H; H16'), 1.30-1.20 (m, 9H; H16-H20), 0.84 (t, *J*=7.5 Hz, 3H; H21); ¹³C NMR (125 MHz, [D₆]DMSO, 25 °C) δ =156.8 (d, *J*=229 Hz, C9), 156.6 (C25), 154.1 (C3), 139.9 (C13), 137.5 (C22), 132.7 (C12), 127.3 (C23 and C27), 126.4 (d, *J*=10 Hz, C7), 113.6 (C24 and C26), 112.0 (d, *J*=10 Hz, C10), 108.8 (d, *J*=24 Hz, C11), 107.5 (C6), 102.8 (d, *J*=24 Hz, C8), 57.2 (C14), 55.2 (C28), 44.7 (C2), 38.3 (C15), 37.7 (C4), 32.9 (C1), 31.2 (1C of C17-C20), 29.5 (1C of C17-C20), 28.6 (1C of C17-C20), 24.5 (C16), 22.1 (1C of C17-C20), 20.9 (C5), 13.9 (C21); MS *m*/*z* (ES+) 464 ([M+H]⁺, 100%); HRMS (ES+) exact mass calculated for [M+H]⁺ (C₂₈H₃₅FN₃O₂⁺) requires *m*/*z* 464.2708, found *m*/*z* 464.2714.

2.2.23 Synthesis and characterisation of (*R*)-3-(4-methoxyphenyl)-11-ethyl-12b-methyl-1,2,3,6,7,12b-hexahydropyrimido[1',6':1,2]pyrido[3,4-*b*]indol-4(12*H*)-one 9w

The title compound was synthesised according to general procedure **III**. Urea derivative **5p** (68 mg, 0.20 mmol) was reacted with methyl vinyl ketone **6a** (81 μ L, 1.0 mmol) in PhMe (40 mL) for 15 hours. The residue was purified by flash column chromatography on silica gel (solvent: CH₂Cl₂/MeOH 95/5) to afford product **9w** in 74% yield (58 mg) as a brown powder.

96% ee (Chiralcel AD 60:40 Hexane:Isopropanol, 1.0 mL/min, 220 nm, $t_r (major) = 4.3$ min; $t_r (minor) = 7.0$ min); $[\alpha]_D^{23} = +106$ (*c*=0.16, MeOH).

m.p. 121-123 °C; **IR** (neat) v=3401, 3280, 2964, 2933, 1602, 1512, 1458, 1246, 1173, 1033, 830, 747; ¹**H NMR** (500 MHz, [D₆]**D**MSO, 25 °C) δ =10.63 (br. s., 1H; NH indole), 7.26-7.19 (m, 3H; H8, H19 and H23), 6.96-6.86 (m, 4H; H9, H10, H20 and H22), 4.65 (dd, *J*=13.0, 5.5 Hz, 1H; H4'), 3.89 (td, *J*=12.0, 4.0 Hz, 1H; H2'), 3.55-3.50 (m, 1H; H2), 3.75 (s, 3H; H24), 3.03 (td, *J*=13.0, 5.5 Hz, 1H; H4), 2.87 (q, *J*=7.5 Hz, 2H; H12), 2.66-2.61 (m, 2H; H5), 2.73-2.67 (m, 1H; H1'), 1.28 (t, *J*=7.5 Hz, 3H; H13), 2.04 (td, *J*=13.0, 5.0 Hz, 1H; H1), 1.70 (s, 3H; H17); ¹³**C NMR** (125 MHz, [D₆]**D**MSO, 25 °C) δ =156.6 (C21), 153.6 (C3), 138.9 (C15), 137.6 (C18), 134.7 (C14), 127.5 (C19 and C23), 126.6 (C11), 126.0 (C7), 119.8 (C10), 118.9 (C9), 115.5 (C8), 113.6 (C20 and C22), 106.7 (C6), 55.2 (C24), 54.5 (C16), 44.7 (C2), 36.9 (C4), 34.0 (C1), 23.9 (C17 or C12), 23.7 (C12 or C17), 21.3 (C5), 14.5 (C13); **MS** *m*/*z* (ES+) 390 ([M+H]⁺, 100%); **HRMS** (ES+) exact mass calculated for [M+H]⁺ (C₂₄H₂₈N₃O₂⁺) requires *m*/*z* 390.2176.

3.1.1 ¹H NMR of compound 5a

3.2.2 ¹³C NMR of compound 5b

3.5.1 ¹H NMR of compound 5e

3.5.2¹³C NMR of compound 5e

3.6.1 ¹H NMR of compound 5f

3.7.1 ¹H NMR of compound 5g

3.7.2¹³C NMR of compound 5g

3.8.1 ¹H NMR of compound 5j

3.8.2¹³C NMR of compound 5j

3.10.1 ¹H NMR of compound 51

3.11.1 ¹H NMR of compound 5m

3.11.2¹³C NMR of compound 5m

3.12.1 ¹H NMR of compound 5n

3.12.2¹³C NMR of compound 5n

3.13.1 ¹H NMR of compound 50

3.13.2¹³C NMR of compound 50

3.14.1 ¹H NMR of compound 5p

3.14.2¹³C NMR of compound 5p

4.1.1 ¹H NMR of compound 9a

4.1.2 ¹³C NMR of compound 9a

4.2.1 ¹H NMR of compound 9b

4.2.2 ¹³C NMR of compound 9b

4.3.1 ¹H NMR of compound 9c

4.3.2¹³C NMR of compound 9c

4.4.1 ¹H NMR of compound 9d

4.4.2¹³C NMR of compound 9d

4.5.1 ¹H NMR of compound 9e

4.5.2¹³C NMR of compound 9e

4.6.1 ¹H NMR of compound 9f

4.6.2¹³C NMR of compound 9f

4.7.1 ¹H NMR of compound 9g

4.7.2 ¹³C NMR of compound 9g

4.8.1 ¹H NMR of compound 9h

4.8.2 ¹³C NMR of compound 9h

4.9.1 ¹H NMR of compound 9i

4.9.2¹³C NMR of compound 9i

4.10.1 ¹H NMR of compound 9j

4.10.2¹³C NMR of compound 9j

4.11.1 ¹H NMR of compound 9k

4.11.2¹³C NMR of compound 9k

4.12.1 ¹H NMR of compound 91

4.12.2¹³C NMR of compound 91

4.13.1 ¹H NMR of compound 9m

4.13.2¹³C NMR of compound 9m

4.14.1 ¹H NMR of compound 9n

4.14.2 ¹³C NMR of compound 9n

125 MHz, [D₆]DMSO

4.15.1 ¹H NMR of compound 90

4.15.2¹³C NMR of compound 90

4.16.1 ¹H NMR of compound 9p

4.16.2¹³C NMR of compound 9p

0 н 125 MHz, [D₆]DMSO

4.17.1 ¹H NMR of compound 9q

4.17.2¹³C NMR of compound 9q

4.18.1 ¹H NMR of compound 9r

4.18.2¹³C NMR of compound 9r

4.20.1 ¹H NMR of compound 9t

4.20.2¹³C NMR of compound 9t

4.21.1 ¹H NMR of compound 9u

4.21.2¹³C NMR of compound 9u

4.22.1 ¹H NMR of compound 9v

4.22.2¹³C NMR of compound 9v

4.23.1 ¹H NMR of compound 9w

4.23.2¹³C NMR of compound 9w

5.1.1 HPLC trace of racemic 9a

Peak R	letTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	몽
-		-				
1	7.851	BB	0.3594	3.82843e4	1633.63770	89.1371
2	18.834	BB	0.8287	4665.60693	86.58440	10.8629
Totals	:			4.29499e4	1720.22209	
5.3.1 HPLC trace of racemic 9c

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.420	MM	1.4596	4988.99219	56.96652	49.9655
2	42.316	MM	1.8483	4995.88818	45.04830	50.0345
Total	ls :			9984.88037	102.01482	

5.3.2 HPLC trace of enantioenriched 9c

Signal 4: DAD1 D, Sig=220,16 Ref=400,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	몽
1	27.856	MM	1.3996	3.85139e4	458.61905	80.1036
2	43.799	MM	1.8588	9566.22363	85.77356	19.8964
Total	s:			4.80801e4	544.39261	

5.4.1 HPLC trace of racemic 9d

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	23.173	BB	1.0948	2.75907e4	384.66782	50.3224
2	49.187	BB	2.4675	2.72372e4	148.11012	49.6776
Total	s:			5.48279e4	532.77794	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.648	MM	1.1936	2.56941e4	358.76926	84.9782
2	49.341	MM	2.1947	4542.00195	34.49198	15.0218
Total	ls :			3.02361e4	393.26123	

1	22.823	MM	1.1244	2586.76172	38.34214	49.8124
2	53.698	MM	2.8856	2606.24707	15.05342	50.1876
Totals	s :			5193.00879	53.39557	

Signal 6: DAD1 F, Sig=300,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	21.402 51.908	 MM MM	1.2289 3.0132	1.94268e4 3768.82812	263.47858 20.84603	 83.7520 16.2480
Total	ls :			2.31956e4	284.32461	

111

5.6.1 HPLC trace of racemic 9f

0

Signal 4: DAD1 D, Sig=220,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	21.003	BB	0.8935	1.58425e4	265.37149	49.8814
2	41.244	BB	1.5860	1.59178e4	139.10960	50.1186
Tota	als :			3.17603e4	404.48109	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	20.835	MM	1.0511	2.39460e4	379.69293	83.7027
2	42.026	BB	1.3622	4662.39063	45.74164	16.2973
Total	ls :			2.86084e4	425.43457	

5.7.1 HPLC trace of racemic 9g

0

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	12.425	MF	0.7049	1.38450e4	327.35123	49.5858
2	14.204	FM	0.7906	1.40763e4	296.74359	50.4142
Total	ls :			2.79213e4	624.09482	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	12.189	BB	0.6222	3.11330e4	747.04541	96.1247
2	14.392	BB	0.7902	1255.12329	22.80222	3.8753
Total	ls :			3.23881e4	769.84763	

0

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	뭥
1	28.666	MM	1.8568	4.77348e4	428.45740	49.9924
2	45.579	MM	3.0576	4.77494e4	260.27856	50.0076
Total	s:			9.54842e4	688.73596	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
 1 2	29.851 50.946	 MM MM	2.0953 3.1174	8.08408e4 3487.94824	643.03217 18.64770	95.8639 4.1361
Total	ls :			8.43287e4	661.67986	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	7.731	VB	0.3864	1.81636e4	724.63928	49.7133
2	11.581	BB	0.5562	1.83731e4	505.28064	50.2867
Total	ls :			3.65367e4	1229.91992	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.693	BB	0.4075	6.59833e4	2519.54248	94.9799
2	11.848	BB	0.5960	3487.51880	88.07508	5.0201
Total	ls :			6.94708e4	2607.61756	

5.10.1 HPLC trace of racemic 9j

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.442	MF	2.1193	1.96387e4	154.44676	50.0023
2	35.000	FM	2.8073	1.96369e4	116.58168	49.9977
Total	ls :			3.92756e4	271.02844	

5.10.2 HPLC trace of enantioenriched 9j

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	27.563	MM	2.2048	4.45403e4	336.69745	95.7887
2	38.844	MM	2.6787	1958.16724	12.18364	4.2113
Total	ls :			4.64985e4	348.88109	

5.11.1 HPLC trace of racemic 9k

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.519	vv	0.7301	8.15249e4	1722.64880	49.6028
2	18.615	VB	0.9171	8.28304e4	1386.34863	50.3972
Total	ls :			1.64355e5	3108.99744	

5.11.2 HPLC trace of enantioenriched 9k

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	16.678 18.638	 BV VB	0.7231 0.8953	 2.93723e4 7.30743e4	628.60034 1251.29919	28.6708 71.3292
Total	s:			1.02447e5	1879.89954	

5.12.1 HPLC trace of racemic 91

Signal 5: DAD1 E, Sig=240,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.981	MM	1.1128	1.54224e4	230.97691	50.1347
2	31.774	MM	1.9148	1.53396e4	133.51459	49.8653
Total	ls :			3.07620e4	364.49150	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.313	MM	1.2197	1.93572e4	264.50677	65.5154
2	33.545	MM	1.8424	1.01888e4	92.16838	34.4846
Total	ls :			2.95459e4	356.67516	

Ο

mir

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.306	VB	0.7677	5.26164e4	990.61047	50.3879
2	31.910	MM	1.5287	5.18063e4	564.81622	49.6121
Total	ls :			1.04423e5	1555.42670	

Ó

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	18.157	VB	0.8547	8.84266e4	1615.15283	91.4768
2	32.867	MM	1.3423	8239.05469	102.30173	8.5232
Total	.s :			9.66657e4	1717.45456	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.570	VB	0.6803	2.60506e4	595.58911	50.2209
2	21.638	BB	0.9189	2.58214e4	431.04242	49.7791
Total	ls :			5.18720e4	1026.63153	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	12 502	-	0 0122	1 16450-5	2206 22022	02 7655
1	13.565	MM	0.0133	1.1045065	156 00010	92.7000
2	22.019	IMIMI	0.9097	9081.03025	150.00010	1.2345
Total	ls :			1.25532e5	2542.31841	

0

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.817	FM	0.7018	1.65011e4	391.85361	50.9273
2	11.348	BB	0.6821	1.59002e4	340.96487	49.0727
Tota	ls :			3.24012e4	732.81848	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.486	MM	0.3900	6.09343e4	2604.19678	94.9505
2	11.982	MM	0.3750	3240.48462	144.01950	5.0495
Total	s:			6.41747e4	2748,21628	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.319	vv	0.6470	8.95164e4	2171.06934	93.2987
2	19.106	BB	0.8106	6429.60840	123.25988	6.7013
Total	s:			9.59460e4	2294.32922	

5.17.1 HPLC trace of racemic 9q

5.17.2 HPLC trace of enantioenriched 9q

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	16.083 18.751	 VV VV	0.9892 0.9612	 5.07680e4 8722.18164	739.23029 139.93593	85.3385 14.6615
Total	ls:			5.94902e4	879.16621	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.234	vv	0.1774	3.35204e4	2845.25171	49.8565
2	11.313	BB	0.5883	3.37134e4	869.58191	50.1435
Total	ls :			6.72338e4	3714.83362	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	4.216	MF	0.1924	2.21129e4	1915.04517	91.3112
2	11.610	VB	0.4788	2104.17700	68.42592	8.6888
Total	ls :			2.42171e4	1983.47108	

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.842	MM	0.2959	837.00934	47.14312	92.5368
2	15.409	MM	0.7438	67.50617	1.51255	7.4632
Total	ls :			904.51551	48.65567	

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.949	VB	0.2826	1.08061e4	587.42609	49.6517
2	11.938	BB	0.4931	1.09577e4	342.60583	50.3483
Total	s:			2.17638e4	930.03192	

5.20.2 HPLC trace of enantioenriched 9t

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.972	MM	0.3129	5237.81445	278.97552	97.1925
2	12.117	MM	0.5935	151.29684	4.24903	2.8075
Total	ls :			5389.11130	283.22456	

5.21.1 HPLC trace of racemic 9u

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.469	VV	0.2079	1.97446e4	1458.60791	50.3041
2	20.098	BB	1.0570	1.95059e4	281.99466	49.6959
Total	ls :			3.92505e4	1740.60257	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.388	MM	0.2943	5.95899e4	3374.79736	90.6073
2	20.139	MM	1.0297	6177.33545	99.98903	9.3927
Total	ls :			6.57673e4	3474.78639	

Totals :

Totals :

Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	4.301 6.875	- MM MM	0.2031 0.3434	2.52962e4 2.56557e4	2076.03149 1245.01917	49.6473 50.3527
Totals	:			5.09519e4	3321.05066	

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	4.288	MM	0.2089	3.46789e4	2767.33862	98.2489
2	6.965	MM	0.3215	618.07465	32.04358	1.7511
Total	s :			3.52970e4	2799.38220	

6. Single crystal X-ray diffraction data for compound 9r

(9r)

Crystal data

C₂₁H₂₀FN₃O $M_r = 349.41$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 7.1383 (1) Å b = 10.6018 (1) Å c = 12.0383 (1) Å $\beta = 102.3752$ (6)° V = 889.88 (2) Å³ Z = 2

Data collection

Oxford Diffraction SuperNova
diffractometer3698 reflections with $I > 2.0\sigma(I)$ Graphite monochromator $R_{int} = 0.020$
 $\theta_{max} = 76.9^{\circ}, \theta_{min} = 3.8^{\circ}$ ω scans $\theta_{max} = 76.9^{\circ}, \theta_{min} = 3.8^{\circ}$ Absorption correction: Multi-scan
CrysAlis, (Oxford Diffraction, 2002) $h = -9 \rightarrow 8$ $T_{min} = 0.75, T_{max} = 0.94$ $k = -13 \rightarrow 13$ 76919 measured reflections $I = -15 \rightarrow 15$ 3711 independent reflections $0 = -15 \rightarrow 15$

Refinement

Refinement on F^2 Hydrogen site location: Difference Fourier map Least-squares matrix: Full H-atom parameters constrained Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + ($ $(0.04P)^2 + 0.17P$, where $P = (max(F_o^2, 0) + 2F_c^2)/3$ $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.067$ $(\Delta/\sigma)_{\rm max} = 0.0004$ $\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$ S = 0.97 $\Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$ 3711 reflections Absolute structure: Flack (1983), 1743 Friedel-236 parameters pairs 1 restraint Flack parameter: 0.06 (11) Primary atom site location: Structure-invariant direct methods

Special details

Refinement. The Flack x parameter [Flack, 1983; Flack & Bernardinelli (2000)] refined to 0.05 (12), reducing to -0.001 (8) on the application of Bijvoet difference restraints [Thompson & Watkin, 2010]. Analysis of the Bijvoet differences [Hooft *et al.*, 2008] gave a Hooft y parameter of -0.03 (3), G of 1.06 (6), and a probability that the structure was the correct hand of >99.99% given that the structure is enantiopure or a racemic twin using the Bayesian method.

F(000) = 368 $D_x = 1.304 \text{ Mg m}^{-3}$ Melting point: not measured K Cu Ka radiation, $\lambda = 1.54180 \text{ Å}$ Cell parameters from 59434 reflections $\theta = 4-77^{\circ}$ $\mu = 0.72 \text{ mm}^{-1}$ T = 150 KBlock, Clear_pale_colourless $0.20 \times 0.15 \times 0.08 \text{ mm}$ Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
F1	-0.00358 (14)	0.99563 (10)	0.98412 (8)	0.0521
C2	0.08003 (19)	0.91592 (13)	0.92023 (10)	0.0338
C3	0.03623 (17)	0.78974 (13)	0.92022 (10)	0.0307
C4	0.12329 (16)	0.70895 (12)	0.85599 (9)	0.0265
C5	0.24939 (15)	0.75645 (12)	0.79293 (9)	0.0234
N6	0.34433 (12)	0.67285 (11)	0.72988 (8)	0.0266
C7	0.24483 (14)	0.61977 (12)	0.63222 (9)	0.0245
08	0.06797 (10)	0.63142 (11)	0.60392 (7)	0.0354
N9	0.34627 (13)	0.55022 (10)	0.56999 (8)	0.0253
C10	0.55571 (14)	0.56518 (11)	0.57476 (9)	0.0218
C11	0.63833 (15)	0.66469 (13)	0.66405 (9)	0.0263
C12	0.55036 (14)	0.65099 (13)	0.76740 (9)	0.0295
H122	0.5690	0.5654	0.8010	0.0358*
H121	0.6061	0.7131	0.8290	0.0358*
H111	0.6023	0.7505	0.6305	0.0308*
H112	0.7748	0.6552	0.6829	0.0315*
C13	0.66062 (18)	0.43964 (12)	0.60394 (11)	0.0347
H131	0.7933	0.4519	0.6016	0.0510*
H132	0.6064	0.3733	0.5510	0.0514*
H133	0.6515	0.4144	0.6805	0.0517*
C14	0.57102 (14)	0.61045 (11)	0.45813 (8)	0.0212
N15	0.73261 (13)	0.66928 (10)	0.43752 (7)	0.0239
C16	0.69180 (16)	0.71246 (11)	0.32716 (9)	0.0254
C17	0.50181 (16)	0.67627 (12)	0.27700 (9)	0.0273
C18	0.42830 (14)	0.61120 (12)	0.36264 (9)	0.0251
C19	0.23178 (16)	0.55907 (15)	0.36077 (10)	0.0356
C20	0.23698 (17)	0.48506 (13)	0.46907 (10)	0.0329
H201	0.1072	0.4720	0.4813	0.0390*
H202	0.3000	0.4056	0.4636	0.0387*
H192	0.1893	0.5047	0.2969	0.0433*
H191	0.1373	0.6304	0.3556	0.0438*
C21	0.4220 (2)	0.71176 (14)	0.16416 (10)	0.0375
C22	0.5310 (2)	0.78393 (14)	0.10684 (11)	0.0435
C23	0.7175 (2)	0.82134 (13)	0.15866 (12)	0.0414
C24	0.8014 (2)	0.78619 (12)	0.26938 (11)	0.0329
H241	0.9257	0.8092	0.3035	0.0375*
H231	0.7898	0.8695	0.1190	0.0488*
H221	0.4770	0.8096	0.0284	0.0521*
H211	0.2899	0.6869	0.1277	0.0455*
H151	0.8427	0.6708	0.4829	0.0304*
C25	0.28774 (18)	0.88460 (13)	0.79390 (10)	0.0307
C26	0.20334 (19)	0.96629 (13)	0.85882 (10)	0.0349
H261	0.2290	1.0539	0.8611	0.0430*

H251	0.3739	0.9162	0.7481	0.0371*
H41	0.0949	0.6206	0.8546	0.0315*
H31	-0.0490	0.7586	0.9615	0.0371*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	U^{13}	U ²³
F1	0.0684 (6)	0.0416 (4)	0.0565 (5)	0.0120 (4)	0.0357 (4)	-0.0078 (4)
C2	0.0395 (6)	0.0338 (6)	0.0304 (6)	0.0095 (5)	0.0125 (5)	-0.0018 (5)
C3	0.0290 (6)	0.0386 (6)	0.0272 (5)	0.0000 (5)	0.0124 (4)	-0.0001 (4)
C4	0.0272 (5)	0.0276 (5)	0.0255 (5)	-0.0021 (4)	0.0075 (4)	0.0002 (4)
C5	0.0211 (5)	0.0291 (5)	0.0200 (5)	0.0014 (4)	0.0045 (4)	-0.0007 (4)
N6	0.0186 (4)	0.0368 (5)	0.0248 (4)	0.0014 (4)	0.0058 (3)	-0.0041 (4)
C7	0.0211 (4)	0.0288 (5)	0.0250 (5)	-0.0027 (4)	0.0081 (4)	-0.0016 (4)
08	0.0184 (4)	0.0559 (5)	0.0319 (4)	-0.0008 (4)	0.0052 (3)	-0.0121 (4)
N9	0.0203 (4)	0.0284 (5)	0.0290 (4)	-0.0048 (3)	0.0094 (3)	-0.0052 (4)
C10	0.0184 (5)	0.0237 (5)	0.0244 (5)	0.0001 (4)	0.0074 (4)	0.0015 (4)
C11	0.0185 (4)	0.0362 (5)	0.0244 (5)	-0.0024 (4)	0.0055 (4)	-0.0017 (4)
C12	0.0199 (5)	0.0443 (7)	0.0240 (5)	0.0030 (4)	0.0042 (4)	0.0009 (5)
C13	0.0356 (6)	0.0293 (6)	0.0421 (6)	0.0087 (5)	0.0149 (5)	0.0101 (5)
C14	0.0206 (4)	0.0194 (4)	0.0247 (5)	0.0021 (4)	0.0076 (4)	-0.0008 (4)
N15	0.0221 (4)	0.0277 (4)	0.0224 (4)	-0.0021 (3)	0.0060 (3)	-0.0007 (4)
C16	0.0343 (6)	0.0212 (5)	0.0224 (5)	0.0027 (4)	0.0098 (4)	-0.0023 (4)
C17	0.0307 (5)	0.0285 (5)	0.0229 (5)	0.0085 (4)	0.0060 (4)	-0.0025 (4)
C18	0.0225 (5)	0.0290 (5)	0.0240 (5)	0.0028 (4)	0.0052 (4)	-0.0047 (4)
C19	0.0234 (5)	0.0512 (7)	0.0316 (6)	-0.0045 (5)	0.0042 (4)	-0.0137 (6)
C20	0.0268 (5)	0.0365 (6)	0.0384 (6)	-0.0107 (5)	0.0135 (5)	-0.0156 (5)
C21	0.0429 (7)	0.0448 (7)	0.0233 (5)	0.0136 (6)	0.0038 (5)	-0.0002 (5)
C22	0.0631 (9)	0.0436 (8)	0.0250 (6)	0.0160 (6)	0.0121 (6)	0.0064 (5)
C23	0.0690 (9)	0.0284 (6)	0.0342 (6)	0.0037 (6)	0.0277 (6)	0.0050 (5)
C24	0.0444 (7)	0.0264 (5)	0.0322 (6)	-0.0043 (5)	0.0175 (5)	-0.0027 (4)
C25	0.0339 (6)	0.0319 (6)	0.0288 (6)	-0.0026 (5)	0.0126 (4)	0.0045 (5)
C26	0.0441 (7)	0.0263 (6)	0.0360 (6)	0.0033 (5)	0.0124 (5)	0.0028 (5)

Geometric parameters (Å, º)

F1-C2	1.3634 (13)	C13—H133	0.975
C2-C3	1.3738 (18)	C14—N15	1.3798 (13)
C2-C26	1.3730 (18)	C14-C18	1.3628 (14)
C3—C4	1.3869 (16)	N15-C16	1.3761 (14)
C3—H31	0.925	N15—H151	0.856
C4—C5	1.3903 (15)	C16-C17	1.4143 (16)
C4—H41	0.958	C16-C24	1.3931 (16)
C5—N6	1.4288 (14)	C17-C18	1.4304 (15)
C5-C25	1.3855 (17)	C17-C21	1.4070 (16)
N6-C7	1.3585 (14)	C18-C19	1.5035 (15)

N6-C12	1.4615 (13)	C19—C20	1.5152 (19)
C7-08	1.2413 (13)	C19—H192	0.956
C7—N9	1.3644 (14)	C19—H191	1.006
N9-C10	1.4923 (12)	C20-H201	0.978
N9-C20	1.4682 (14)	C20—H202	0.964
C10-C11	1.5311 (15)	C21-C22	1.377 (2)
C10-C13	1.5307 (15)	C21—H211	0.987
C10-C14	1.5098 (14)	C22-C23	1.401 (2)
C11-C12	1.5160 (14)	C22—H221	0.980
C11—H111	1.006	C23—C24	1.3900 (19)
C11-H112	0.957	C23—H231	0.928
C12—H122	0.990	C24—H241	0.927
C12—H121	1.008	C25-C26	1.3877 (17)
C13—H131	0.962	C25—H251	0.969
C13—H132	0.972	C26—H261	0.946
F1-C2-C3	118.46 (11)	C10-C14-N15	122.74 (9)
F1-C2-C26	118.12 (12)	C10-C14-C18	126.60 (9)
C3-C2-C26	123.42 (11)	N15-C14-C18	110.38 (9)
C2-C3-C4	118.18 (11)	C14-N15-C16	108.17 (9)
C2-C3-H31	121.6	C14-N15-H151	125.6
C4-C3-H31	120.3	C16-N15-H151	125.8
C3-C4-C5	120.04 (10)	N15-C16-C17	107.89 (9)
C3-C4-H41	119.7	N15-C16-C24	130.05 (11)
C5-C4-H41	120.3	C17-C16-C24	121.94 (11)
C4-C5-N6	120.11 (10)	C16-C17-C18	106.83 (9)
C4-C5-C25	120.03 (10)	C16-C17-C21	119.49 (11)
N6-C5-C25	119.83 (10)	C18-C17-C21	133.61 (11)
C5-N6-C7	119.81 (9)	C17-C18-C14	106.70 (9)
C5-N6-C12	119.65 (9)	C17-C18-C19	130.67 (10)
C7-N6-C12	120.44 (9)	C14-C18-C19	122.47 (10)
N6-C7-08	120.57 (10)	C18-C19-C20	109.07 (10)
N6-C7-N9	117.29 (9)	C18-C19-H192	111.5
08-C7-N9	122.10 (10)	C20-C19-H192	109.0
C7—N9—C10	124.52 (9)	C18-C19-H191	109.6
C7-N9-C20	117.27 (9)	C20-C19-H191	109.6
C10-N9-C20	115.60 (8)	H192—C19—H191	108.1
N9-C10-C11	109.41 (8)	C19-C20-N9	112.27 (10)
N9-C10-C13	110.69 (9)	C19-C20-H201	110.7
C11-C10-C13	110.01 (9)	N9-C20-H201	107.1
N9-C10-C14	105.64 (8)	C19-C20-H202	108.6
C11-C10-C14	109.88 (9)	N9-C20-H202	107.1
C13-C10-C14	111.12 (9)	H201-C20-H202	111.0
C10-C11-C12	110.19 (9)	C17-C21-C22	118.50 (13)
C10-C11-H111	108.3	C17-C21-H211	120.5
C12-C11-H111	107.5	C22-C21-H211	120.9
C10-C11-H112	108.3	C21-C22-C23	121.26 (12)

C12-C11-H112	112.0	C21-C22-H221	119.4
H111-C11-H112	110.5	C23-C22-H221	119.4
C11-C12-N6	107.31 (8)	C22-C23-C24	121.64 (12)
C11-C12-H122	112.4	C22-C23-H231	120.5
N6-C12-H122	108.0	C24-C23-H231	117.9
C11-C12-H121	112.0	C16-C24-C23	117.14 (13)
N6-C12-H121	109.7	C16-C24-H241	120.8
H122-C12-H121	107.4	C23-C24-H241	122.0
C10-C13-H131	108.2	C5-C25-C26	120.52 (11)
C10-C13-H132	111.9	C5-C25-H251	118.8
H131-C13-H132	109.5	C26-C25-H251	120.6
C10-C13-H133	109.1	C25-C26-C2	117.79 (12)
H131-C13-H133	109.3	C25-C26-H261	121.6
H132-C13-H133	108.9	C2-C26-H261	120.6

Hydrogen-bond geometry (Å, º)

D—H…A	D—H	H···A	D····A	D—H…A
C11—H112…O8 ⁱ	0.96	2.49	3.3175 (18)	145
N15—H151…O8 ⁱ	0.86	1.97	2.8017 (18)	164

Symmetry code: (i) x+1, y, z.