Gold and BINOL-Phosphoric Acid Catalyzed Enantioselective Hydroamination/*N*-Sulfonyliminium Cyclization Cascade

Alex W. Gregory,^a Pavol Jakubec,^a Paul Turner^b and Darren J. Dixon^c*

^aChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA. UK., ^bAstraZeneca R&D, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG. UK., and ^cChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA. UK., darren.dixon@chem.ox.ac.UK

Experimental

(10b)

Crystal data

$C_{16}H_{17}BrN_2O\cdot CHCI_3$	V = 1918.80 (5) Å ³
$M_r = 452.60$	<i>Z</i> = 4
Orthorhombic, $P2_12_12_1$	Mo $\kappa \alpha$ radiation, $\lambda = 0.71073$ Å
a = 11.0236 (2) Å	$\mu = 2.57 \text{ mm}^{-1}$
b = 12.9544 (2) Å	<i>T</i> = 150 K
c = 13.4366 (2) Å	0.62 × 0.38 × 0.30 mm

Data collection

Nonius KappaCCD diffractometer	4361 independent reflections
Absorption correction: Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997)	4092 reflections with $I > 2.0\sigma(I)$
$T_{min} = 0.17, T_{max} = 0.46$ 56832 measured reflections	$R_{\rm int} = 0.087$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.083$	$\Delta \rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.00	$\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$
4361 reflections	Absolute structure: Flack (1983), 1893 Friedel- pairs
255 parameters	Flack parameter: -0.007 (8)
162 restraints	

Table 1

Selected geometric parameters (Å, °)

Br1-C2	1.889 (3)	N13-C14	1.489 (3)
C2-C3	1.391 (4)	N13-C19	1.349 (3)

C2-C10	1.384 (4)	C14—C15	1.534 (3)
C3—N4	1.374 (3)	C14—C16	1.536 (3)
C3—C7	1.416 (4)	C16-C17	1.516 (4)
N4-C5	1.385 (3)	C17—C18	1.520 (4)
C5—C6	1.374 (3)	C18-C19	1.507 (4)
C5-C14	1.502 (3)	C19—O20	1.244 (3)
C6—C7	1.429 (4)	C21-Cl22	1.738 (3)
C6-C11	1.499 (4)	C21-Cl23	1.746 (3)
С7—С8	1.415 (4)	C21-CI24	1.743 (3)
С8—С9	1.371 (5)	C25-CI26	1.740 (5)
C9-C10	1.399 (5)	C25-CI27	1.743 (5)
C11-C12	1.527 (4)	C25-Cl28	1.744 (5)
C12-N13	1.477 (3)		
Br1-C2-C3	119.8 (2)	C12-N13-C14	116.3 (2)
Br1-C2-C10	121.2 (2)	C12-N13-C19	119.0 (2)
C3-C2-C10	119.0 (3)	C14-N13-C19	124.7 (2)
C2-C3-N4	130.7 (2)	C5-C14-N13	105.81 (19)
C2-C3-C7	121.0 (2)	C5-C14-C15	110.8 (2)
N4-C3-C7	108.3 (2)	N13-C14-C15	110.0 (2)
C3-N4-C5	108.0 (2)	C5-C14-C16	109.1 (2)
N4-C5-C6	110.2 (2)	N13-C14-C16	110.1 (2)
N4-C5-C14	122.6 (2)	C15-C14-C16	111.0 (2)
C6-C5-C14	127.2 (2)	C14-C16-C17	111.1 (2)
C5-C6-C7	106.6 (2)	C16-C17-C18	108.3 (2)
C5-C6-C11	121.9 (2)	C17-C18-C19	115.2 (2)
C7-C6-C11	131.5 (2)	C18-C19-N13	120.3 (2)
C6-C7-C3	106.8 (2)	C18-C19-O20	118.8 (2)
C6-C7-C8	134.0 (3)	N13-C19-O20	120.9 (3)
C3-C7-C8	119.2 (3)	Cl22-C21-Cl23	110.61 (6)
С7—С8—С9	118.5 (3)	Cl22-C21-Cl24	110.54 (6)
C8-C9-C10	122.1 (3)	Cl23-C21-Cl24	110.61 (6)
C9-C10-C2	120.1 (3)	Cl26-C25-Cl27	110.58 (6)
C6-C11-C12	108.2 (2)	Cl26-C25-Cl28	110.60 (6)
C11-C12-N13	110.4 (2)	Cl27-C25-Cl28	110.59 (6)

Table 2

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H···A	D···A	D—H…A
C16—H161…O20 ⁱ	0.96	2.33	3.229 (4)	155 (1)
C21—H211…C7	0.97	2.55	3.511 (4)	170 (1)
C25—H211…C7	1.11	2.55	3.517 (4)	145 (1)
C25—H251…C7	0.98	2.60	3.517 (4)	157 (1)
N4—H41…O20 ⁱ	0.84	1.99	2.809 (4)	166 (1)

Symmetry code: (i) -*x*+1/2, -*y*+1, *z*+1/2.

(15a)

Crystal data

 $C_{21}H_{21}BrN_2O_2S$ V = 1920.19 (3) Å³ $M_r = 445.38$ Z = 4Monoclinic, $P2_1$ Mo K α radiation, $\lambda = 0.71073$ Åa = 10.4507 (1) Å $\mu = 2.27 \text{ mm}^{-1}$ b = 16.2752 (2) ÅT = 150 Kc = 11.5043 (1) Å $0.50 \times 0.30 \times 0.15 \text{ mm}$ $\beta = 101.0903$ (5)°

Data collection

Nonius KappaCCD diffractometer	8412 independent reflections
Absorption correction: Multi-scan <i>DENZO/SCALEPACK</i> (Otwinowski & Minor, 1997)	7894 reflections with $I > 2.0\sigma(I)$
$T_{\min} = 0.54, T_{\max} = 0.71$	$R_{\rm int} = 0.063$
35947 measured reflections	

Refinement

H-atom parameters constrained
$\Delta \rho_{\text{max}} = 1.11 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{min} = -0.93 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack (1983), 3898 Friedel- pairs
Flack parameter: 0.010 (4)

Table 3

Selected geometric parameters (Å, °)

Br1-C2	1.900 (2)	Br28-C29	1.901 (2)
C2—C3	1.385 (3)	C29—C30	1.386 (4)
C2—C7	1.392 (4)	C29—C34	1.381 (4)
C3—C4	1.389 (3)	C30-C31	1.387 (4)
C4—C5	1.393 (3)	C31-C32	1.392 (4)
C4—C8	1.521 (3)	C32—C33	1.388 (3)
C5—C6	1.390 (4)	C33—C34	1.401 (3)
C6—C7	1.383 (4)	C33—C35	1.514 (3)
C8-N9	1.449 (3)	C35—N36	1.460 (3)
N9-C10	1.384 (3)	N36-C37	1.384 (3)
N9-C17	1.397 (3)	N36-C40	1.395 (3)
C10-C11	1.394 (3)	C37—C38	1.406 (3)
C10-C15	1.416 (3)	C37—C54	1.404 (3)
C11-C12	1.384 (4)	C38—C39	1.432 (3)
C12-C13	1.401 (4)	C38-C51	1.410 (3)
C13-C14	1.382 (4)	C39—C40	1.368 (3)
C14-C15	1.396 (3)	C39—C49	1.500 (3)
C15-C16	1.437 (3)	C40-C41	1.519 (3)
C16-C17	1.367 (3)	C41-N42	1.497 (3)

C16-C26	1.495 (3)	C41—C47	1.554 (3)
C17-C18	1.515 (3)	C41-C50	1.529 (3)
C18-N19	1.493 (3)	N42—S43	1.642 (2)
C18-C24	1.557 (3)	N42—C48	1.475 (3)
C18-C27	1.526 (3)	S43-044	1.442 (2)
N19-S20	1.637 (2)	S43—045	1.436 (2)
N19-C25	1.475 (3)	S43-C46	1.765 (3)
S20-021	1.432 (2)	C46—C47	1.517 (4)
S20-022	1.4389 (19)	C48-C49	1.528 (4)
S20-C23	1.768 (3)	C51-C52	1.372 (4)
C23-C24	1.525 (4)	C52—C53	1.409 (4)
C25-C26	1.522 (3)	C53—C54	1.384 (4)
Br1-C2-C3	118.66 (18)	Br28-C29-C30	119.17 (19)
Br1-C2-C7	119.59 (18)	Br28-C29-C34	118.45 (19)
C3-C2-C7	121.7 (2)	C30-C29-C34	122.4 (2)
C2-C3-C4	119.4 (2)	C29-C30-C31	118.1 (2)
C3-C4-C5	119.7 (2)	C30-C31-C32	120.5 (2)
C3-C4-C8	117.6 (2)	C31-C32-C33	120.8 (2)
C5-C4-C8	122.8 (2)	C32-C33-C34	119.0 (2)
C4-C5-C6	119.9 (2)	C32-C33-C35	123.6 (2)
C5—C6—C7	121.1 (2)	C34-C33-C35	117.4 (2)
C2-C7-C6	118.2 (2)	C33-C34-C29	119.2 (2)
C4-C8-N9	113.68 (19)	C33-C35-N36	113.44 (19)
C8-N9-C10	121.95 (19)	C35-N36-C37	121.92 (19)
C8-N9-C17	128.4 (2)	C35-N36-C40	130.2 (2)
C10-N9-C17	108.04 (18)	C37—N36—C40	107.90 (19)
N9-C10-C11	129.7 (2)	N36-C37-C38	108.5 (2)
N9-C10-C15	108.5 (2)	N36-C37-C54	129.4 (2)
C11-C10-C15	121.9 (2)	C38-C37-C54	122.1 (2)
C10-C11-C12	117.1 (2)	C37-C38-C39	106.6 (2)
C11-C12-C13	121.7 (2)	C37-C38-C51	118.8 (2)
C12-C13-C14	121.0 (2)	C39-C38-C51	134.6 (2)
C13-C14-C15	118.7 (2)	C38-C39-C40	107.6 (2)
C10-C15-C14	119.5 (2)	C38-C39-C49	129.2 (2)
C10-C15-C16	106.2 (2)	C40-C39-C49	123.2 (2)
C14-C15-C16	134.1 (2)	N36-C40-C39	109.4 (2)
C15-C16-C17	107.8 (2)	N36-C40-C41	124.8 (2)
C15-C16-C26	128.5 (2)	C39-C40-C41	125.7 (2)
C17-C16-C26	123.4 (2)	C40-C41-N42	107.20 (18)
N9-C17-C16	109.5 (2)	C40-C41-C47	113.02 (19)
N9-C17-C18	124.5 (2)	N42-C41-C47	103.86 (18)
C16-C17-C18	125.7 (2)	C40-C41-C50	111.70 (19)
C17-C18-N19	107.40 (18)	N42-C41-C50	108.67 (19)
C17-C18-C24	112.60 (19)	C47-C41-C50	111.9 (2)
N19-C18-C24	104.89 (19)	C41-N42-S43	113.44 (15)
C17-C18-C27	112.3 (2)	C41-N42-C48	117.98 (19)
N19-C18-C27	108.10 (19)	S43-N42-C48	119.11 (17)
C24-C18-C27	111.1 (2)	N42-S43-044	110.06 (13)
C18-N19-S20	113.29 (15)	N42-S43-045	110.16 (12)

C18-N19-C25	120.05 (18)	044—S43—045	116.07 (14)
S20-N19-C25	119.29 (16)	N42-S43-C46	95.66 (11)
N19-S20-021	109.75 (12)	044-S43-C46	107.95 (13)
N19-S20-022	109.60 (11)	045-S43-C46	115.04 (14)
021-S20-022	116.58 (13)	S43-C46-C47	101.51 (17)
N19-S20-C23	95.05 (11)	C41-C47-C46	106.6 (2)
021-S20-C23	108.72 (13)	N42-C48-C49	111.8 (2)
022-S20-C23	115.00 (13)	C48-C49-C39	109.4 (2)
S20-C23-C24	100.68 (17)	C38-C51-C52	119.1 (2)
C23-C24-C18	107.68 (19)	C51-C52-C53	121.5 (2)
N19-C25-C26	111.43 (19)	C52-C53-C54	120.8 (2)
C25-C26-C16	107.9 (2)	C37-C54-C53	117.6 (2)

Table 4

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
C12—H121…O44 ⁱ	0.94	2.54	3.390 (4)	152
C23—H232…O44 ⁱⁱ	0.98	2.51	3.347 (4)	143
C35—H351…O21	0.96	2.55	3.430 (4)	152
C46—H461…O22 ⁱⁱⁱ	0.97	2.50	3.282 (4)	137

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*+1, *y*, *z*; (iii) *-x*+1, *y*-1/2, *-z*+1.

For both compounds, data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997). Program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) for (10b); *SIR92* (Altomare *et al.*, 1994) for (15a). For both compounds, program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.

Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.

Watkin, D. J. (1994). Acta Cryst. A50, 411-437.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*, Chemical Crystallography Laboratory, Oxford, UK.