ORGANIC LETTERS

Gold and BINOL-Phosphoric Acid Catalyzed Enantioselective Hydroamination/N-Sulfonyliminium Cyclization Cascade

Alex W. Gregory, Pavol Jakubec, Paul Turner and Darren J. Dixon*

†Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (UK) and ‡ Mereside, Alderley Park, AstraZeneca R&D Macclesfield, Cheshire SK10 4TG (UK). darren.dixon@chem.ox.ac.uk

Contents

1.		Genera	l Experimental	8 -
2.		Prepara	ation and Characterisation	9 -
	2.1.	Pre	paration and characterisation of tryptamine derivatives	9 -
	2.2	2. 0	General procedure A for the preparation of indole carbaldehydes (17)	9 -
		2.2.1.	Preparation and characterisation of 17g	10 -
		2.2.2.	Preparation and characterisation of 17b	10 -
	2.3	3. C	Seneral procedure B for the synthesis of nitro-olefins 18	10 -
		2.3.1.	Preparation and characterisation of 18g	11 -
		2.3.2.	Preparation and characterisation of 18b	11 -
	2.4	I. C	Seneral procedure C for the synthesis of tryptamines 19	12 -
		2.4.1.	Preparation and characterisation of 19m	12 -
		2.4.2.	Preparation and characterisation of 19b	13 -
		2.4.3.	Preparation and characterisation of 20g	13 -
		2.4.4.	Preparation and characterisation of 19g	14 -
	2.5	5. 0	General procedure D for preparation of 5	15 -
		2.5.1.	Preparation and characterisation of 5a	15 -
		2.5.2.	Preparation and characterisation of 5b	16 -
		2.5.3.	Preparation and characterisation of 5c	16 -
		2.5.4.	Preparation and charactarisation of 5d	17 -
		2.5.5.	Preparation and characterisation of 5e	17 -
		2.5.6.	Preparation and characterisation of 5f	18 -
		2.5.7.	Preparation and characterisation of 5g	18 -
		2.5.8.	Preparation and charactarisation of 5h	19 -
		2.5.9.	Preparation and characterisation of 5i	20 -
		2.5.10.	Preparation and characterisation of 5j	20 -
		2.5.11.	Preparation and characterisation of 5k	21 -
	2.6	5. 0	Seneral procedure E for preparation of 6	21 -
	2.7	<i>.</i> 0	General procedure F for preparation of racemic derivatives 6	22 -
		2.7.1.	Preparation and characterisation of 6a	22 -
		2.7.2.	Preparation and characterisation of 7 ^ª	22 -
		2.7.3.	Preparation and characterisation of 6b	23 -
		2.7.4.	Preparation and characterisation of 6c	24 -
		2.7.5.	Preparation and characterisation of 6d	24 -
		2.7.6.	Preparation and characterisation of 6e	25 -
		2.7.7.	Preparation and characterisation of 6f	26 -
		2.7.8.	Preparation and characterisation of 6g	27 -

2.7.9.	Preparation and characterisation of 6h	27 -
2.7.1.	Preparation and characterisation of 6i	28 -
2.7.2.	Preparation and characterisation of 6j	29 -
2.7.3.	Preparation and characterisation of 6k	29 -
2.8.	Methodology extention for amide derivitives	30 -
2.9.	General procedure G for the preparation of 9	30 -
2.9.1.	Preparation and characterisation of 9a	30 -
2.9.2.	Preparation and characterisation 9b	31 -
2.9.3.	Preparation and Characterisation of 9c	32 -
2.9.4.	Preparation and Characterisation of 9d	32 -
2.10.	General procedure H for the racemic preparation of cyclic amides 10	33 -
2.11.	General procedure I for the Enantioselective preparation of cyclic amides 10	33 -
2.11.1.	Preparation and characterisation of 10a	33 -
2.11.2.	Preparation and Characterisation of 10b	34 -
2.11.3.	Preparation and Characterisation of 10c	35 -
2.11.4.	Preparation and Characterisation of 10d	35 -
2.12.	Optimization, Derivative for X-ray and Control reactions.	36 -
2.13.	Preparation and characterisation of 14	36 -
2.13.1.	Mechanistic evidence for N-sulfonylimminium 13	37 -
2.13.2. hexahy	General Proceedure for optimization in the preparation of 11b-methyl-1,2,5,6,11,11b- droisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 5a	37 -
2.13.3	General proceedure for optimization in the preparation of 10a	37 -
2.13.4	Optimisation table for the preparation of 10a.	38 -
2.13.5	Preparation and characterisation of 15a	38 -
3. ¹ HNMF	R and ¹³ CNMR spectra	40 -
3.1.	Sulfonamide starting material 5	40 -
3.1.1.	¹ HNMR spectra for <i>N</i> -[2-(1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5a	40 -
3.1.2.	¹³ CNMR spectra for N-[2-(1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5a	40 -
3.1.3.	¹ HNMR spectra for <i>N</i> -[2-(4-chloro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5b	41 -
3.1.4.	¹³ CNMR spectra for <i>N</i> -[2-(4-chloro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5b	41 -
3.1.5.	¹ HNMR spectra for N-[2-(5-bromo-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5c	42 -
3.1.6.	¹³ CNMR spectra for <i>N</i> -[2-(5-bromo-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5c	42 -
3.1.7.	¹ HNMR spectra for <i>N</i> -[2-(6-bromo-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d	43 -
3.1.8.	¹³ CNMR spectra for <i>N</i> -[2-(6-bromo-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d	43 -
3.1.9.	¹ HNMR spectra for <i>N</i> -[2-(5-fluoro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5e	44 -
3.1.10	¹³ CNMR spectra for <i>N</i> -[2-(5-fluoro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5e	44 -
3.1.11	¹ HNMR spectra for <i>N</i> -[2-(6-fluoro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5f	45 -

3.1.12.	¹³ CNMR spectra for <i>N</i> -[2-(6-fluoro-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5f	45 -
3.1.13.	¹ HNMR spectra for <i>N</i> -[2-(5-cyano-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5g	46 -
3.1.14.	¹³ CNMR spectra for <i>N</i> -[2-(5-cyano-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5g	46 -
3.1.15.	¹ HNMR spectra for N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5h	47 -
3.1.16.	¹³ CNMR spectra for N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5h	47 -
3.1.17.	¹ HNMR spectra for <i>N</i> -[2-(5-methyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i	48 -
3.1.18.	¹³ CNMR spectra for <i>N</i> -[2-(5-methyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i	48 -
3.1.19.	¹ HNMR spectra for <i>N</i> -[2-(7-methyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j	49 -
3.1.20.	¹³ CNMR spectra for <i>N</i> -[2-(7-methyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j	49 -
3.1.21.	¹ HNMR spectra for <i>N</i> -[2-(7-ethyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k	50 -
3.1.22.	¹³ CNMR spectra for <i>N</i> -[2-(7-ethyl-1 <i>H</i> -indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k	50 -
3.2. Su	ulfonamide cyclization products	51 -
3.2.1. dioxide	¹ HNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole-3 6a	,3- 51 -
3.2.2. dioxide	¹³ CNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3 6a	8,3- 51 -
3.2.3. 52 -	¹ HNMR spectra for 2,3,6,7,12,12b-hexahydro-1 <i>H</i> -[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-diox	(ide 7a
3.2.4. 52 -	¹³ CNMR spectra for 2,3,6,7,12,12b-hexahydro-1 <i>H</i> -[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dio	xide 7a
3.2.5. 3,3-diox	¹ HNMR spectra for 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 kide 6b	- <i>b</i>]indole 53 -
3.2.6. 3,3-diox	¹³ CNMR spectra for 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 kide 6b	l <i>-b</i>]indole 53 -
3.2.7. 3,3-diox	¹ HNMR spectra for 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 kide 6c	- <i>b</i>]indole 54 -
3.2.8. 3,3-diox	¹³ CNMR spectra for 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 kide 6c	4- <i>b</i>]indole 54 -
3.2.9. 3,3-diox	¹ HNMR spectra for 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 kide 6d	- <i>b</i>]indole 55 -
3.2.10. <i>b</i>]indole	¹³ CNMR spectra for 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido e 3,3-dioxide 6d	[3,4- 55 -
3.2.11. <i>b</i>]indole	¹ HNMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[e 3,3-dioxide 6e	3,4- 56 -
3.2.12. <i>b</i>]indole	¹³ CNMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido e 3,3-dioxide 6e	[3,4- 56 -
3.2.13. <i>b</i>]indole	¹ HNMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3 e 3,3-dioxide 6f	3,4- 57 -
3.2.14. <i>b</i>]indole	¹³ CNMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[e 3,3-dioxide 6f	3,4- 57 -

3.2.15. carbon	¹ HNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8 itrile 3,3-dioxide 6g	8- 58 -
3.2.16. carbon	¹³ CNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole- itrile 3,3-dioxide 6g	58 -
3.2.17. b]indol	¹ HNMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3, le 3,3-dioxide 6h	4- 59 -
3.2.18. b]indol	¹³ CNMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3 le 3,3-dioxide 6h	,4- 59 -
3.2.1. dioxide	¹ HNMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole e 6i	3,3- 60 -
3.2.2. dioxide	¹³ CNMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole e 6i	3,3- 60 -
3.2.3. dioxide	¹ HNMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole e 6j	e 3,3- 61 -
3.2.4. dioxide	¹³ CNMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indol e 6j	e 3,3- 61 -
3.2.5. 3,3-dio	¹ HNMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]in oxide 6k	ndole 62 -
3.2.6. 3,3-dio	¹³ CNMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]in pxide 6k	ndole 62 -
3.3. A	Amide starting material	63 -
3.3.1.	¹ HNMR spectra for <i>N</i> -[2-(1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9a	63 -
3.3.2.	¹³ CNMR spectra for <i>N</i> -[2-(1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9a	63 -
3.3.3.	¹ HNMR spectra for <i>N</i> -[2-(7-bromo-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9b	64 -
3.3.4.	¹³ CNMR spectra for <i>N</i> -[2-(7-bromo-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9b	64 -
3.3.5.	¹ HNMR spectra for <i>N</i> -[2-(7-methyl-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9c	65 -
3.3.6.	¹³ CNMR spectra for <i>N</i> -[2-(7-methyl-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9c	65 -
3.3.7.	¹ HNMR spectra for <i>N</i> -[2-(7-ethyl-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9d	66 -
3.3.8.	¹³ CNMR spectra for <i>N</i> -[2-(7-ethyl-1 <i>H</i> -indol-3-yl)ethyl]hex-5-ynamide 9d	66 -
3.4. A	Amide cyclization products	67 -
3.4.1.	1HNMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a	67 -
3.4.2.	¹³ CNMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a	67 -
3.4.3. 68 -	¹ HNMR spectra for 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one 2	10b
3.4.4. 68 -	¹³ CNMR spectra for 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one	10b
3.4.5.	¹ HNMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one 10c	69 -
3.4.6.	¹³ CNMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c	69 -
3.4.7. -	¹ HNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one 10	d - 70

	3.4.8. -	¹³ CNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one 10d	I- 70
	3.4.9.	¹ HNMR spectra for <i>N</i> -[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14	71 -
	3.4.10.	13CNMR spectra for N-[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14	71 -
	3.4.11. hexahyo	1HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b- dro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a	72 -
	3.4.12. hexahyo	¹ HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b- dro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a	72 -
4.	HPLC re	ports	73 -
4	.1. S	ulfonamide cyclization products	73 -
	4.1.1. dioxide	HPLC trace of racemic 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3- 6a	73 -
	4.1.2. 73 -	HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6	ба
	4.1.3. ketone s	HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide f 	^f om 74 -
	4.1.4. <i>b</i>]indole	HPLC trace of Racemic 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- - 3,3-dioxide 6b	75 -
	4.1.5. dioxide	HPLC trace of 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3, 6b	,3- 75 -
	4.1.6. b]indole	HPLC trace of racemic 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4- 2 3,3-dioxide 6c	76 -
	4.1.7. dioxide	HPLC trace 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3- 6c	76 -
	4.1.8. <i>b</i>]indole	HPLC trace of Racemic 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- 2 3,3-dioxide 6d	77 -
	4.1.9. dioxide	HPLC trace of 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3 6d	,3- 77 -
	4.1.10. <i>b</i>]indole	HPLC trace of Racemic 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4	1- 78 -
	4.1.11. 3,3-diox	HPLC trace of 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 	e 78 -
	4.1.12. <i>b</i>]indole	HPLC trace of Racemic 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4 - 3,3-dioxide 6f	1- 79 -
	4.1.13. 3,3-diox	HPLC trace of 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 	e 79 -
	4.1.14. carboni	HPLC trace of Racemic 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 	e-8- 80 -
	4.1.15. carboni	HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8- trile 3,3-dioxide 6g	80 -
	4.1.16. 3,3-diox	HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]ind 	lole 81 -

	4.1.17. 3,3-dioxi	HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole de 6h 81 -
	4.1.18. <i>b</i>]indole	HPLC trace of Racemic 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- 3,3-dioxide 6i 82 -
	4.1.19. dioxide 6	HPLC trace of 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole 3,3- i - 82 -
	4.1.20. <i>b</i>]indole	HPLC trace of Racemic 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- 3,3-dioxide 6j 83 -
	4.1.21. dioxide 6	HPLC trace of 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole 3,3- j - 83 -
	4.1.22. <i>b</i>]indole	HPLC trace of Racemic 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- 3,3-dioxide 6k 84 -
	4.1.23. 3,3-dioxi	HPLC trace of 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- <i>b</i>]indole de 6k 84 -
4	.2. An	nide cyclization products 86 -
	4.2.1. 10b	HPLC trace of Racemic 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one - 86 -
	4.2.2.	HPLC trace of 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10b 86 -
	4.2.3.	HPLC trace of racemic 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c - 87 -
	4.2.4.	HPLC trace of 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c
	4.2.5. 88 -	HPLC trace of racemic 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3- <i>a</i>]quinolizin-4(1 <i>H</i>)-one 10d -
	4.2.6.	HPLC trace of 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10d 88 -
	4.2.7. hexahydı	HPLC trace of racemic 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b- ·o[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a 89 -
	4.2.8. b]indole	HPLC trace of 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4- 3,3-dioxide 15a 89 -
5.	Xray Data	a 90 -
5	.1. X-r	ay data for compound 10b90 -
5	.2. X-I	Ray data for compound 15a 95 -
5	.3. X-ı	ay references 103 -
6.	Referenc	es 103 -

5.

1. General Experimental

General Experimental Techniques

For reactions requiring anhydrous conditions, glassware was dried in an oven at 100 °C and reactions were carried out under a nitrogen or argon atmosphere. Room temperature (rt) refers to 20-25 °C. Temperatures of 0 °C were achieved using an ice-bath. All compounds were named using ACD IUPAC name predictor.

Solvents and Reagents

Commercial reagents were used as purchased without any further purification unless otherwise stated. Chiral Brønsted acids (**BPA-1A** to **BPA-1D** and **BPA-2A**) were synthesised by Dr Michael Muratore and Dr Lie Shi following standard literature procedure.^{1,2,3} Bulk solutions were concentrated under reduced pressure using a Büchi rotary evaporator. Anhydrous toluene, tetrahydrofuran and dichloromethane were obtained by filtration through activated alumina (powder ~150 mesh, pore size 58Å, basic, Sigma-Aldrich) columns. Dichloroethane and acetonitrile were distilled over calcium hydride. Petroleum ether (PE) refers to distilled light petroleum with boiling points in the range of 40 °C – 60 °C. Tryptamine derivatives 2-(1*H*-indol-3-yl)ethanamine, 2-(5-methyl-1*H*-indol-3-yl)ethanamine and 2-(5-methoxy-1*H*-indol-3-yl)ethanamine were used as provided from commercial suppliers. Known tryptamine derivatives were made following literature methods.^{4,5,6,} 5-cyano-tryptamine, 4-chloro-tryptamine and 7-bromo-tryptamine were synthesised as described.

Chromatography

All reactions were monitored by thin-layer chromatography (TLC) where appropriate using Merck Kiesel gel 60 F₂₅₄ (230-400 mesh) silica plates which were visualised by UV-light (250 nm) or by staining using aqueous potassium permanganate solutions or vanillin, sulphuric acid in ethanol where appropriate. Column chromatography was carried out using Merck Kieselgel 60 silica gel (230-400 mesh). Enantiomeric excesses were determined using high performance liquid chromatography (HPLC) performed on a Hewlett-Packard 1050 Series system or Agilent 1200 Series system (column and solvent conditions are given with the compound).

Spectroscopy and Characterisation

All ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were collected on either a Bruker DPX400 (400 MHz ¹H, 100 MHz ¹³C), Bruker DQX400 (400 MHz ¹H, 100 MHz ¹³C) or Bruker AVC500 (500 MHz ¹H, 125 MHz ¹³C) and in the deuterated solvent stated. Chemical shift values (δ) are reported relative to tetramethylsilane (δ = 0 ppm) using the solvent residual as an internal reference. ¹HNMR peak splitting (multiplicity) and coupling constants are quoted as seen in the spectra and are not compared to theoretically expected multiplicity. Assignments were aided by COSY and HSQC experiments.

Low resolution mass spectrometric (m/z) data was acquired by electrospray ionisation (ESI) on an LCT Premier instrument.. High resolution mass spectra (accurate mass) were recorded on a Bruker Micromass GCT spectrometer.

Infrared spectra (v_{max}) were recorded (wavenumber cm⁻¹) from a thin film on a PIKE diamond ATR module. Only selected maximum absorbances are reported.

Optical rotations were recorded using an Optical Activity AA-1000 polarimeter or a Perkin-Elmer 241 polarimeter; specific rotation (SR) ($[\alpha]_D^T$) are reported in 10⁻¹ deg.cm².g⁻¹; concentrations (*c*) are quoted in g/100 ml; *D* refers to the *D*-line of sodium (589 nm); Temperatures (*T*) are given in degrees Celsius (°C).

Melting points were measured on a Leica Galen III microscope apparatus, samples were measured mounted on a cover glass window.

2. Preparation and Characterisation

2.1. Preparation and characterisation of tryptamine derivatives

2.2. General procedure A for the preparation of indole carbaldehydes (17)

Phosphorus oxychloride (2.5 eq) was added dropwise to dry dimethyl formamide (5 ml per 1 ml of POCl₃) with ice-bath cooling under nitrogen. The mixture was stirred for 5 minutes before the chosen indole (1 equivalent) was added in dimethyl formamide (10 ml per 1 g of indole). The mixture was then allowed to warm to room temperature and stirred for 3 hours. The reaction became a thick suspension that required vigorous stirring. Potassium hydroxide solution (3.8 M, 10 eq) was added via dropping funnel and the mixture was heated at reflux for 14-16h. The solution was cooled to room temperature before adding a saturated sodium hydrogen carbonate solution and ethyl acetate until the mixture became clear and the organic layer was separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over sodium sulphate, filtered and concentrated *in vacuo* to furnish the desired aldehyde that required no further purification.

2.2.1. Preparation and characterisation of 17g

3-formyl-1H-indole-5-carbonitrile

The title compound **17g** was synthesised according to general procedure **A** in 97% yield as an off white solid.

m.p. 230-233 °C; **FT-IR** v_{max} 3207 (N–H), 2221 (C=N), 1648 (C=O); ¹H NMR (d₆-DMSO, 400 MHz) δ_{H} 12.54 (br s, 1H, ArN<u>H</u>), 9.99 (s, 1H, ArC<u>H</u>O), 8.49 (s, 1H, ArC<u>H</u>), 8.45 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 7.69 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.62 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 2.0 Hz); ¹³C NMR (d₆-DMSO, 100 MHz) δ_{C} 186.2 (C=O), 141.1 (ArCH), 139.7 (ArCquat), 127.2 (ArCH), 126.6 (ArCH) 124.8 (ArCquat), 120.8 (ArCquat), 118.9 (ArCN), 114.8 (ArCH), 105.2 (ArCquat); *m/z* (ES-) 169 ([M–H]⁻, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₀H₆N₂NaO⁺) requires *m/z* 193.0372, found 193.0368.

2.2.2.**Preparation and characterisation of 17b**

4-chloro-1*H*-indole-3-carbaldehyde

The title compound **17b** was synthesised according to general procedure **A** in 85% yield as a light brown solid.

m.p. 147-148 °C; **FT-IR** v_{max} 1636 (C=O); ¹**H NMR** (d₆-DMSO, 400 MHz) δ_{H} 12.57 (br s, 1H, ArN<u>H</u>), 10.49 (s, 1H, C<u>H</u>O), 8.30 (s, 1H, ArC<u>H</u>), 7.52 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.30 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.23 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz); ¹³**C NMR** (d₆-DMSO, 125 MHz) δ_{C} 185.6 (<u>C</u>=O), 139.1 (Ar<u>C</u>_{quat}), 134.9 (Ar<u>C</u>H), 125.4 (Ar<u>C</u>_{quat}), 124.4 (Ar<u>C</u>H), 123.8 (Ar<u>C</u>_{quat}), 123.4 (Ar<u>C</u>H), 118.7 (Ar<u>C</u>_{quat}), 112.8 (Ar<u>C</u>H); *m/z* (ES-) 178 ([M-H]⁻, 100%), **HRMS** (ES-) exact mass calculated for [M-H]⁻ (C₉H₅CINO⁻) requires *m/z* 178.0065 & 180.0036 found *m/z* 178.0065 & 180.0033.

2.3. General procedure B for the synthesis of nitro-olefins 18

A mixture of the corresponding aldehyde **17** (1 eq), and ammonium acetate (dried under reduced pressure until the crystals became free flowing) (3 eq) in nitromethane (20 ml per 1 g of aldehyde) were heated at reflux under nitrogen for 1 hour (behind a blast shield). The reaction mixture was then allowed to cool to room temperature. **Two purification methods: 1)** The solvent was removed *in vacuo* and the residue washed with water and filtered. The filtration cake was pre-absorbed onto silica gel and purified by flash column chromatography (PE:ethyl acetate, 2:1) to furnish the desired nitro-olefin. **2)** The reaction was allowed to cool to room temperature and left to crystaillize for 14-16 h. The solid was filtered, washed with water and dried over phosphourous pentoxide in a vacuum dessicator affording the desired nitro-olefin **18**.

2.3.1. Preparation and characterisation of 18g

(E)-3-(2-nitrovinyl)-1H-indole-5-carbonitrile

The title compound **18g** was synthesised according to general procedure **B** in 98% yield as a yellow solid.

m.p. 142 °C (decomposition); **FT-IR** 2222 (C=N), 1621 (C=C), 1528 (NO_{2(asy)}), 1340 (NO_{2(sy)}); ¹H NMR (d₆-DMSO, 400 MHz) δ_{H} 12.6 (br s, 1H, ArN<u>H</u>), 8.66 (s, 1H, ArC<u>H</u>), 8.40 (d, 1H, O₂NCHC<u>H</u>, *J* 13.5 Hz), 8.38 (s, 1H, ArC<u>H</u>), 8.22 (d, 1H, O₂NC<u>H</u>CH, *J* 13.5 Hz), 7.67 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.61 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz); ¹³C NMR (d₆-DMSO, 100 MHz) δ_{C} 140.2 (Ar<u>C</u>_{quat}), 138.3 (Ar<u>C</u>H), 134.0 (O₂NCH=<u>C</u>H) 134.0 (Ar<u>C</u>_{quat}), 127.0 (O₂N<u>C</u>H=CH), 126.9 (Ar<u>C</u>H), 125.3 (Ar<u>C</u>H), 120.9 (Ar<u>C</u>N), 114.8 (Ar<u>C</u>H), 109.5 (Ar<u>C</u>_{quat}), 104.8 (Ar<u>C</u>_{quat}); *m/z* (ES-) 212 ([M-H]⁻, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₁H₇N₃NaO₂⁺) requires *m/z* 236.0430, found *m/z* 236.0430.

2.3.2. Preparation and characterisation of 18b

(E)-4-chloro-3-(2-nitrovinyl)-1H-indole

The title compound **18b** was synthesised according to general procedure **B** in 98% yield as a orange solid.

m.p. 158-160 °C (decomposition); **FT-IR** ν_{max} 3258 (N–H), 1605 (C=C), 1491 (NO_{2 (asy)}), 1293 (NO_{2(sy)}); ¹H NMR (d₆-DMSO, 400 MHz) δ_{H} 12.57 (br s, 1H, ArN<u>H</u>), 8.92 (d, 1H, O₂NCH=C<u>H</u>, *J* 13.5 Hz), 8.53 (s, 1H, ArC<u>H</u>), 8.12 (d, 1H, O₂NC<u>H</u>=CH, *J* 13.5 Hz), 7.50 (dd, 1H, ArC<u>H</u>, *J* 7.6 Hz, 1.5 Hz), 7.23 (m, 2H, ArC<u>H</u>); ¹³C NMR (d₆-DMSO, 100 MHz) δ_{C} 139.2 (Ar<u>C</u>_{quat}), 134.4 (O₂NCH<u>C</u>H), 133.4 (O₂N<u>C</u>HCH), 132.6 (Ar<u>C</u>_H), 125.4 (Ar<u>C</u>_{quat}), 124.5 (Ar<u>C</u>_H), 123.6 (Ar<u>C</u>_{quat}), 123.5 (Ar<u>C</u>H), 113.1 (Ar<u>C</u>H), 107.8 (Ar<u>C</u>_{quat}); *m/z* (ES-) 221 ([M–H]⁻, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₀H₇ClN₂NaO₂⁺) requires *m/z* 245.0088 & 247.0059 found *m/z* 245.0084 & 247.0056.

2.4. General procedure C for the synthesis of tryptamines 19

A solution nitro olefin **18** (1 equivalent) in tetrahydrofuran (10 ml per 1 mmol of nitro olefin) was added to a stirred slurry of lithium aluminium hydride powder (6 equivalents) in tetrahydrofuran (equal mass to volume, e.g. 1 g (LiAlH₄):1ml (tetrahydrofuran)) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 36 hours. The reaction was cooled to 0 °C and was quenched by dropwise addition of water until effervescence ceased. The mixture was then filtered and the solid washed with ethylacetate, the filtrate was concentrated *in vacuo* to furnish the desired tryptamine **19** which was purified by flash column chromatography or acidic extraction from CH_2Cl_2 solution followed by addition of solid KOH until the PH measures 14 (by universal indicator paper) and extracted with CH_2Cl_2 dried over NaSO₄ and concentrated.

2.4.1. Preparation and characterisation of 19m

2-(7-bromo-1H-indol-3-yl)ethanamine

The title compound **19m** was synthesised according to general procedure **C** from known nitro-olefin⁷ after acid base extraction isolated as a orange solid (50% yield).

m.p. 89-99 °C; **FT-IR** v_{max} 3556 (NH₂), 3293 (ArN–H); ¹**H** NMR (CDCl₃, 400 MHz) δ_{H} 8.67 (br s, 1H, ArN<u>H</u>), 7.55 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.35 (d, 1H, ArC<u>H</u>, *J* 8.293 (IM+H]⁺, 100 %), 118.1 (Ar<u>C</u>H), 114.9 (Ar<u>C</u>_{quat}), 104.8 (Ar<u>C</u>Br), 42.3 (N<u>C</u>H₂), 29.5 (Ar<u>C</u>H₂); *m/z* (ES+) 239 ([M+H]⁺, 100 %), HRMS (ES+) exact mass calculated for [M+H]⁺ (C₁₀H₁₂BrN₂⁺) requires *m/z* 239.0187 & 241.0158 found *m/z* 239.0178 & 241.0157.

2.4.2. Preparation and characterisation of 19b

2-(4-chloro-1H-indol-3-yl)ethanamine

The title compound was synthesised from **19b** according to general procedure **C** and purified by flash column chromatography (DCM ramping to DCM : MeOH : NEt₃, 85 : 10 : 5) in 57% yield as a orange solid.

m.p. 83-93 °C; **FT-IR** v_{max} 3351 (NH₂), 3294 (ArN–H); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 9.02 (br s, 1H, ArN<u>H</u>), 7.22 (dd, 1H, ArC<u>H</u>, *J* 6.5 Hz, 2.5 Hz), 7.08-7.02 (m, 2H, ArC<u>H</u>), 6.99 (s, 1H, ArC<u>H</u>), 3.13 (t, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.06 (t, 2H, ArC<u>H₂</u>, *J* 6.5 Hz) 1.72 (br s, 2H, N<u>H₂</u>); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 138.1 (ArC_{quat}), 126.3 (ArC_{quat}), 124.1 (ArC_{quat}), 123.9 (ArC<u>H</u>), 122.3 (ArC<u>H</u>), 120.3 (ArC<u>C</u>H), 113.7 (ArC_{quat}), 110.0 (ArC<u>H</u>), 43.5 (NC<u>H₂</u>), 30.4 (ArC<u>H₂</u>); *m/z* (ES+) 195 ([M+H]⁺, 100%), HRMS (ES+) exact mass calculated for [M+H]⁺ (C₁₀H₁₂ClN₂⁺) requires *m/z* 195.0684 & 197.0654 found *m/z* 195.0681 & 197.0656.

2.4.3. Preparation and characterisation of 20g⁸

3-(2-nitroethyl)-1*H*-indole-5-carbonitrile

Sodium borohydride (25.8 mmol, 11 eq) was added portionwise to a solution of nitro-olefin **18b** (2.35 mmol, 1 eq) in dimethylformamide (20 ml) and methanol (20 ml). The reaction mixture was stirred at room temperature until the reaction reached completion (complete consumption of starting material by TLC analysis). Hydrochloric acid solution (2M) was added until the pH of the solution reached pH 7. The mixture was extracted with dichloromethane (3 × 30 ml) and the organic layer was washed with brine and dried over sodium sulfate filtered and concentrated *in vacuo*. Purification by column chromatography afforded the title compound XX as a off white solid (70 % yield)

m.p. 134-136 °C; **FT-IR** v_{max} 3290 (ArN–H), 2222 (C=N),1539 (NO_{2 (asy)}), 1369 (NO_{2(sy)}); ¹H NMR (CD₃OD, 400 MHz) δ_{H} 8.05 (s, 1H, ArC<u>H</u>), 7.49 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.40 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.30 (s, 1H, ArC<u>H</u>), 4.79-4.71 (m, 2H, NO₂C<u>H₂)</u>, 3.50-3.45 (m, 2H, ArC<u>H₂</u>); ¹³C NMR (CD₃OD, 100 MHz) δ_{C} 138.8 (Ar<u>C</u>_{quat}), 127.1 (Ar<u>C</u>_{quat}), 125.9 (Ar<u>C</u>H), 124.4 (Ar<u>C</u>H), 124.1 (Ar<u>C</u>H), 120.8 (Ar<u>C</u>N), 112.6 (Ar<u>C</u>H), 111.1 (Ar<u>C</u>_{quat}), 101.7 (Ar<u>C</u>_{quat}), 75.8 (O₂N<u>C</u>H₂), 23.0 (Ar<u>C</u>H₂) ; *m/z* (ES+) 238 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₁H₉N₃NaO₂⁺) requires *m/z* 238.0587 & 239.0620 found *m/z* 238.0589 & 239.0627.

2.4.4. Preparation and characterisation of 19g

3-(2-aminoethyl)-1H-indole-5-carbonitrile

A solution of nitroalkane **20**g (1.53 mmol, 10 eq) in methanol (45 ml) was added to a mixture of zinc (35 mmol, 23 eq) in hydrochloric acid solution (2M, 45 ml) and heated to reflux over 2 hours. The reaction was cooled to room temperature and filtered. Sodium hydroxide (1M) was added the filtrate until the solution reached pH 11. The solution was extracted with a dichloromethane : methanol (95 : 5) solution and dried over NaSO₄. Concentration afforded the title compound **19g** as a light brown solid (88% yield).

m.p. 114-125 °C; **FT-IR** ν_{max} br 3224 (ArN−H, NH₂), 2216 (C≡N); ¹H NMR (CD₃OD, 400 MHz) δ_{H} 8.03 (br s, 1H, ArC<u>H</u>), 7.47 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.38 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.28 (br s, 1H, ArC<u>H</u>), 2.95 (br s, 4H, NC<u>H</u>₂, ArC<u>H</u>₂); ¹³C NMR (CD₃OD, 100

MHz) $\delta_{\rm C}$ 139.0 (Ar<u>C</u>_{quat}), 127.9 (Ar<u>C</u>_{quat}), 125.3 (Ar<u>C</u>H), 124.3 (Ar<u>C</u>H), 124.1 (Ar<u>C</u>H), 121.0 (ArC<u>C</u>N), 113.7 (Ar<u>C</u>_{quat}), 112.5 (Ar<u>C</u>H), 101.2 (Ar<u>C</u>CN), 42.0 (N<u>C</u>H₂), 27.8 (Ar<u>C</u>H₂); *m/z* (ES-) 186 ([M+H]⁺, 100%), HRMS (ES+) exact mass calculated for [M+H]⁺ (C₁₁H₁₂N₃⁺) requires *m/z* 186.1026 & 187.1059 found *m/z* 186.1032 & 187.0944.

2.5. General procedure D for preparation of 5

To a stirred solution of sulfonylchloride⁹ (1.1 eq) in dichloromethane (5 ml/mmol of tryptamine) under argon at -78 °C was added the desired tryptamine derivative **19** (1 eq) and triethyamine (1.1 eq) in dichloromethane (7 ml/mmol of tryptamine). The mixture was stirred at -78 °C for 5 to 10 mins then concentrated *in vacuo* (in a room temperature water bath) to give the crude product. The residue was purified by flash column chromatography (CH₂Cl₂:Et₂O, 1:0 to 8:2) to give the desired sulfonamide derivative **5**.

2.5.1. Preparation and characterisation of 5a

N-[2-(1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5a** was synthesised according to general procedure **D** to give **5a** as an off white solid (90% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 122.4-122.5 °C; **FT-IR** ν_{max} 3419 (N–H), 3409 (N–H), 1306 (S=O_(as)), 1126 (S=O_(sγ)); ¹H NMR (CDCl₃, 400 MHz) δ_H 8.10 (bs, 1H, ArN<u>H</u>), 7.60 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.39 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.23 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.16 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.1 (d, 1H, ArC<u>H</u>, *J* 2.5 Hz), 4.34 (t, 1H, CH₂N<u>H</u>, *J* 6.0 Hz), 3.46 (q, 2 H, ArCH₂C<u>H₂</u>, *J* 6.0 Hz), 3.11 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.07 (t, 2H, ArC<u>H₂</u>, *J* 6.5 Hz), 2.59 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz, 3.0 Hz), 1.65 (t, 1H, C≡C<u>H</u>, *J* 3.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ: 136.4 (Ar<u>C_{quat}</u>), 126.9 (Ar<u>C_{quat}</u>), 122.8 (Ar<u>C</u>H), 122.5 (Ar<u>C</u>H), 119.7 (Ar<u>C</u>H), 118.6 (Ar<u>C</u>H), 111.7 (Ar<u>C_{quat}</u>), 111.4 (Ar<u>C</u>H), 79.8 (HC≡<u>C</u>),

2.5.2. Preparation and characterisation of 5b

N-[2-(4-chloro-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5b** was synthesised according to general procedure **D** to give **5b** as an off white solid (80% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 84-85 °C; **FT-IR** v_{max} 3381 (N–H), 3280 (N–H), 1312 (S=O_(as)), 1129 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.21 (br s, 1H ArN<u>H</u>), 7.29 (dd, 1H, ArC<u>H</u>, *J* 5.5 Hz, 3.0 Hz), 7.03 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 7.06-7.12 (m, 2H, ArC<u>H</u>), 4.33 (t, 1H, SN<u>H</u>, 3.51 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.27 (t, 2H, ArC<u>H₂</u>, *J* 6.5 Hz), 3.14 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 2.63 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz, 3.0 Hz), 1.69 (t, 1H, C=C<u>H</u>, *J* 3.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 138.0 (ArC_{quat}), 126.0 (ArC_{quat}), 124.6 (ArC<u>H</u>), 123.8 (ArC_{quat}), 122.9 (ArC<u>H</u>), 120.7 (ArC<u>H</u>), 112.0 (ArC_{quat}), 110.2 (ArC<u>H</u>), 79.8 (HC=C), 70.5 (C=CH), 49.8 (SC<u>H₂</u>), 44.6 (NC<u>H₂</u>), 27.1 (ArC<u>H₂), 14.1 (SCH₂C<u>H₂</u>); **m/z** (ES+) 333 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅ClN₂O₂SNa⁺) requires *m/z* 333.0435 & 335.0406 found 333.0431 & 335.0401.</u>

2.5.3. Preparation and characterisation of 5c

N-[2-(5-bromo-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5c** was synthesised according to general procedure **D** to give **5c** as a brown solid (25% yield). Recrystallization from ethanol gives an off white solid. **m.p.** 68-70 °C; **FT-IR** v_{max} 3415-3394 (N–H and ArN–H), 1305 (S=O_(as)), 1132 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 8.12 (bs, 1H, ArN<u>H</u>), 7.71 (d, 1H, ArC<u>H</u>, *J* 1.5 Hz) 7.31 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 2.0 Hz), 7.27 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.13 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 4.29 (t, 1H, SN<u>H</u>, *J* 6.0 Hz), 3.45 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.15 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.03 (t, 2H, NCH₂C<u>H₂</u>, *J* 6.5 Hz), 2.63 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz, 2.5 Hz), 1.75 (t, 1H, C≡C<u>H</u>, *J* 3.0 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 135.0 (ArCBr), 128.7 (ArCquat), 125.4 (ArCH), 123.9 (ArCH), 121.2 (ArCH), 113.0 (ArCquat), 112.8 (ArCH), 111.5 (ArCquat), 79.8 (HC≡C), 70.5 (HC≡C), 50.0 (SCH₂), 43.1 (SNCH₂), 26.1 (NCH₂CH₂), 14.1 (SCH₂CH₂); *m/z* (ES+) 377 ([M+Na]⁻, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅BrN₂O₂SNa⁺) requires *m/z* 376.9930 & 378.9909, found *m/z* 376.9925 & 378.9904.

2.5.4. Preparation and charactarisation of 5d

N-[2-(6-bromo-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5d** was synthesised according to general procedure **D** to give **5d** as an off white solid (73 % yield). Recrystallization from ethanol gives an off white solid.

m.p. 110-112 °C; **FT-IR** v_{max} 3416 (N–H), 3290 (ArN–H), 1301 (S=O_(as)), 1127 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} ; 8.10 (br s, 1H, ArN<u>H</u>), 7.55 (s, 1H, ArC<u>H</u>), 7.45 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.25 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.09 (s, 1H, ArC<u>H</u>), 4.31 (t, 1H, SN<u>H</u>, *J* 6.5 Hz), 3.44 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.12 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.04 (t, 2H, ArC<u>H₂</u>, *J* 6.5 Hz), 2.61 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz), 2.5 Hz), 1.73 (t, 1H, C≡C<u>H</u>, *J* 2.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} ; 137.2 (ArC_{quat}), 125.9 (ArC_{quat}), 123.3 (ArCH), 123.0 (ArCH), 119.8 (ArCH), 116.0 (ArCBr), 114.4 (ArCH), 112.0 (ArC_{quat}), 79.8 (HC=C), 70.5 (C≡CH), 50.0 (SCH₂), 43.3 (NCH₂), 26.1 (ArCH₂), 14.1 (HCCCH₂); **m/z** (ES+) 377 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅BrN₂O₂SNa⁺) requires *m/z* 376.9930 & 378.9909, found *m/z* 376.9926 & 378.9905.

2.5.5.Preparation and characterisation of 5e

N-[2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

- S- 17 - -

The title compound **5e** was synthesised according to general procedure **D** to give **5e** as an off white solid (57% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 99-101 °C; **FT-IR** v_{max} 3419 (N–H), 3294 (ArN–H), 1300 (S=O_(as)), 1126 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} ; 8.17 (br s, 1H, ArN<u>H</u>), 7.30 (dd, 1H, ArC<u>H</u>, J 9.0 Hz, 4.0 Hz), 7.22 (dd, 1H, ArC<u>H</u>, J 9.5 Hz, 2.0 Hz), 7.14 (d, 1H, ArC<u>H</u>, J 2.0 Hz), 6.97 (td, 1H, ArC<u>H</u>, J 9.0 Hz, 2.5 Hz), 4.40 (t, 1H, SN<u>H</u>, J 6.0 Hz), 3.43 (q, 2H, NHC<u>H</u>₂, J 6.5 Hz), 3.12 (t, 2H, SC<u>H</u>₂, J 7.0 Hz), 3.01 (t, 2H, ArC<u>H</u>₂, J 6.5 Hz), 2.61 (td, 2H, SCH₂C<u>H</u>₂, J 7.0 Hz, 3.0 Hz), 1.73 (t, 1H, C≡C<u>H</u>, 2.5 Hz) ¹³C NMR (CDCl₃, 100 MHz) δ_{C} ; 157.8 (d, Ar<u>C</u>F, J 236 Hz), 132.9 (Ar<u>C</u>_{quat}), 127.3 (d, Ar<u>C</u>_{quat}, J 10 Hz), 124.6 (Ar<u>C</u>H), 112.1 (d, Ar<u>C</u>H, J 10 Hz), 111.8 (d, Ar<u>C</u>_{quat}, J 4.8 Hz), 110.8 (d, Ar<u>C</u>H, J 26 Hz), 103.5 (d, Ar<u>C</u>H, J 24 Hz), 79.8 (HC≡<u>C</u>), 70.5 (C≡<u>C</u>H), 49.9 (S<u>C</u>H₂), 43.1 (SN<u>C</u>H₂), 26.2 (Ar<u>C</u>H₂), 14.1 (SCH₂<u>C</u>H₂); ¹⁹F NMR (CDCl₃, 376 MHz), -124.0 (ArF); **m/z** (ES+) 317 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅FN₂O₂SNa⁺) requires *m/z* 317.0730 & 318.0763, found *m/z* 317.0724 & 318.0764.

2.5.6. Preparation and characterisation of 5f

N-[2-(6-fluoro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5f** was synthesised according to general procedure **D** to give **5f** as an off white solid (46% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 98-99 °C; **FT-IR** v_{max} 3419 (N–H), 3307 (ArN–H), 1301 (S=O_(as)), 1127 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} ; 8.15 (br s, 1H, ArN<u>H</u>), 7.49 (dd, 1H, ArC<u>H</u>, *J* 9.0 Hz, 5.0 Hz), 7.07 (m, 2H, ArC<u>H</u>), 6.92 (td, 1H, ArC<u>H</u>, *J* 9.0 Hz, 2.0 Hz), 4.39 (t, 1H, SN<u>H</u>, *J* 6.0 Hz), 3.44 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.11 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.03 (t, 2H, ArC<u>H₂</u>, 6.5 Hz), 2.60 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz, 2.5 Hz), 1.74 (t, 1H, C≡C<u>H</u>, *J* 3.0 Hz) ¹³C NMR (CDCl₃, 100 MHz) δ_{C} ; 160.1 (d, Ar<u>C</u>F, *J* 239 Hz), 136.3 (d, Ar<u>C</u>_{quat}, *J* 12 Hz), 123.6 (Ar<u>C</u>_{quat}), 123.0 (d, Ar<u>C</u>H, *J* 3 Hz)), 119.3 (d, Ar<u>C</u>H, *J* 10 Hz) 111.8 (Ar<u>C</u>_{quat}), 108.5 (d, Ar<u>C</u>H, *J* 24 Hz), 97.7 (d, Ar<u>C</u>H, *J* 26 Hz) 79.8 (HC≡<u>C</u>), 70.5 (C≡<u>C</u>H), 49.9 (S<u>C</u>H₂), 43.3 (N<u>C</u>H₂), 26.2 (Ar<u>C</u>H₂), 14.1 (SCH₂<u>C</u>H₂); ¹⁹F NMR (CDCl₃, 376 MHz), -120.4 (ArF); **m/z** (ES+) 317 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅FN₂O₂SNa⁺) requires *m/z* 317.0730 & 318.0763, found *m/z* 317.0727 & 318.0766.

2.5.7. Preparation and characterisation of 5g

N-[2-(5-cyano-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5g** was synthesised according to general procedure **D** to give **5g** as an off white solid (42% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 135-136 °C; **FT-IR** v_{max} 3339 (N–H), 3294 (ArN–H), 2225 (C≡N), 1318 (S=O_(as)), 1136 (S=O_(sy)); ¹**H** NMR (d₆-DMSO, 400 MHz) δ_{H} 11.46 (br s, 1H, ArN<u>H</u>), 8.09 (s, 1H, ArC<u>H</u>), 7.51 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.44-7.39 (m, 2H, ArC<u>H</u>), 7.26 (t, 1H, SN<u>H</u>, *J* 6.0 Hz), 3.23 (td, 2H, NC<u>H</u>₂, *J* 7.0 Hz, 6.0 Hz), 3.15 (t, 2H, SC<u>H</u>₂, *J* 7.5 Hz), 2.93 (t, 1H, C≡C<u>H</u>, *J* 3.0 Hz), 2.90 (t, 2H, ArC<u>H</u>₂, *J* 7.0 Hz), 2.50 ^(signal hidden under DMSO peak, confirmed by HSQC and COSY) (m, 2H, HC≡CC<u>H</u>₂, *J* 7.5 Hz, 3.0 Hz); ¹³C NMR (d₆-DMSO, 100 MHz) δ_{C} 138.7 (ArC_{quat}), 127.9 (ArC_{quat}), 126.7 (ArCH), 125.1 (ArCH), 124.5 (ArCH), 121.8 (ArCN), 113.5 (ArCH), 113.5 (ArC_{quat}), 101.2 (ArC_{quat}), 82.0 (HC≡C), 73.4 (C≡CH), 50.2 (SCH₂), 43.9 (NCH₂), 26.4 (ArCH₂), 14.2 (SCH₂CH₂); **m/z** (ES+) 324 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₅N₃O₂SNa⁺) requires *m/z* 324.0777 & 325.0810, found *m/z* 324.0770 & 325.0812.

2.5.8. Preparation and charactarisation of 5h

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5h** was synthesised according to general procedure **D** to give **5h** as an off white solid (81% yield). Recrystallization from ethanol gives an off white solid.

m.p. 70-72 °C; **FT-IR** v_{max} 3405 (SN–H), 3282 (ArN–H), 1317 (S=O_(as)), 1134 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.04 (br s, 1H, ArN<u>H</u>), 7.27 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.05 (d, 1H, ArC<u>H</u>, *J* 1.5 Hz), 7.03 (d, 1H, ArC<u>H</u>, *J* 2.5 Hz), 6.89 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 2.5 Hz), 4.42 (t, 1H, SN<u>H</u>, *J* 6.5 Hz), 3.88 (s, 3H, OC<u>H₃</u>), 3.44 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 3.11 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.02 (t, 2H, ArC<u>H₂</u>, *J* 6.5 Hz), 2.59 (td, 2H, SCH₂C<u>H₂</u>, *J* 7.0 Hz), 1.72 (t, 1H, C≡C<u>H</u>, *J* 2.8 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ_{c} 154.2 (Ar<u>C</u>OMe), 131.5 (Ar<u>C</u>quat), 127.4 (Ar<u>C</u>quat), 123.5 (Ar<u>C</u>H), 112.6 (Ar<u>C</u>H), 112.2 (Ar<u>C</u>H), 111.4 (Ar<u>C</u>quat), 100.5 (Ar<u>C</u>H), 79.8 (HC≡<u>C</u>), 70.5 (C≡<u>C</u>H), 56.0 (O<u>C</u>H₃), 49.9 (S<u>C</u>H₂), 43.3 (N<u>C</u>H₂), 26.2 (Ar<u>C</u>H₂), 14.1 (SCH₂<u>C</u>H₂); **m/z** (ES+) 329 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂O₃SNa⁺) requires *m/z* 329.0930 & 330.0963, found *m/z* 329.0921 & 330.0969.

2.5.9. Preparation and characterisation of 5i

N-[2-(5-methyl-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5i** was synthesised according to general procedure **D** to give **5i** as an off white solid (72% yield). Recrystallization from ethanol gives an off white solid.

m.p. 112-114 °C; **FT-IR** v_{max} 3412 (N–H), 3300 (ArN–H), 1307 (S=O_(as)), 1127 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 7.99 (br s, 1H, ArN<u>H</u>), 7.37 (s, 1H, ArC<u>H</u>), 7.28 (d, 1H, ArC<u>H</u>, *J* 7.0 Hz), 7.06 (d, 1H, ArC<u>H</u>, *J* 1.5 Hz), 7.05 (dd, 1H, ArC<u>H</u>, *J* 7.0 Hz, 1.5 Hz), 4.32 (t, 1H, SN<u>H</u>, *J* 6.5 Hz), 3.45 (q, 2H, NC<u>H</u>₂, *J* 6.5 Hz), 3.11 (t, 2H, SC<u>H</u>₂, *J* 7.5 Hz), 3.04 (t, 2H, ArC<u>H</u>₂, *J* 6.5 Hz), 2.59 (td, 2H, SCH₂C<u>H</u>₂, *J* 7.0 Hz, 2.5 Hz), 2.47 (s, 3H, ArC<u>H</u>₃), 1.64 (t, 1H, C≡C<u>H</u>, *J* 2.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 134.8 (ArC_{quat}), 129.0 (ArCMe), 127.2 (ArC_{quat}), 124.0 (ArCH), 122.9 (ArCH), 118.2 (ArCH), 111.1 (ArCH), 111.0 (ArC_{quat}), 79.8 (HC≡C), 70.5 (C≡CH), 49.9 (SCH₂), 43.3 (NCH₂), 26.2 (ArCH₂), 21.5 (ArCH₃), 14.1 (HCCCH₂); **m/z** (ES+) 313 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂NaO₂S⁺) requires *m/z* 313.0981 & 314.1014 found 313.0973 & 314.1009.

2.5.10. Preparation and characterisation of 5j

The title compound **5j** was synthesised according to general procedure **D** to give **5j** as an off white solid (95% yield). Recrystallization from ethanol gives an off white solid.

m.p. 113-117 °C; FT-IR v_{max} 3400 (N–H), 3291 (ArN–H), 1303 (S=O_(as)), 1127 (S=O_(sy)); ¹H NMR (CDCl₃, 400 MHz) δ_H 8.05 (br s, 1H, ArN<u>H</u>), 7.45 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.10 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 7.08 (t, 1H, ArC<u>H</u>, 7.5 Hz), 7.03 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 4.36 (t, 1H, SN<u>H</u>, *J* 6.0 Hz), 3.46 (q, 2H, NC<u>H₂</u>, *J* 6.0 Hz), 3.09 (t, 2H, SC<u>H₂</u>, *J* 7.0 Hz), 3.06 (t, 2H, ArC<u>H₂</u>, *J* 6.0 Hz), 2.57 (td, 2H,

SCH₂C<u>H₂</u>, *J* 7.0 Hz, 3.0 Hz), 2.50 (s, 3H, ArC<u>H₃</u>), 1.68 (t, 1H, C=C<u>H</u>, *J* 3.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{c} 136.1 (ArC_{quat}), 126.5 (ArC_{quat}), 122.9 (ArCH), 122.5 (ArCH), 120.6 (ArCCH₃), 119.9 (ArCH), 116.3 (ArCH), 112.1 (ArC_{quat}), 79.8 (HC=C), 70.5 (C=CH), 49.9 (SCH₂), 43.3 (NCH₂), 26.3 (ArCH₂), 16.6 (ArCH₃), 14.1 (SCH₂CH₂); *m/z* (ES+) 313 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂O₂SNa⁺) requires *m/z* 313.0981 & 314.1014, found *m/z* 313.0977 & 314.1018.

2.5.11. Preparation and characterisation of 5k

N-[2-(7-ethyl-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound **5k** was synthesised according to general procedure **D** to give **5k** as an off white solid (25% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 109-112 °C; **FT-IR** v_{max} 3404 (N–H), 3297 (ArN–H), 1312 (S=O_(as)), 1129 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 8.04 (br s, 1H, ArN<u>H</u>₃, 7.45 (d, 1H, ArC<u>H</u> J 7.5 Hz), 7.11 (d, 1H, ArC<u>H</u> J 3.0 Hz), 7.11 (t, 1H, ArC<u>H</u>, J 7.5 Hz), 7.07 (d, 1H, ArC<u>H</u> J 7.5 Hz), 4.31 (t, 1H, SN<u>H</u> J 6.5 Hz), 3.46 (q, 2H, NC<u>H₂</u>, J 6.5 Hz), 3.11 (t, 2H, SC<u>H₂</u>, J 7.5 Hz), 3.07 (t, 2H, NCH₂C<u>H₂</u>, J 6.5 Hz), 2.87 (q, 2H, ArC<u>H₂</u>CH₃, J 7.5 Hz), 2.59 (td, 2H, SCH₂C<u>H₂</u>, J 7.5 Hz, 3.0 Hz), 1.65 (t, 1H, C=C<u>H</u>, J 3.0 Hz), 1.37 (t, 3H, ArCH₂C<u>H₃</u>, J 7.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 135.3 (ArC_{quat}), 126.8 (ArC_{quat}), 126.7 (ArC_{quat}), 122.4 (ArCH), 121.0 (ArCH), 120.1 (ArCH), 116.3 (ArCH), 112.1 (ArCquat), 79.7 (HC=C), 70.4 (C=CH), 49.9 (SCH₂), 43.3 (NCH₂), 26.3 (NCH₂CH₂), 24.0 (ArCH₂CH₃), 14.1 (SCH₂CH₂), 13.8 (ArCH₂CH₃); **m/z** (ES-) 303 ([M-H]⁻, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₂₀N₂O₂SNa⁺) requires *m/z* 327.1138 & 328.1171, found *m/z* 327.1134 & 328.1170.

2.6. General procedure E for preparation of 6

To a solution of the desired sulfonamide **5** (1 eq) and **BPA-1A** (0.1 eq) in toluene (14 ml per 0.1 mmol of sulfonamide) at 60 °C in a foil covered flask was added [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (**8**) (0.005 eq) in dichloromethane (0.67 ml per 1 mmol of sulfonamide). The reaction was allowed to stir at 60 °C for 1 to 12 hours. Upon completion the mixture was concentrated *in vacuo* and purified by flash column chromatography (CH₂Cl₂:MTBE (CH₃OC(CH₃)₃) 1:0 to 9:1).

2.7. General procedure F for preparation of racemic derivatives 6

To a solution of the desired sulfonamide **5** (1 eq) and diphenylphosphate (0.1 eq) in toluene (14 ml per 0.1 mmol of sulfonamide **5**) at 60 °C in a foil covered flask was added [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (**8**) (0.05 eq) in dichloromethane (0.67 ml per 1 mmol of sulfonamide). The reaction was allowed to stir at 60 °C for 1 to 12 hours. Upon completion the mixture is concentrated *in vacuo* and purified by flash column chromatography (CH₂Cl₂:MTBE (CH₃OC(CH₃)₃), 1:0 to 9 : 1).

2.7.1. Preparation and characterisation of 6a

(R)-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound **6a** was synthesised according to general procedure **E** providing **6a** as a white solid (84% yield, 88% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 6.0$ min, minor $t_R = 15.4$ min); $[\alpha]_D^{21} = +113.8$ (*c* 0.16, 1:1 MeOH:CH₂Cl₂).

Racemic-6a was synthesised according to general procedure F as an off white solid.

m.p. 279-283 °C; **FT-IR** v_{max} 3397 (N–H), 1289 (S=O_(as)), 1145 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 7.78 (br s, 1H, ArN<u>H</u>), 7.50 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.35 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.22 (ddd, 1H, ArC<u>H</u>, *J* 8.0 Hz, 7.0 Hz, 1.0 Hz) 7.15 (ddd, 1H, ArC<u>H</u>, *J* 8.0 Hz, 7.0 Hz, 1.0 Hz), 4.05 (dd, 1H, SNC<u>H_aH_b</u>, *J* 14.5 Hz, 5.0 Hz), 3.33 (ddd, 1H, SNCH_a<u>H_b</u>, 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.19 (m, 2H, ArC<u>H</u>_aH_b), 2.90 (ddd, 1H, SCH_a<u>H_b</u>, *J* 12.0 Hz, 11.0 Hz, 7.0 Hz), 2.65 (m, 3H, ArCH_a<u>H_b</u>, SCH₂C<u>H</u>_a<u>H_b</u>), 1.73 (s, 3H, CC<u>H</u>₃); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 135.9 (ArC_{quat}), 133.9 (ArC_{quat}), 126.8 (ArC_{quat}), 122.8 (ArC<u>C</u>H), 120.1 (ArC<u>C</u>H), 118.7 (ArC<u>C</u>H), 111.9 (ArC<u>C</u>H), 109.7 (ArC_{quat}), 59.1 (NCCH₂), 46.0 (NSC<u>H</u>₂), 38.1 (SNC<u>H</u>₂), 33.6 (NSCH₂C<u>H</u>₂), 28.2 (CC<u>H</u>₃), 19.9 (ArC<u>H</u>₂); (ES+) 299 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₆N₂O₂SNa⁺) requires *m/z* 299.0825 & 300.0858, found *m/z* 299.0821 & 300.0861.

2.7.2. Preparation and characterisation of 7ª

2,3,6,7,12,12b-hexahydro-1*H*-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide

The title compound 7a was isolated along side 6a according to general procedure E providing a white solid (8% yield).

m.p. 261-265 °C (decomposition); **FT-IR** ν_{max} 3412 (N–H), 1323 (S=O_(as)), 1149 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 7.73 (br s, 1H, ArN<u>H</u>), 7.51 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.34 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.21 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.14 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz), 4.97 (d, 1H, NC<u>H</u>CH₂, *J* 11.0 Hz), 3.68 (m, 1H, SNC<u>H</u>_aH_b), 3.60 (m, 1H, SNCH_a<u>H</u>_b), 3.21 (dt, 1H, NSC<u>H</u>_aCH_b, *J* 13.5 Hz, 3.5 Hz), 3.02 (td, 1H, NSCH_a<u>H</u>_b, *J* 13.5 Hz, 4.0 Hz), 2.95 (m, 1H, ArC<u>H</u>_aH_b), 2.89 (dt, 1H, ArC<u>H</u>_aH_b, *J* 15.5 Hz, 4.5 Hz), 2.44 (qt, 1H, NSCH₂C<u>H</u>_aH_b, *J* 14.0 Hz, 3.5 Hz), 2.24 (dt, 1H, NSCH₂C<u>H</u>_aH_b, *J* 14.0 Hz, 3.5 Hz), 2.05 (dq, 1H, NSCH₂CH₂C<u>H</u>_a<u>H</u>_b), *J* 14.5 Hz, 3.0 Hz), 1.84 (m, 1H, NSCH₂CH₂C<u>H</u>_aH_b); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 136.2 (ArC_{quat}), 132.0 (ArC_{quat}), 126.5 (ArC_{quat}), 122.4 (ArC<u>C</u>H), 120.0 (ArC<u>C</u>H), 118.4 (ArC<u>C</u>H), 110.9 (ArC<u>C</u>H), 108.7 (ArC_{quat}), 55.5 (NCCH₂), 46.8 (NSC<u>C</u>H₂), 39.8 (SN<u>C</u>H₂), 27.8 (NSCH₂CH₂C<u>H</u>₂), 22.8 (NSCH₂C<u>H</u>₂), 21.4 (ArC<u>C</u>H₂); *m/z* (ES+) 299 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₆N₂O₂SNa⁺) requires *m/z* 299.0825 & 300.0858, found *m/z* 299.0819 & 300.0863.

2.7.3. Preparation and characterisation of 6b

(R)-7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6b** was synthesised according to general procedure **E** providing a white solid (77% yield, 95% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 5.8$ min, minor $t_R = 8.1$ min); $[\alpha]_D^{25} = +94.3$ (*c* 0.21, 1:1 MeOH:CH₂Cl₂).

Racemic-6b was synthesised according to general procedure F as an off white solid,

m.p. 208 °C (decomposition); **FT-IR** v_{max} 3321 (N–H), 1303 (S=O_(as)), 1136 (S=O_(sy)); ¹H NMR (CD₃OD, 500 MHz) δ_{H} 7.25 (dd, 1H, ArC<u>H</u>, *J* 8.0 Hz, 1.0 Hz), 7.03 (t, 1H, ArC<u>H</u>, *J* 8.0 Hz), 6.96 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 3.92 (dd, 1H, NC<u>H</u>_aH_b, *J* 15.0 Hz, 5.5 Hz), 3.37 (ddd, 1H, NCH_a<u>H</u>_b, *J* 15.0 Hz, 4.5 Hz), 3.32-3.23 (m, 2H, NCH₂C<u>H</u>_aH_b), SC<u>H</u>_aH_b), 3.09 (ddd, 1H, NCH₂C<u>H</u>_a<u>H</u>_b, *J* 15.5

Hz, 4.0 Hz, 1.0 Hz), 2.92 (ddd, 1H, SCH_aH_b, *J* 12.5 Hz, 10.0 Hz, 7.0 Hz), 2.77 (ddd, 1H, SCH₂CH_aH_b, *J* 13.5 Hz, 7.0 Hz, 5.5 Hz), 2.60 (ddd, 1H, SCH₂CH_aH_b, 13.5 Hz, 10.0 Hz, 6.5 Hz), 1.72 (s, 3H, NCCH₃); ¹³C NMR (CD₃OD, 125 MHz) δ_{c} 139.1 (ArC_{quat}), 137.4 (ArCCl), 126.9 (ArC_{quat}), 125.2 (ArC_{quat}), 123.4 (ArCH), 120.6 (ArCH), 111.0 (ArCH), 108.8 (ArC_{quat}), 60.6 (NCCH₃), 47.0 (SCH₂), 38.7 (NCH₂), 34.3 (SCH₂CH₂), 28.0 (NCH₂CH₂), 23.0 (NCCH₃); **m/z** (ES+) 333 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅ClN₂O₂SNa⁺) requires *m/z* 333.0435 & 335.0406, found *m/z* 333.0435 & 335.0405.

2.7.4. Preparation and characterisation of 6c

(R)-8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6c** was synthesised according to general procedure **E** as a white solid (82% yield, 90% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 10.0$ min, minor $t_R = 27.2$ min); $[\alpha]_n^{21} = +101.6$ (*c* 0.25, 1:1 MeOH:CH₂Cl₂).

Racemic-6c was synthesised according to general procedure F as an off white solid.

m.p. 266 °C (decomposition); **FT-IR** v_{max} 3410 (N–H), 1301 (S=O_(as)), 1143 (S=O_(sy)); ¹H NMR (d₆-acetone, 500 MHz) $\delta_{\rm H}$ 10.42 (br s, 1H, ArN<u>H</u>), 7.63 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 7.31 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.23 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 2.0 Hz), 3.91 (dd, 1H, SC<u>H_aH_b</u>, *J* 15.0 Hz, 6.0 Hz), 3.37 (ddd, 1H, SCH_a<u>H_b</u>, *J* 15.0 Hz, 12.5 Hz, 5.0 Hz), 3.28 (dt, 1H, NCH_a<u>H_b</u>, *J* 12.5 Hz, 6.0 Hz), 3.05 (ddd, 1H, SCH₂CH_a<u>H_b</u>, *J* 15.5 Hz, 12.5 Hz, 6.0 Hz), 2.95-2.80 (m, 2H, NC<u>H_a</u>H_b, ArCH_a<u>H_b</u>), 2.65-2.60 (m, 2H, ArC<u>H_a</u>H_b, SCH₂C<u>H_a</u>H_b), 1.72 (s, 3H, C<u>H₃</u>); ¹³C NMR (d₆-acetone, 125 MHz) $\delta_{\rm C}$ 138.2 (Ar<u>C</u>Br), 136.0 (Ar<u>C</u>_{quat}), 129.6 (Ar<u>C</u>_{quat}), 125.2 (Ar<u>C</u>H), 121.6 (Ar<u>C</u>H), 113.8 (Ar<u>C</u>H), 112.7 (Ar<u>C</u>_{quat}), 108.6 (Ar<u>C</u>_{quat}), 59.8 (N<u>C</u>CH₂), 46.7 (N<u>C</u>H₂), 38.1 (S<u>C</u>H₂), 34.0 (Ar<u>C</u>H₂), 28.0 (<u>C</u>H₃), 20.5 (SCH₂<u>C</u>H₂); *m/z* (ES-) 355 ([M–H]⁻, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅BrN₂O₂SNa⁺) requires *m/z* 376.9930 & 378.9909, found *m/z* 376.9922 & 378.9900.

2.7.5. Preparation and characterisation of 6d

(R)-9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6d** was synthesised according to general procedure **E** providing a white solid (81% yield, 91% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 8.3$ min, minor $t_R = 32.0$ min); $[\alpha]_D^{25} = +148.2$ (*c* 0.23, 1:1 MeOH:CH₂Cl₂).

Racemic-6d was synthesised according to general procedure **F** as an off white solid.

m.p. 228 °C (decomposition); **FT-IR** ν_{max} 3369 (N–H), 1295 (S=O_(as)), 1135 (S=O_(sy)); ¹H NMR (CD₃OD, 500 MHz) $\delta_{\rm H}$ 7.48 (d, 1H, ArC<u>H</u>, *J* 1.5 Hz), 7.34 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.14 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 1.5 Hz), 3.94 (dd, 1H, NC<u>H</u>_aH_b, *J* 15.0 Hz, 6.0 Hz), 3.38 (ddd, 1H, NCH_aH_b, *J* 15.0 Hz, 12. Hz, 4.5 Hz), 3.34-3.27^(signal hidden under methanol peak, confirmed by HSQC and COSY) (m, 1H, SC<u>H</u>_aH_b), 3.05 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.92 (ddd, 1H, SCH_aH_b, *J* 12.5 Hz, 10.0 Hz, 7.0 Hz), 2.76 (ddd, 1H, SCH₂C<u>H</u>_aH_b, *J* 13.5 Hz, 7.0 Hz, 5.5 Hz), 2.63-2.56 (m, 2H, NCH₂CH_aH_b, SCH₂CH_aH_b, 1.70 (S, 3H, C<u>H</u>₃); ¹³C NMR (CD₃OD, 125 MHz) $\delta_{\rm C}$ 138.6 (ArC_{quat}), 137.1 (ArC_{quat}), 127.0 (ArC_{quat}), 123.3 (ArC₂H), 120.5 (ArC₂H), 116.1 (ArC₂Br), 114.9 (ArC₂H), 109.1 (ArC_{quat}), 60.7 (NCCH₃), 47.0 (SCH₂), 38.6 (NCH₂), 34.2 (SCH₂CH₂), 27.9 (NCCH₃), 20.8 (NCH₂CH₂); **m/z** (ES+) 377 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅BrN₂O₂SNa⁺) requires *m/z* 376.9930 & 378.9909, found *m/z* 376.9928 & 378.9906.

2.7.6. Preparation and characterisation of 6e

(R)-8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6e** was synthesised according to general procedure **E** providing a white solid (85% yield, 93% e.e.).Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 8.5$ min, minor $t_R = 26.9$ min); $[\alpha]_D^{25} = +164.3$ (*c* 0.21, 1:1 MeOH:CH₂Cl₂).

Racemic-6e was synthesised according to general procedure F as an off white solid.

m.p. 205 °C (decomposition); **FT-IR** v_{max} (N–H), 1299 (S=O_(as)), 1135 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 7.74 (br s, 1H, ArN<u>H</u>), 7.25 (dd, 1H, ArC<u>H</u>, J 9.0 Hz, 4.5 Hz), 7.31 (dd, 1H, ArC<u>H</u>, J 9.0 Hz, 2.5 Hz), 6.95 (td, 1H, ArC<u>H</u>, J 9.0 Hz, 2.5 Hz), 4.05 (dd, 1H, NC<u>H_aH_b</u>, J 14.5 Hz, 5.5 Hz), 3.32 (ddd, 1H, NCH_a<u>H_b</u>, J 14.5, 12.0 Hz, 4.5 Hz), 3.23 (ddd, 1H, SC<u>H_a</u><u>H_b</u>, J 12.0 Hz, 6.5 Hz, 5.0 Hz), 3.13 (ddd, 1H, NCH₂<u>CH_a</u><u>H_b</u>, J 15.5 Hz, 12.0 Hz, 5.5 Hz), 2.91 (ddd, 1H, SCH_a<u>H_b</u>, J 12.0 Hz, 10.5 Hz, 7.0 Hz), 2.68 (ddd, 1H, SCH₂C<u>H_a</u><u>H_b</u>, J 13.0 Hz, 7.5 Hz, 4.5 Hz), 2.65-2.54 (m, 2H, SCH₂CH_a<u>H_b</u>, NCH₂CH_a<u>H_b</u>), 1.72 (s, 3H, NCC<u>H₃</u>); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 157.7 (d, Ar<u>C</u>F, J 237.5 Hz), 135.8 (Ar<u>C</u>_{quat}), 132.3 (Ar<u>C</u>_{quat}), 127.3 (d, Ar<u>C</u>H, J 9.5 Hz), 111.5 (d, Ar<u>C</u>H, J 9.5 Hz), 111.0 (d, Ar<u>C</u>H, J 26.7 Hz), 109.8 (d, ArC_{quat}, J 5.0 Hz), 103.9 (d, Ar<u>C</u>H, J 24.0 Hz), 59.0 (N<u>C</u>CH₃), 45.9 (S<u>C</u>H₂), 37.9 (NCH₂), 33.5 (SCH₂<u>C</u><u>H₂), 28.1 (NC<u>C</u><u>H₃</u>), 19.9 (NCH₂<u>C</u><u>C</u>₁); ¹⁹F NMR (CDCl₃, 376 MHz), -123.7 (ArF); **m/z** (ES+) 317 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅FN₂O₂SNa⁺) requires *m/z* 317.0730 & 318.0763, found *m/z* 317.0724 & 318.0763.</u>

2.7.7. Preparation and characterisation of 6f

(R)-9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6f** was synthesised according to general procedure **E** providing a white solid (85% yield, 83% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 7.4$ min, minor $t_R = 25.1$ min); $[\alpha]_{D}^{25} = +138.1$ (c 0.24, 1:1 MeOH:CH₂Cl₂).

Racemic-6f was synthesised according to general procedure **F** as an off white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 7.2$ min, minor $t_R = 24.2$ min);

m.p. 220 °C (decomposition); **FT-IR** v_{max} 3318 (N–H), 1280 (S=O_(as)), 1122 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) $\delta_{\rm H}$ 7.80 (br s, 1H, ArN<u>H</u>), 7.39 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 5.0 Hz), 7.03 (dd, 1H, ArC<u>H</u>, *J* 9.5 Hz, 2.0 Hz), 6.90 (ddd, 1H, ArC<u>H</u>, *J* 9.5 Hz, 8.5 Hz, 2.0 Hz), 4.04 (dd, 1H, NC<u>H</u>_aH_b, *J* 14.5 Hz, 5.5 Hz), 3.32 (ddd, 1H, NCH_a<u>H</u>_b, *J* 14.5 Hz, 12.0 Hz, 4.5 Hz), 3.23 (ddd, 1H, SC<u>H</u>_aH_b, *J* 12.0 Hz, 6.0 Hz, 4.5 Hz), 3.14 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.91 (ddd, 1H, SC<u>H</u>_aH_b, *J* 12.0 Hz, 10.5 Hz, 7.0 Hz), 2.68 (ddd, 1H, SCH₂C<u>H</u>_aH_b, *J* 13.0 Hz, 7.0 Hz, 5.0 Hz), 2.64-2.57 (m, 2H, SCH₂CH_a<u>H</u>_b, NCH₂C<u>H</u>_a<u>H</u>_b), 1.72 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CDCl₃, 125 MHz) $\delta_{\rm C}$ 160.2 (d, Ar<u>C</u>F, *J* 237.0 Hz), 135.9 (d, Ar<u>C</u>_{quat}, *J* 12.5 Hz), 134.1 (d, Ar<u>C</u>_{quat}, *J* 4.0 Hz), 123.4 (Ar<u>C</u>_{quat}), 119.4 (d, Ar<u>C</u>H, *J* 10.5 Hz), 109.7 (Ar<u>C</u>_{quat}), 108.7 (d, Ar<u>C</u>H, *J* 25.0 Hz), 97.6 (d, Ar<u>C</u>H, *J* 26.5 Hz), 59.0 (N<u>C</u>CH₃), 45.9 (S<u>C</u>H₂), 37.9 (N<u>C</u>H₂), 33.4 (SCH₂<u>C</u>H₂), 28.1 (NC<u>C</u>H₃), 19.8 (NCH₂<u>C</u>H₂); ¹⁹F NMR (CDCl₃, 376 MHz), -119.6 (ArF); **m/z** (ES+) 317

 $([M+Na]^{+}, 100\%)$, **HRMS** (ES+) exact mass calculated for $[M+Na]^{+}$ ($C_{14}H_{15}$ FN₂O₂SNa⁺) requires *m/z* 317.0730 & 318.0763, found *m/z* 317.0728 & 318.0767.

2.7.8. Preparation and characterisation of 6g

(R)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile

3,3-dioxide

The title compound **6g** was synthesised according to general procedure **E** providing a white solid (60% yield, 96% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 13.1$ min, minor $t_R = 53.6$ min); $[\alpha]_D^{25} = +95.9$ (*c* 0.16, 1:1 MeOH:CH₂Cl₂).

Racemic-6g was synthesised according to general procedure F as an off white solid.

m.p. 210 °C (decomposition); **FT-IR** v_{max} 3316 (N–H), 2219 (C=N), 1302 (S=O_(as)), 1134 (S=O_(sy)); ¹**H** NMR (CD₃OD, 500 MHz) $\delta_{\rm H}$ 7.90 (s, 1H, ArC<u>H</u>), 7.46 (d, 1H, ArC<u>H</u>, *J* 8.5 Hz), 7.43 (dd, 1H, ArC<u>H</u>, *J* 8.5 Hz, 1.5 Hz), 3.97 (dd, 1H, NC<u>H_aH_b</u>, *J* 15.0 Hz, 5.5 Hz), 3.41 (ddd, 1H, NCH_a<u>H_b</u>, *J* 15.0 Hz, 11.5 Hz, 4.5 Hz), 3.35-3.30^(signal hidden under methanol peak, confirmed by HSQC and COSY) (m, 1H, SC<u>H_aH_b</u>), 3.09 (ddd, 1H, NCH₂C<u>H_a</u>H_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.94 (ddd, 1H, SCH_a<u>H_b</u>, *J* 12.5 Hz, 9.5 Hz, 7.0 Hz), 2.78 (ddd, 1H, SCH₂C<u>H_a</u>H_b, *J* 13.0 Hz, 7.0 Hz, 5.5 Hz), 2.71-2.59 (m, 2H, SCH₂CH_a<u>H_b</u>, NCH₂CH_a<u>H_b</u>), 1.72 (s, 3H, NCC<u>H₃</u>); ¹³C NMR (CD₃OD, 125 MHz) $\delta_{\rm C}$ 139.7 (Ar<u>C</u>_{quat}), 139.2 (Ar<u>C</u>_{quat}), 128.0 (Ar<u>C</u>_{quat}), 125.9 (Ar<u>C</u>H), 124.9 (Ar<u>C</u>H), 121.8 (Ar<u>C</u>CN), 113.2 (Ar<u>C</u>H), 110.0 (Ar<u>C</u>N), 102.8 (Ar<u>C</u>_{quat}), 60.5 (N<u>C</u>CH₃), 47.0 (S<u>C</u>H₂), 38.4 (N<u>C</u>H₂), 34.1 (SCH₂C<u>H</u>₂), 27.8 (NC<u>C</u>H₃), 20.7 (NCH₂<u>C</u>H₂); **m/z** (ES+) 324 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₅N₃O₂SNa⁺) requires *m/z* 324.0777 & 325.0810, found *m/z* 324.0775 & 325.0818.

2.7.9. Preparation and characterisation of 6h

(R)-8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole

3,3-dioxide

The title compound **6h** was synthesised according to general procedure **E** providing a white solid (75% yield, 80% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 8.2$ min, minor $t_R = 14.3$ min); $[\alpha]_D^{25} = 93.2$ (c 0.734, 1:1 MeOH:CH₂Cl₂).

Racemic-6h was synthesised according to general procedure **F** as an off white solid.

m.p. 210-220 °C (decomposition); **FT-IR** v_{max} 3365 (N–H), 2506 (ArOC–H), 1298 (S=O_(as)), 1137 (S=O_(sy)); ¹**H** NMR (CD₃OD, 500 MHz) δ_{H} 7.21 (d, 1H, ArC<u>H</u>, *J* 9.0 Hz), 6.92 (d, 1H, ArC<u>H</u>, *J* 2.5 Hz), 6.77 (dd, 1H, ArC<u>H</u>, *J* 9.0 Hz, 2.5 Hz), 3.93 (dd, 1H, NC<u>H</u>_aH_b, *J* 14.5 Hz, 5.5 Hz), 3.82 (s, 3H, OC<u>H</u>₃), 3.38 (ddd, 1H, NCH_a<u>H</u>_b, *J* 14.5 Hz, 12.0 Hz, 4.5 Hz), 3.28 (dt, 1H, SC<u>H</u>_aH_b, *J* 12.0 Hz, 6.0 Hz), 3.05 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.90 (ddd, 1H, SCH_a<u>H</u>_b, *J* 12.5 Hz, 10.0 Hz, 7.0 Hz), 2.77 (ddd, 1H, SCH₂CH_a<u>H</u>_b, *J* 13.0 Hz, 7.0 Hz, 5 Hz), 2.58 (m, 2H, SCH₂CH_aC<u>H</u>_b, NCH₂CH_a<u>H</u>_b), 1.70 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CD₃OD, 125 MHz) δ_{C} 155.3 (Ar<u>C</u>O), 136.8 (Ar<u>C</u>_{quat}), 133.0 (Ar<u>C</u>_{quat}), 128.3 (Ar<u>C</u>_{quat}), 112.9 (Ar<u>C</u>H), 112.7 (Ar<u>C</u>H), 108.6 (Ar<u>C</u>_{quat}), 101.2 (Ar<u>C</u>H), 61.0 (N<u>C</u>CH₃), 56.3 (O<u>C</u>H₃), 47.1 (S<u>C</u>H₂), 38.8 (N<u>C</u>H₂), 34.3 (SCH₂<u>C</u>H₂), 28.1 (NC<u>C</u>H₃), 21.0 (NCH₂<u>C</u>H₂); **m/z** (ES-) 305 ([M-H]⁻, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂O₃SNa⁺) requires *m/z* 329.0930 & 330.0963, found *m/z* 329.0917 & 330.0965.

2.7.1. Preparation and characterisation of 6i

(R)-8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6i** was synthesised according to general procedure **E** providing a white solid (84% yield, 87% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 6.7$ min, minor $t_R = 14.0$ min); $[\alpha]_D^{25} = 101.3$ (c 0.20, 1:1 MeOH:CH₂Cl₂).

Racemic-6i was synthesised according to general procedure **F** as an off white solid.

m.p. 220 °C (decomposition); **FT-IR** ν_{max} 3390 (N–H), 1300 (S=O_(as)), 1141 (S=O_(sy)); ¹**H** NMR (CD₃OD, 500 MHz) δ_H 7.21 (br s, 1H, ArC<u>H</u>), 7.20 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 6.95 (dd, 1H, ArC<u>H</u>, *J* 8.0 Hz, 1.5 Hz), 3.93 (dd, 1H, NC<u>H</u>_aH_b, *J* 14.5 Hz, 5.5 Hz), 3.42-

3.35 (m, 1H, NCH_a<u>H</u>_b), 3.35-3.26 (m, 1H, SC<u>H</u>_aH_b), 3.05 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12 Hz, 6.0 Hz), 2.91 (ddd, 1H, SCH_a<u>H</u>_b, *J* 12.0 Hz, 10.0 Hz, 7.0 Hz), 2.78 (ddd, 1H, SCH₂C<u>H</u>_aH_b, *J* 13.5 Hz, 7.0 Hz, 5.0 Hz), 2.62-2.54 (m, 2H, SCH₂CH_a<u>H</u>_b, NCH₂CH_a<u>H</u>_b), 2.41 (s, 3H, ArC<u>H</u>₃), 1.70 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CD₃OD, 125 MHz) δ_{c} 136.2 (Ar<u>C</u>_{quat}), 136.1 (Ar<u>C</u>_{quat}), 129.2 (Ar<u>C</u>_{quat}), 128.3 (Ar<u>C</u>_{quat}), 124.4 (Ar<u>C</u>H), 118.7 (Ar<u>C</u>H), 111.7 (Ar<u>C</u>H), 108.3 (Ar<u>C</u>_{quat}), 61.0 (N<u>C</u>CH₃), 47.1 (S<u>C</u>H₂), 38.8 (N<u>C</u>H₂), 34.3 (SCH₂<u>C</u>H₂), 28.1 (NC<u>C</u>H₃), 21.6 (Ar<u>C</u>H₃), 20.9 (NCH₂<u>C</u>H₂); **m/z** (ES+) 313 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂O₂SNa⁺) requires *m/z* 313.0981 & 314.1014, found *m/z* 313.0973 & 314.1008.

2.7.2. Preparation and characterisation of 6j

(R)-10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6j** was synthesised according to general procedure **E** providing a white solid (85% yield, 92% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 5.0$ min, minor $t_R = 6.1$ min); $[\alpha]_D^{25} = +182.1$ (c 0.25, 1:1 MeOH:CH₂Cl₂).

Racemic-6j was synthesised according to general procedure F as an off white solid.

m.p. 195 °C (decomposition); **FT-IR** v_{max} 3338 (N-H), 1296 (S=O_(as)), 1125 (S=O_(sy)); ¹H NMR (CD₃OD, 500 MHz) $\delta_{\rm H}$ 7.25 (dd, 1H, ArC<u>H</u>, *J* 7.0 Hz, 2.0 Hz), 6.94 (t, 1H, ArC<u>H</u>, *J* 7.0 Hz,), 6.91 (d, 1H, ArC<u>H</u>, *J* 7.0 Hz), 3.93 (dd, 1H, NC<u>H</u>_aH_b, *J* 15.0 Hz, 5.5 Hz), 3.38 (ddd, 1H, NCH_a<u>H</u>_b, *J* 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.28 (m, 1H, SC<u>H</u>_aH_b), 3.07 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.94-2.83 (m, 2H, SCH_a<u>H</u>_b, SCH₂C<u>H</u>_aH_b), 2.65-2.56 (m, 2H, NCH₂CH_a<u>H</u>_b, SCH₂CH_a<u>H</u>_b), 2.50 (s, 3H, ArC<u>H</u>₃), 1.74 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CD₃OD, 125 MHz) $\delta_{\rm C}$ 137.2 (Ar<u>C</u>_{quat}), 135.9 (Ar<u>C</u>_{quat}), 127.7 (Ar<u>C</u>_{quat}), 123.6 (Ar<u>C</u>H), 121.6 (Ar<u>C</u>_{quat}), 120.4 (Ar<u>C</u>H), 116.7 (Ar<u>C</u>H), 109.2 (Ar<u>C</u>_{quat}), 61.1 (N<u>C</u>CH₃), 47.1 (S<u>C</u>H₂), 38.7 (N<u>C</u>H₂), 34.2 (SCH₂<u>C</u>H₂), 28.0 (NC<u>C</u>H₃), 21.1 (NCH₂<u>C</u>H₂), 17.1 (Ar<u>C</u>H₃); **m/z** (ES+) 313 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₈N₂O₂SNa⁺) requires *m/z* 313.0981 & 314.1014, found *m/z* 313.0974 & 314.1017.

2.7.3. Preparation and characterisation of 6k

(R)-10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-

dioxide

The title compound **6k** was synthesised according to general procedure **E** providing a white solid (83% yield, 95% e.e.).Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_R = 7.9$ min, minor $t_R = 10.2$ min); $[\alpha]_D^{25} = +204.4$ (*c* 0.09, 1:1 MeOH:CH₂Cl₂).

Racemic-6k was synthesised according to general procedure **F** as an off white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 8.0$ min, minor $t_R = 10.3$ min);

m.p. 190 °C (decomposition); **FT-IR** v_{max} 3341 (N–H), 1296 (S=O_(as)), 1124 (S=O_(sy)); ¹H NMR (CD₃OD, 500 MHz) δ_{H} 7.25 (dd, 1H, ArC<u>H</u>, *J* 7.0 Hz, 2.5 Hz), 6.99-6.94 (m, 2H, ArC<u>H</u>), 3.93 (dd, 1H, NC<u>H</u>_aH_b, *J* 15.0 Hz, 5.5 Hz), 3.39 (ddd, 1H, NCH_a<u>H</u>_b, *J* 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.29 (dd, 1H, SC<u>H</u>_aH_b, *J* 11.5 Hz, 7.0 Hz, 5.0 Hz), 3.07 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.95-2.83 (m, 4H, ArC<u>H</u>₂CH₃, SCH₂C<u>H</u>_aH_b, SCH_a<u>H</u>_b), 2.65-2.57 (m, 2H, SCH₂CH_a<u>H</u>_b, NCH₂CH_aC<u>H</u>_b), 1.74 (s, 3H, NCC<u>H</u>₃), 1.34 (t, 3H, ArCH₂C<u>H</u>₃, *J* 7.5 Hz); ¹³C NMR (CD₃OD, 125 MHz) δ_{C} 136.4 (Ar<u>C</u>_{quat}), 135.8 (Ar<u>C</u>_{quat}), 128.1 (Ar<u>C</u>_{quat}), 127.9 (Ar<u>C</u>_{quat}), 121.7 (Ar<u>C</u>H), 120.5 (Ar<u>C</u>H), 116.7 (Ar<u>C</u>H), 109.2 (Ar<u>C</u>_{quat}), 61.1 (N<u>C</u>CH₃), 47.1 (S<u>C</u>H₂), 38.7 (N<u>C</u>H₂), 34.2 (SCH₂<u>C</u>H₂), 28.0 (NC<u>C</u>H₃), 25.1 (Ar<u>C</u>H₂CH₃), 21.1 (NCH₂<u>C</u>H₂), 14.9 (ArCH₂<u>C</u>H₃); **m/z** (ES+) 327 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₂₀N₂O₂SNa⁺) requires *m/z* 327.1138 & 328.1171, found *m/z* 327.1135 & 328.1180.

2.8. Methodology extention for amide derivitives

2.9. General procedure G for the preparation of 9

Hexynoic acid (1 eq) was added in one portion to a suspension of (1.5 eq) and DMAP (0.04 eq) in dichloromethane (3 ml/mmol of hexynoic acid) under argon and the mixture was stirred for 5 mins. A solution of tryptamine **19** (1.4 eq) in dichloromethane (7 ml/mmol of hexynoic acid) was added to the solution. The reaction mixture was stirred at rt for 12 h. Upon completion hydrochloric acid solution (1M, 10 ml) was added. The layers were separated and the aqueous was extracted with dichloromethane (2 × 20 ml). The combined organics were washed with brine, dried over sodium sulfate and concentrated *in vacuo*. The residue was purified by flash column chromatography (CH₂Cl₂:Et₂O, 1:0 to 7:3).

2.9.1. Preparation and characterisation of 9a

N-[2-(1H-indol-3-yl)ethyl]hex-5-ynamide

The title compound **9a** was synthesis according to general procedure **G** as a white solid (86% yield) and re-crystallized from ethanol.

m.p. 89-91 °C; **FT-IR** v_{max} 3403 (N–H), 3286 (ArN–H), 1641 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.29 (br s, 1H, ArN<u>H</u>), 7.62 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.39 (d, 1H, ArC<u>H</u>, *J* 8.0 Hz), 7.23 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.14 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.04 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 5.63 (br s, 1H, OCN<u>H</u>), 3.62 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 2.99 (t, 2H, NCH₂C<u>H₂</u>, *J* 6.5 Hz), 2.25 (t, 2H, OCC<u>H₂</u>, *J* 7.5 Hz), 2.22 (td, 2H, HC=CC<u>H₂</u>, *J* 7.5 Hz), 1.94 (t, 1H, C=C<u>H</u>, *J* 2.5 Hz), 1.84 (quin, 2H, OCCH₂C<u>H₂</u>, *J* 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{c} 172.2 (<u>CO</u>), 136.4 (Ar<u>C</u>_{quat}), 127.3 (Ar<u>C</u>_{quat}), 122.2 (Ar<u>C</u>H), 122.1 (Ar<u>C</u>H), 119.5 (Ar<u>C</u>H), 118.7 (Ar<u>C</u>H), 112.9 (Ar<u>C</u>_{quat}), 111.3 (Ar<u>C</u>H), 83.6 (HC=<u>C</u>), 69.2 (C=<u>C</u>H), 39.7 (N<u>C</u>H₂), 35.1 (OC<u>C</u>H₂), 25.3 (NCH₂C<u>H₂</u>), 24.2 (OCCH₂C<u>H₂</u>), 17.8 (HC=C<u>C</u>H₂); *m*/*z* (ES+) 277 ([M+Na]⁺, 100%), **HRMS** (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₈N₂NaO⁺) requires *m*/*z* 277.1311 & 278.1345, found *m*/*z* 277.1316 & 278.1346.

2.9.2. Preparation and characterisation 9b

of N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide

The title compound **9b** was synthesis according to general procedure **G** as a brown solid (65% yield) trituration (Et_2O and re-crystallized from ethanol.)

m.p. 87-89 °C; **FT-IR** v_{max} 3400 (N–H), 3300 (ArN–H), 1636 (C=O); ¹H NMR (DMSO-d₆, 400 MHz) δ_{H} 11.05 (br s, 1H, ArN<u>H</u>), 7.93 (t, 1H, OCN<u>H</u>, *J* 6.5 Hz), 7.55 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.28 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.21 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 6.94 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 3.32 (q, 2H, NC<u>H</u>₂, *J* 6.5 Hz), 2.80 (t, 2H, OCC<u>H</u>₂, *J* 7.5 Hz), 2.78 (t, 1H, C≡C<u>H</u>, *J* 2.5 Hz), 2.18-2.10 (m, 4H, ArCH₂, HC≡CC<u>H</u>₂), 1.65 (quin, 2H, OCCH₂C<u>H</u>₂, *J* 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 172.2 (<u>CO</u>), 135.3 (Ar<u>C</u>_{quat}), 129.9 (Ar<u>C</u>_{quat}), 124.9 (Ar<u>C</u>H), 124.3 (Ar<u>C</u>H), 120.6 (Ar<u>C</u>H), 118.8 (Ar<u>C</u>H), 114.3 (Ar<u>C</u>_{quat}), 105.1 (Ar<u>C</u>Br), 85.0 (HC≡<u>C</u>), 72.3 (C≡<u>C</u>H), 41-39.7^(signal hidden under DMSO peak, confirmed by HSQC and COSY) (N<u>C</u>H₂) 35.1 (Ar<u>C</u>H₂), 26.0 (OC<u>C</u>H₂) 25.1 (OCCH₂CH₂), 18.3 (HC≡C<u>C</u>H₂); *m/z* (ES+) 355 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₇N₂BrNaO⁺) requires *m/z* 355.0416 & 357.0397, found *m/z* 355.0404 & 357.0385.

2.9.3. Preparation and Characterisation of 9c¹⁰

N-[2-(7-methyl-1*H*-indol-3-yl)ethyl]hex-5-ynamide

The title compound **9c** was synthesis according to general procedure **G** as a white solid (56% yield) and re-crystallized from ethanol.

m.p. 76-77 °C; **FT-IR** v_{max} 3402 (ArNH), 3288 (NH), 1648 (C=O); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 8.00 (br s, 1H, ArN<u>H</u>), 7.47 (d, 1H, ArC<u>H</u>, J 7.5 Hz), 7.07 (t, 1H, ArC<u>H</u>, J 7.5 Hz), 7.07 (d, 1H, ArC<u>H</u>, J 2.5 Hz), 7.03 (d, 1H, ArC<u>H</u>, J 7.5 Hz), 5.55 (br s, 1H, OCN<u>H</u>), 3.62 (q, 2H, NC<u>H</u>₂, J 6.5 Hz), 2.98 (t, 2H, NCH₂C<u>H</u>₂, J 6.5 Hz), 2.50 (s, 3H, ArCH₃), 2.25 (t, 2H, OCC<u>H</u>₂, J 7.5 Hz), 2.23 (td, 2H, HC=CC<u>H</u>₂, J 7.5 Hz, 2.5 Hz), 1.93 (t, 1H, C=C<u>H</u>, J 2.5 Hz), 1.84 (quin, 2H, OCCH₂C<u>H</u>₂, J 7.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 172.0 (<u>C</u>O), 136.0 (Ar<u>C</u>_{quat}), 126.8 (Ar<u>C</u>_{quat}), 122.8 (Ar<u>C</u>H), 121.7 (Ar<u>C</u>H), 120.4 (Ar<u>C</u>_{quat}), 119.8 (Ar<u>C</u>H), 116.4 (Ar<u>C</u>H), 113.6 (Ar<u>C</u>_{quat}), 83.6 (HC=<u>C</u>), 69.1 (H<u>C</u>=C), 39.7 (N<u>C</u>H₂), 35.1 (OC<u>C</u>H₂), 25.5 (NCH₂<u>C</u>H₂), 24.1 (OCCH₂<u>C</u>H₂), 17.8 (HC=C<u>C</u>H₂), 16.6 (Ar<u>C</u>H₃); *m/z* (ES+) 291 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₀N₂NaO⁺) requires *m/z* 291.1468 & 292.1501, found *m/z* 291.1470 & 292.1503.

2.9.4. Preparation and Characterisation of 9d

The title compound **9d** was synthesis according to general procedure **G** as a yellow oil (45% yield).

FT-IR v_{max} 3404 (NH), 3289 (ArN–H), 1649 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ_{H} 8.17 (br s, 1H, ArN<u>H</u>), 7.48 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.11 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.07 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.05 (d, 1H, ArC<u>H</u>, *J* 2.0 Hz), 5.61 (br s, 1H, OCN<u>H</u>), 3.62 (q, 2H, NC<u>H₂</u>, *J* 6.5 Hz), 2.98 (t, 2H, NCH₂C<u>H₂</u>, *J* 6.5 Hz), 2.88 (q, 2H, ArC<u>H₂</u>CH₃, *J* 7.5 Hz), 2.25 (t, 2H, OCC<u>H₂</u>, *J* 7.5 Hz), 2.23 (td, 2H, HC=CC<u>H₂</u>, *J* 7.5 Hz, 2.5 Hz) 1.94 (t, 1H, C=C<u>H</u>, *J* 2.5 Hz), 1.84 (quint, 2H, OCCH₂C<u>H₂</u>, *J* 7.0 Hz), 1.38 (t, 3H, ArCH₂C<u>H₃</u>, *J* 7.5 Hz);

¹³**C NMR** (CDCl₃, 100 MHz) δ_{C} 172.2 (<u>C</u>O), 135.3 (Ar<u>C</u>_{quat}), 127.1 (Ar<u>C</u>_{quat}), 126.7 (Ar<u>C</u>_{quat}), 121.7 (Ar<u>C</u>H), 120.8 (Ar<u>C</u>H), 119.8 (Ar<u>C</u>H), 116.5 (Ar<u>C</u>H), 113.4 (Ar<u>C</u>_{quat}), 83.6 (HC=<u>C</u>), 69.1 (C=<u>C</u>H), 39.7 (N<u>C</u>H₂), 35.1 (OC<u>C</u>H₂), 25.5 (NCCH₂<u>C</u>H₂), 24.2 (OCCH₂<u>C</u>H₂), 24.0 (Ar<u>C</u>H₂CH₃), 17.8 (HC=C<u>C</u>H₂), 13.8 (ArCH₂<u>C</u>H₃); *m*/*z* (ES+) 305 ([M+H]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₂₂N₂NaO⁺) requires *m*/*z* 305.1624 & 306.1658, found *m*/*z* 305.1624 & 306.1661.

2.10. General procedure H for the racemic preparation of cyclic amides 10

To a foil covered flask [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (**8**) (0.05 eq), diphenylphosphate (0.1 eq) and desired amide derivative (**9**) (1 eq) were added and placed under nitrogen atmosphere. Toluene (14 ml/1 mmol of **9**) was added in one portion and the reaction was heated to 110 °C and left for 48 to 72 hours. The solvent was removed *in vacuo* and purified by flash column chromatography (CH₂Cl₂ : Et₂O, 1 : 0 to 7 : 3).

2.11. General procedure I for the Enantioselective preparation of cyclic amides 10

To a foil covered flask [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (**8**) (0.01 eq) was added in dichloromethane (1 ml/ 0.15 mmol of **9**), the dichloromethane was subsequently removed *via* stream of nitrogen. **BPA 1A** (0.1 eq) and desired amide derivative (**9**) (0.15 mmol, 1 eq) was added and placed under nitrogen atmosphere. Toluene (21 ml) was added in one portion and the reaction was heated to 110 °C typically for 20 to 72 h until TLC shows consumption of starting material. The solvent was removed *in vacuo* and purified by flash column chromatography (DCM : Et₂O, 1 : 0 to 7 : 3).

2.11.1. Preparation and characterisation of 10a

(R)-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound **10a** was synthesis according to general procedure I as a white solid (86% yield, 66% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 5.1 \text{ min}$, minor $t_R = 11.8 \text{ min}$); [α]_p²⁵= +157.7 (*c* 0.26, CH₂Cl₂).

Racemic-10a was synthesised according to general procedure H as a white solid.

m.p. 180 °C (decomposition); **FT-IR** v_{max} 3254 (N–H), 1606 (C=O); ¹**H** NMR (CDCl₃, 400 MHz) δ_H 8.38 (br s, 1H, ArN<u>H</u>), 7.51 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.13 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.13 (d, 1H, ArN<u>H</u>), 7.51 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.13 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 5.13 (dd, 1H, NC<u>H</u>_aH_b, *J* 12.5 Hz, 5.0 Hz), 3.04 (td, 1H, NCH_a<u>H</u>_b, *J* 12.5 Hz, 4.5 Hz), 2.85 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.5 Hz, 11.5 Hz, 5.0 Hz), 2.76 (dd, 1H, NCH₂CH_a<u>H</u>_b, *J* 15.5 Hz, 5.0 Hz), 2.61 (dd, 1H, OCC<u>H</u>_aH_b, *J* 17.0 Hz, 5.0 Hz), 2.44 (ddd, 1H, OCCH_a<u>H</u>_b, *J* 18.0 Hz, 10.5 Hz, 7.0 Hz), 2.32 (m, 1H, OCCH₂CH₂C<u>H</u>_aH_b), 2.09-1.84 (m, 3H, OCCH₂CH₂C<u>H</u>_aH_b, OCCH₂C<u>H</u>_a<u>H</u>_b), 1.70 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CDCl₃, 100 MHz) δ_C 169.3 (<u>C</u>O), 138.5 (Ar<u>C</u>_{quat}), 136.1 (Ar<u>C</u>_{quat}), 126.7 (Ar<u>C</u>_{quat}), 122.0 (Ar<u>C</u>H), 119.7 (Ar<u>C</u>H), 118.4 (Ar<u>C</u>H), 110.9 (Ar<u>C</u>H), 108.0 (Ar<u>C</u>_{quat}), 56.7 (N<u>C</u>CH₃), 36.5 (N<u>C</u>H₂), 35.5 (OCCH₂CH₂C<u>H</u>₂), 32.1 (OC<u>C</u>H₂), 26.0 (C<u>C</u>H₃), 21.3 (NCH₂<u>C</u>H₂), 16.8 (OCCH₂<u>C</u>H₂); *m/z* (ES+) 277 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₈N₂NaO⁺) requires *m/z* 277.1311 & 278.1345, found *m/z* 277.1306 & 278.1335.

2.11.2. Preparation and Characterisation of 10b

(R)-11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound **10b** was synthesis according to general procedure I as a white solid (99% yield, 93% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 5.1$ min, minor $t_R = 6.6$ min); $[\alpha]_p^{25} = +164.0$ (*c* 0.15, CH₂Cl₂)

Racemic-10b was synthesised according to general procedure **H** as a white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 5.1$ min, minor $t_R = 6.7$ min);

m.p. 130-137 °C; FT-IR v_{max} 3190 (N–H), 1606 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ_H 8.09 (br s, 1H, ArN<u>H</u>), 7.44 (d, 1H, ArC<u>H</u>, J 8.0 Hz), 7.33 (d, 1H, ArC<u>H</u>, J 8.0 Hz), 7.01 (t, 1H, ArC<u>H</u>, J 8.0 Hz), 5.12 (dd, 1H, NC<u>H</u>_aH_b, J 13.0 Hz, 4.5 Hz), 3.01 (td, 1H, NCH_a<u>H_b</u>, J 12.5 Hz, 4.5 Hz), 2.83 (ddd, 1H, NCH₂C<u>H</u>_aH_b, J 15.5 Hz, 12.0 Hz, 5 Hz), 2.71 (dd, 1H, NH₂CH_a<u>H_b</u>, J 15.0 Hz, 4.0 Hz),

2.60 (br d, 1H, $OCC\underline{H}_{a}H_{b}$, *J* 17.0 Hz), 2.50-2.33 (m, 2H, $OCCH_{a}\underline{H}_{b}$, $OCCH_{2}CH_{2}C\underline{H}_{a}H_{b}$), 2.10-1.85 (m, 3H, $OCCH_{2}CH_{2}C\underline{H}_{2}\underline{H}_{b}$), OCCH₂C<u>H_aH_b</u>), 1.71 (s, 3H, $NCC\underline{H}_{3}$); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 169.2 (<u>C</u>O), 139.2 (Ar<u>C</u>_{quat}), 134.7 (Ar<u>C</u>_{quat}), 128.0 (Ar<u>C</u>_{quat}), 124.5 (Ar<u>C</u>H), 121.0 (Ar<u>C</u>H), 117.7 (Ar<u>C</u>H), 109.6 (Ar<u>C</u>_{quat}), 104.5 (Ar<u>C</u>_{quat}), 56.7 (N<u>C</u>CH₃), 36.2 (N<u>C</u>H₂), 35.5 (OCCH₂CH₂C<u>H</u>₂), 32.1 (NCH₂CH₂), 26.0 (NC<u>C</u>H₃), 21.4 (OC<u>C</u>H₂), 16.7 (OCCH₂C<u>H</u>₂); *m/z* (ES+) 355 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₆H₁₇BrN₂NaO⁺) requires *m/z* 355.0416 & 357.0397, found *m/z* 355.0409 & 357.0392.

2.11.3. Preparation and Characterisation of 10c

(R)-11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound **10c** was synthesis according to general procedure I as white solid (90% yield, 90% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 4.4$ min, minor $t_R = 5.4$ min); $[\alpha]_p^{25} = +167.6$ (*c* 0.34, CH₂Cl₂).

Racemic-10c was synthesised according to general procedure H as a white solid.

m.p. 140-145 °C (decomposition); **FT-IR** v_{max} 3265 (N–H), 1605 (C=O); ¹**H** NMR (CDCl₃, 400 MHz) δ_{H} 8.05 (br s, 1H, ArN<u>H</u>), 7.36 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.00 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 5.12 (dd, 1H, NC<u>H</u>_aH_b, *J* 12.5 Hz, 4.5 Hz), 3.03 (td, 1H, NCH_aH_b, *J* 12.5 Hz, 4.5 Hz), 2.84 (ddd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15 Hz, 11.5 Hz, 4.5 Hz), 2.74 (dd, 1H, NCH₂C<u>H</u>_aH_b, *J* 15.0 Hz, 4.5 Hz), 2.60 (br d, 1H, OCC<u>H</u>_aH_b, *J* 17.5 Hz), 2.51 (s, 3H, ArC<u>H</u>₃), 2.49-2.34 (m, 2H, OCCH_aH_b, OCCH₂CH₂C<u>H</u>_aH_b), 2.09-1.86 (m, 3H, OCCH₂CH₂CH_aH_b), 0.171 (s, 3H, NCC<u>H</u>₃); ¹³C NMR (CDCl₃, 100 MHz) δ_{C} 169.2 (<u>CO</u>), 138.2 (Ar<u>C</u>_{quat}), 135.6 (Ar<u>C</u>_{quat}), 126.3 (Ar<u>C</u>_{quat}), 122.8 (Ar<u>C</u>H), 120.2 (Ar<u>C</u>_{quat}), 120.0 (Ar<u>C</u>H), 116.1 (Ar<u>C</u>H), 108.7 (Ar<u>C</u>_{quat}), 56.8 (N<u>C</u>CH₃), 36.4 (N<u>C</u>H₂), 35.6 (OCCH₂CH₂CH₂), 32.1 (OC<u>C</u>H₂), 26.0 (NC<u>C</u>H₃), 21.3 (NCH₂CH₂), 16.79 (Ar<u>C</u>H₃), 16.78 (OCCH₂CH₂); *m/z* (ES+) 291 ([M+H]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₇H₂₀N₂NaO⁺) requires *m/z* 291.1468 & 292.1501, found *m/z* 291.1467 & 292.1499.

2.11.4. Preparation and Characterisation of 10d

(R)-11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound **10d** was synthesis according to general procedure I white solid (60% yield, 86% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 4.1 \text{ min}$, minor $t_R = 4.9 \text{ min}$; [α]_p²⁵= +120.6 (*c* 0.34, CH₂Cl₂)

Racemic-10d was synthesised according to general procedure H as a white solid.

m.p. 127-129 °C; **FT-IR** v_{max} 3277 (N–H), 1605 (C=O); ¹**H** NMR (CDCl₃, 400 MHz) δ_{H} 8.00 (br s, 1H, ArN<u>H</u>), 7.37 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.10 (t, 1H, ArC<u>H</u>, *J* 7.5 Hz), 7.05 (d, 1H, ArC<u>H</u>, *J* 7.5 Hz), 5.12 (dd, 1H, NC<u>H</u>_aH_b, *J* 13.0 Hz, 4.5 Hz), 3.03 (td, 1H, NCH_a<u>H</u>_b, *J* 12.5 Hz, 4.5 Hz), 2.88 (q, 2H, ArC<u>H</u>₂CH₃, *J* 7.5 Hz), 2.84 (td, 1H, NCH₂C<u>H</u>_aH_b, *J* 12.0 Hz, 5.0 Hz), 2.74 (dd, 1H, NCH₂CH_a<u>H</u>_b, *J* 15.0 Hz, 4.0 Hz), 2.60 (br d, 1H, OCC<u>H</u>_aH_b, *J* 17.0 Hz), 2.49-2.31 (m, 2H, OCCH_a<u>H</u>_b, OCCH₂CH₂C<u>H</u>_aH_b), 2.08-1.85 (m, 3H, OCCH₂CH₂CH_a<u>H</u>_b), 1.71 (s, 3H, NCC<u>H</u>₃), 1.38 (t, 3H, ArCH₂C<u>H</u>₃, *J* 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_{c} 169.2 (<u>CO</u>), 138.1 (ArC<u>q</u>_{quat}), 134.8 (ArC<u>q</u>_{quat}), 126.5 (ArC<u>q</u>_{quat}), 126.4 (ArC<u>q</u>_{quat}), 120.7 (ArC<u>H</u>), 120.1 (ArC<u>H</u>), 116.2 (ArC<u>C</u>H₂), 16.8 OCCH₂CH₂), 35.6 (OCH₂CH₂C<u>H</u>₂), 32.1 (OCC<u>H</u>₂), 26.0 (NCC<u>H</u>₃), 24.0 (ArC<u>H</u>₂CH₃), 21.3 (NCH₂C<u>H</u>₂), 16.8 OCCH₂C<u>H</u>₂), 13.9 (ArCH₂C<u>H</u>₃); *m/z* (ES+) 305 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₂₂N₂NaO⁺) requires *m/z* 305.1624 & 306.1658, found *m/z* 305.1626 & 306.1661.

2.12. Optimization, Derivative for X-ray and Control reactions.

2.13. Preparation and characterisation of 14

To a stirred solution of sulfonamide **5a** (500 mg, 1.81 mmol) in dry THF (20 ml), a solution of TBAF (9.1 ml, 1M in THF) was added under nitrogen and heated to reflux for 13 hours. The reaction was monitored by ¹HNMR (CDCl₃ passed through a short pad of K_2CO_3 prior to use). Upon completion, water (20 ml) was added and the solution was stirred for 1 h. The aqueous layer was separated and the organic layer was washed with water 5 times. Purification by flash column chromatography (silica) afforded **14** (230 mg, 25%)
m.p. 108-109 °C; **FT-IR** v_{max} 3346 (ArN–H, broad), 3252 (SN–H) 1707 (C=O) 1313 (S=O_(as)), 1138 (S=O_(sy)); ¹H NMR (CDCl₃, 500 MHz) δ_{H} 8.12 (br s, 1H, ArN<u>H</u>), 7.60 (d, 1H, ArC<u>H</u>, *J* 7.6 Hz), 7.39 (d, 1H, ArC<u>H</u>, *J* 8.2 Hz), 7.23 (t, 1H, ArC<u>H</u>, *J* 7.6 Hz), 7.15 (t, 1H, ArC<u>H</u>, *J* 7.9 Hz), 7.09 (s, 1H, ArC<u>H</u>), 4.26 (br s, 1H, SN<u>H</u>), 3.45 (q, 2H, SNC<u>H₂</u>, *J* 6.0 Hz), 3.19 (t, 2H, SCH₂, *J* 7.3 Hz), 3.05 (t, 2H, ArC<u>H₂</u>, *J* 6.0), 2.77 (t, 2H, SCH₂C<u>H₂</u>, *J* 7.1 Hz), 2.11 (s, 3H, COC<u>H₃</u>); ¹³C NMR (CDCl₃, 125 MHz) δ_{C} 204.5 (<u>CO</u>) 136.5 (Ar<u>C</u> quat), 127.0 (Ar<u>C</u> quat), 122.8 (Ar<u>C</u>H), 119.8 (Ar<u>C</u>H), 118.6 (Ar<u>C</u>H), 111.7 (Ar<u>C</u>CH₂), 111.5 (Ar<u>C</u>H), 46.7 (S<u>C</u>H₂), 43.3 (SN<u>C</u>H₂), 37.3 (SCH₂C<u>H₂</u>), 29.9 (CO<u>C</u>H₃), 26.2 (Ar<u>C</u>H₂); *m*/*z* (ES+) 317 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₈N₂NaO₃S⁺) requires *m*/*z* 317.0930, found *m*/*z* 317.0927.

To a flask containing ketone **14** (0.1 mmol, 1 eq), and **BPA-1A** (0.01 mmol, 0.1 eq) under nitrogen atmosphere was added toluene at 90 °C rapidly *via* canula. The reaction mixture was stirred at reflux for 1 hour then cooled to room temperature. Concentration *in vacuo* and purification by flash column chromatography furnished the title compound (99 % yield, 92 % e.e.).

2.13.2. General Proceedure for optimization in the preparation of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 5a.

To an aluminium foil covered flask alkyne **5a** (0.15 mmol, 1eq) and **BPA-1A** (0.015 mmol, 0.1 eq) were dissolved in solvent (21 ml/0.15 mmol of alkyne **5a**) under nitrogen the mixture was then heated to the desired temperature and the Lewis acid was added in DCM (1 ml). The reaction mixture was then stirred at the desired temperature until the reaction reached completion (monitoring by TLC and ¹HNMR). The reaction mixture was concentrated *in vacuo* and purified by FCC.

2.13.3. General proceedure for optimization in the preparation of 10a.

To an aluminium foil covered flask [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (8) (0.0015 mmol, 0.01 eq) was added in dichloromethane (1 ml) and the dichloromethane was removed under nitrogen stream. Amide 9 (0.15 mmol, 1 eq) and BPA-1A (0.015 mmol, 0.1 eq) were added and were dissolved in toluene (21 ml/0.15 mmol of 9) under nitrogen. The mixture was then heated to reflux and monitored (by TLC) until the reaction reached completion. The reaction was concentrated *in vacuo* and purified by FCC.

2.13.4. Optimisation table for the preparation of 10a.

Entry	Acid (BPA)	Acid	8	Solvent	Temp (°C)	Yield (%)	e.e.(%)
		(mol %)	(mol %)				
1	1A	10	5	toluene	60	47	66
2	1A	10	5	toluene	110	79	50
3	1A	10	3	toluene	110	99	62
4	1A	10	1	toluene	110	86	66
5	1A	10	0.5	toluene	110	81	68

2.13.5. Preparation and characterisation of 15a

11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-

b]indole 3,3-dioxide

6a (0.12 mmol, 1 eq) was dissolved in DMF (1 ml/0.12 mmol of **6a**) under argon and added to a dried flask containing sodium hydride (1.6 mmol, 1.3 eq) in an ice bath. The mixture was stirred at 0°C for 10 mins and then allowed to warm to room temperature stirring for a further 10 mins. 3-bromobenzylbromide (0.37 mmol, 3 eq) was added to the mixture in one portion and allowed to stir at room temperature for 3 h. The reaction was diluted with water (5 ml/0.12 mmol of **6a**) and extracted with ethyl acetate (3 x 5 ml/0.12 mmol of **6a**). The combined organics were washed with brine, dried over sodium sulfate and concentrated *in vacuo*. Purification by FCC to gave **XX** as a white solid (68% yield). Recrystallization from ether by slow evaporation gave crystals of high enough quality for single crystal x-ray diffraction (<99% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major t_R = 12.0 min, minor t_R = 18.1 min).

Racemic-15a was synthesised according to the same procedure as a white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 12.0$ min, minor $t_R = 18.0$ min);

m.p. 195-196 °C; **FT-IR** v_{max} 1291 (S=O_(as)), 1134 (S=O_(sy)); ¹**H NMR** (CDCl₃, 500 MHz) δ_H 7.55 (m, 1H, ArC<u>H</u>), 7.39 (d, 1H, PhC<u>H</u>, *J* 7.9 Hz), 7.20-7.15 (m, 3H, 2 × ArC<u>H</u>, PhC<u>H</u>, *J* 8.2 Hz), 7.12 (t, 1H, ArC<u>H</u>, *J* 7.9 Hz), 7.03 (m, 1H, ArC<u>H</u>), 6.62 (d, 1H, PhC<u>H</u>), 5.43 (d, 1H, NC<u>H</u>_aH_bPh, *J* 18.0 Hz), 5.38 (d, 1H, NCH_a<u>H</u>_bPh, *J* 18.0 Hz), 4.08 (dd, 1H, NC<u>H</u>_aCH_bC<u>H</u>₂, *J* 14.5 Hz, 5.5 Hz), 3.34 (ddd, 1H, NCH_a<u>H</u>_bC<u>H</u>₂, *J* 14.5 Hz, 12.5 Hz, 4.5 Hz), 3.27-3.15 (m, 2H, SC<u>H</u>_aH_b, ArC<u>H</u>_aH_b), 3.01 (dt, 1H, SC<u>H</u>_aH_b, *J* 6.0 12.5 Hz, 7.0 Hz), 2.78 (dd, 1H, ArCH_a<u>H</u>_b, *J* 15.5 Hz, 4.0 Hz), 2.64 (m, 1H, SCH₂C<u>H</u>_aH_b), 2.56 (m, 1H, SCH₂C<u>H</u>_aH_b), 1.67 (s, 3H, NCCH₃); ¹³C NMR (CDCl₃, 125 MHz) δ_C 139.5 (ArC_{quat}) 136.9 (ArC_{quat}), 135.3 (ArC_{quat}), 130.8 PhC<u>H</u>), 130.6 (PhC<u>C</u>H), 128.5 (PhC<u>C</u>H), 126.6 (ArC_{quat}), 123.9 (PhC<u>H</u>), 123.2 (PhC<u>B</u>r), 123.0 (ArC<u>H</u>), 120.2 (ArC<u>C</u>H), 118.9 (ArC<u>H</u>), 109.7 (ArC<u>C</u>H), 109.6 (ArC_{quat}), 59.6 (N<u>C</u>CH₃), 47.3 (N<u>C</u>H₂Ph), 45.4 (S<u>C</u>H₂), 36.4 (N<u>C</u>H₂), 32.7 (SCH₂C<u>H</u>₂), 27.6 (NC<u>C</u>H₃), 20.9 (Ar<u>C</u>H₂); **HRMS** (TOF MS FI+) exact mass calculated for [M]⁺ (C₂₁H₂₁BrN₂O₂S⁺) requires *m/z* 444.0507 and 446.0488, found *m/z* 444.0519 and446.0502

3. ¹HNMR and ¹³CNMR spectra

3.1. Sulfonamide starting material 5

3.1.1.¹HNMR spectra for *N*-[2-(1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5a

3.1.3.¹HNMR spectra for *N*-[2-(4-chloro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5b

3.1.4.¹³CNMR spectra for *N*-[2-(4-chloro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5b

3.1.5.¹HNMR spectra for *N*-[2-(5-bromo-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5c

3.1.6.¹³CNMR spectra for *N*-[2-(5-bromo-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5c

3.1.7.¹HNMR spectra for *N*-[2-(6-bromo-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d

3.1.8.¹³CNMR spectra for *N*-[2-(6-bromo-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d

3.1.9.¹HNMR spectra for *N*-[2-(5-fluoro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5e

3.1.10. ¹³CNMR spectra for *N*-[2-(5-fluoro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5e

3.1.11. ¹HNMR spectra for *N*-[2-(6-fluoro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5f

3.1.12. ¹³CNMR spectra for *N*-[2-(6-fluoro-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5f

3.1.13. ¹HNMR spectra for *N*-[2-(5-cyano-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5g

Tritteriori and the first structure of the structur

3.1.17. ¹HNMR spectra for *N*-[2-(5-methyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i

3.1.18. ¹³CNMR spectra for *N*-[2-(5-methyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i

3.1.19. ¹HNMR spectra for *N*-[2-(7-methyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j

3.1.20. ¹³CNMR spectra for *N*-[2-(7-methyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j

3.1.21. ¹HNMR spectra for *N*-[2-(7-ethyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k

3.1.22. ¹³CNMR spectra for *N*-[2-(7-ethyl-1*H*-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k

3.2. Sulfonamide cyclization products

3.2.1.¹HNMR spectra for 11b-methyl-1,2,5,6,11,11bhexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole-3,3-dioxide 6a

220 210 200 190 180 170 160 150 140 130 120 110 100 99 80 70 60 50 40 30 20 10 0 -10 -20 -30 Chemical Shift (ppm)

3.2.3.¹HNMR spectra for 2,3,6,7,12,12b-hexahydro-1*H*-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide 7a

3.2.7.¹HNMR spectra for 8-bromo-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-*b*]indole 3,3-dioxide 6c

3.2.11. ¹HNMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11,11b-

3.2.13. ¹HNMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f

3.2.17. ¹HNMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-

3.3. Amide starting material

50 4 110 100 90 Chemical Shift (ppm) 70 60 40

3.3.6.¹³CNMR spectra for *N*-[2-(7-methyl-1*H*-indol-3-yl)ethyl]hex-5-ynamide 9c

3.3.5.¹HNMR spectra for *N*-[2-(7-methyl-1*H*-indol-3-yl)ethyl]hex-5-ynamide 9c

3.3.7.1HNMR spectra for N-[2-(7-ethyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9d

3.4. Amide cyclization products

3.4.1.1HNMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a

3.4.7.1HNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-

3.4.9.1HNMR spectra for N-[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14

3.4.10. 13CNMR spectra for *N*-[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14

3.4.11. **1HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b** hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a
4. HPLC reports

4.1. Sulfonamide cyclization products

4.1.2.HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4b]indole 3,3-dioxide 6a

- S- 73 - -

4.1.5.HPLC trace of 7-chloro-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-*b*]indole 3,3-dioxide 6b

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime T	Ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	00
	-				
1	5.792 B	BB 0.2062	1.09271e4	816.11572	97.4035
2	8.118 B	BB 0.3032	291.29129	14.32851	2.5965

Totals :

1.12184e4 830.44423

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	9.993	MM	0.3699	2672.50220	120.41589	95.1297
2	27.234	MM	1.0019	136.82187	2.27602	4.8703

Totals :

2809.32407 122.69190

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	7.221	VV	0.2477	5179.71240	321.97113	50.4178
2	24.186	BB	0.9163	5093.87256	85.34870	49.5822

Totals : 1.02736e4 407.31983

4.1.11. HPLC trace of 8-fluoro-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e mAU 497 600 -500 -400 -300 -ର୍ 200 -26.865 ŝ 100 -0 10 25 5 15 20 mi

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	8.497	VB	0.3021	1.30236e4	660.19110	96.1533
2	26.865	MM	0.9136	521.02521	9.50467	3.8467

Totals :

1.35446e4 669.69577

4.1.13. HPLC trace of 9-fluoro-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	7.352	VB	0.2388	1.05252e4	686.87543	91.8722
2	25.056	MM	0.8457	931.15240	18.35109	8.1278

Totals :

1.14564e4 705.22652

4.1.15. HPLC trace of 11b-methyl-1,2,5,6,11,11b-

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	90
1	13.136 MM	0.6861	8630.20508	209.65181	97.7827
2	53.644 MM	2.0044	195.69910	1.62725	2.2173
Total	s :		8825.90417	211.27906	

4.1.17. HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Height Peak RetTime Type Width Area Area # [min] [min] [mAU*s] [mAU] 8 1 8.188 MM 0.2998 2429.04248 135.01501 90.5225 2 14.307 MM 0.4439 254.31540 9.54864 9.4775 2683.35788 Totals : 144.56366

4.1.18. HPLC trace of Racemic 8,11b-dimethyl-1,2,5,6,11,11b-

4.1.19. HPLC trace of 8,11b-dimethyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i

4.1.23. HPLC trace of 10-ethyl-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-*b*]indole 3,3-dioxide 6k

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	010
1	7.870 BB	0.3043	1.25748e4	631.57336	97.4176
2	10.196 BB	0.3804	333.34106	13.58081	2.5824
Total	ls :		1.29081e4	645.15418	

<u>Amide</u>

HPLC trace of Racemic 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a

HPLC trace of 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	5.082	MM	0.1846	1.04069e4	939.76501	82.8246
2	11.829	MM	0.4200	2158.08838	85.64144	17.1754

1.25650e4 1025.40646

4.2. Amide cyclization products

4.2.2.HPLC trace of 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-*a*]quinolizin-4(1*H*)-one 10b

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
		-				
1	5.067	VB	0.1602	1.88902e4	1803.75488	96.3498
2	6.645	BB	0.2103	715.64355	52.73191	3.6502

Totals :

1.96059e4 1856.48679

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.019	VV	0.5596	6079.96680	130.96616	49.6528
2	7.085	VB	0.7037	6164.99609	123.44200	50.3472

4.2.4.HPLC trace of 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-*a*]quinolizin-4(1*H*)-one 10c

4.2.6.HPLC trace of 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime Ty	ype Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	olo
1	4.100 BV	V 0.1379	8776.01367	966.42841	92.8026
2	4.911 VE	B 0.1657	680.63605	62.18039	7.1974

Totals :

9456.64972 1028.60880

4.2.8.HPLC trace of 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11bhexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.990	MM	0.4209	2503.59058	99.12993	99.7524
2	18.110	MM	0.5144	6.21401	2.01351e-1	0.2476
Total	ls :			2509.80458	99.33128	

5. Xray Data¹¹

5.1. X-ray data for compound 10b

11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

(10b)

Crystal data

 $C_{16}H_{17}BrN_2O\cdot CHCl_3$ $M_r = 452.60$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab D_x = 1.567 Mg m⁻³ Melting point: not measured K Mo $K\alpha$ radiation, λ = 0.71073 Å Cell parameters from 83413 reflections a = 11.0236 (2) Å b = 12.9544 (2) Å c = 13.4366 (2) Å $V = 1918.80 (5) \text{ Å}^{3}$ Z = 4F(000) = 912

Data collection

Nonius KappaCCD diffractometer Graphite monochromator ω scans Absorption correction: Multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997) $T_{min} = 0.17, T_{max} = 0.46$ 56832 measured reflections 4361 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: Full

 $R[F^2 > 2\sigma(F^2)] = 0.034$

 $wR(F^2) = 0.083$ S = 1.004361 reflections 255 parameters 162 restraints Primary atom site location: Other θ = 5-27° μ = 2.57 mm⁻¹ T = 150 K Block, Clear_pale_colourless 0.62 × 0.38 × 0.30 mm

4092 reflections with *I* > 2.0σ(*I*) $R_{int} = 0.087$ $θ_{max} = 27.5^\circ, θ_{min} = 5.2^\circ$ $h = -14 \rightarrow 14$ $k = -16 \rightarrow 16$ $l = -17 \rightarrow 17$

Hydrogen site location: Difference Fourier map H-atom parameters constrained Method, part 1, Chebychev polynomial, (Watkin, 1994, *P*rince, 1982) [*w*eight] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \cdots + A_{n-1}]*T_{n-1}(x)$] where A_i are the Chebychev coefficients listed below and x = *F* /*F*max Method = Robust Weighting (*P*rince, 1982) W = [*w*eight] * [1-(delta*F*/6*sigma*F*)²]² A_i are: 69.2 115. 71.6 31.4 7.79 (Δ/σ)_{max} = 0.002 $\Delta\rho_{max} = 0.42 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 1893 Friedel-pairs Flack parameter: -0.007 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

	X	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Br1	0.65201 (3)	0.67046 (3)	1.08633 (3)	0.0538	
C2	0.6812 (2)	0.65084 (19)	0.9491 (2)	0.0375	
C3	0.5948 (2)	0.60131 (18)	0.89063 (19)	0.0304	
N4	0.48228 (17)	0.56306 (15)	0.91457 (17)	0.0289	
C5	0.4336 (2)	0.51801 (19)	0.82999 (17)	0.0269	
C6	0.5127 (2)	0.52769 (19)	0.75153 (19)	0.0299	
C7	0.6164 (2)	0.58180 (19)	0.78843 (19)	0.0321	
C8	0.7263 (2)	0.6159 (2)	0.7450 (2)	0.0424	
C9	0.8085 (3)	0.6668 (3)	0.8039 (3)	0.0480	
C10	0.7884 (2)	0.6833 (2)	0.9055 (3)	0.0454	
C11	0.4861 (3)	0.4819 (2)	0.65142 (19)	0.0377	

C12	0.3845 (3)	0.4028 (2)	0.66363 (19)	0.0366	
N13	0.28353 (19)	0.44722 (18)	0.72179 (15)	0.0318	
C14	0.3093 (2)	0.47060 (19)	0.82822 (17)	0.0274	
C15	0.3064 (3)	0.3708 (2)	0.88971 (19)	0.0361	
C16	0.2171 (2)	0.5493 (2)	0.8680 (2)	0.0348	
C17	0.0883 (3)	0.5161 (3)	0.8449 (2)	0.0433	
C18	0.0731 (3)	0.5135 (3)	0.7325 (2)	0.0475	
C19	0.1766 (2)	0.4651 (2)	0.6760 (2)	0.0360	
O20	0.16200 (19)	0.44316 (18)	0.58674 (15)	0.0457	
C21	0.6761 (2)	0.3428 (2)	0.9014 (2)	0.0530	0.739 (8)
CI22	0.5983 (2)	0.3334 (2)	1.01359 (14)	0.0620	0.739 (8)
CI23	0.6434 (4)	0.2372 (4)	0.8252 (3)	0.0789	0.739 (8)
CI24	0.83178 (19)	0.3520 (3)	0.9223 (3)	0.1103	0.739 (8)
C25	0.7068 (7)	0.3351 (4)	0.8686 (6)	0.0653	0.261 (8)
CI26	0.6526 (11)	0.3566 (4)	0.9885 (5)	0.0775	0.261 (8)
Cl27	0.6276 (5)	0.2345 (8)	0.8120 (6)	0.0449	0.261 (8)
CI28	0.8619 (7)	0.3086 (6)	0.8709 (8)	0.0923	0.261 (8)
H81	0.7411	0.6060	0.6779	0.0511*	
H91	0.8809	0.6888	0.7744	0.0580*	
H101	0.8460	0.7155	0.9432	0.0539*	
H111	0.5574	0.4481	0.6240	0.0450*	
H112	0.4596	0.5355	0.6043	0.0454*	
H121	0.4164	0.3434	0.7000	0.0432*	
H122	0.3531	0.3786	0.6004	0.0436*	
H151	0.2278	0.3397	0.8850	0.0533*	
H152	0.3263	0.3876	0.9579	0.0534*	
H153	0.3649	0.3239	0.8652	0.0533*	
H161	0.2277	0.5547	0.9386	0.0418*	
H162	0.2337	0.6164	0.8380	0.0419*	
H171	0.0313	0.5647	0.8702	0.0517*	
H172	0.0713	0.4491	0.8731	0.0517*	
H181	0.0687	0.5825	0.7066	0.0583*	
H182	0.0010	0.4749	0.7145	0.0575*	
H211	0.6492	0.4053	0.8682	0.0639*	0.739 (8)
H251	0.6951	0.3976	0.8291	0.0778*	0.261 (8)
H41	0.4494	0.5652	0.9709	0.0352*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U ²³
Br1	0.05236 (17)	0.05674 (18)	0.05220 (17)	-0.01281 (15)	-0.00665 (15)	-0.01813 (14)
C2	0.0338 (13)	0.0294 (12)	0.0493 (14)	-0.0009 (9)	-0.0014 (10)	-0.0007 (10)
C3	0.0248 (10)	0.0280 (11)	0.0384 (13)	0.0008 (8)	0.0029 (9)	0.0030 (9)
N4	0.0265 (9)	0.0308 (9)	0.0296 (9)	-0.0035 (7)	0.0008 (8)	0.0000 (8)
C5	0.0273 (11)	0.0266 (10)	0.0268 (11)	0.0007 (9)	0.0003 (9)	0.0009 (8)
C6	0.0280 (11)	0.0317 (11)	0.0300 (11)	0.0023 (9)	0.0047 (9)	0.0034 (9)
C7	0.0298 (12)	0.0283 (11)	0.0383 (12)	0.0008 (9)	0.0069 (9)	0.0066 (9)
C8	0.0327 (13)	0.0425 (15)	0.0519 (16)	0.0041 (11)	0.0126 (12)	0.0144 (13)
C9	0.0264 (12)	0.0435 (14)	0.074 (2)	-0.0011 (12)	0.0071 (12)	0.0162 (15)
C10	0.0295 (12)	0.0356 (13)	0.0710 (19)	-0.0050 (10)	-0.0010 (14)	0.0032 (15)

C11	0.0330 (13)	0.0502 (15)	0.0299 (12)	0.0037 (11)	0.0059 (10)	-0.0006 (11)
C12	0.0365 (13)	0.0437 (14)	0.0297 (11)	0.0059 (10)	-0.0013 (10)	-0.0064 (10)
N13	0.0276 (10)	0.0424 (11)	0.0256 (9)	0.0032 (8)	-0.0018 (8)	-0.0006 (8)
C14	0.0255 (11)	0.0329 (11)	0.0239 (10)	-0.0003 (9)	-0.0005 (8)	0.0000 (8)
C15	0.0358 (12)	0.0379 (12)	0.0345 (13)	-0.0085 (10)	-0.0042 (10)	0.0052 (10)
C16	0.0262 (12)	0.0447 (14)	0.0335 (12)	0.0011 (10)	0.0023 (10)	-0.0025 (11)
C17	0.0260 (13)	0.067 (2)	0.0373 (14)	0.0027 (12)	0.0013 (10)	-0.0036 (13)
C18	0.0296 (13)	0.073 (2)	0.0398 (14)	0.0070 (13)	-0.0048 (11)	-0.0062 (14)
C19	0.0314 (13)	0.0475 (14)	0.0291 (12)	0.0015 (10)	-0.0041 (10)	0.0027 (10)
020	0.0391 (10)	0.0690 (12)	0.0290 (8)	0.0048 (9)	-0.0072 (9)	-0.0025 (9)
C21	0.0506 (19)	0.0427 (18)	0.066 (2)	-0.0010 (16)	-0.0121 (18)	0.0043 (17)
Cl22	0.0550 (10)	0.0807 (10)	0.0502 (7)	0.0210 (8)	-0.0150 (6)	-0.0013 (8)
Cl23	0.089 (2)	0.0648 (14)	0.0833 (17)	-0.0014 (16)	0.0082 (15)	-0.0288 (13)
Cl24	0.0523 (9)	0.127 (2)	0.151 (3)	-0.0348 (11)	-0.0107 (13)	0.022 (2)
C25	0.071 (4)	0.050 (4)	0.075 (4)	-0.001 (3)	-0.030 (4)	-0.005 (3)
Cl26	0.111 (5)	0.059 (2)	0.063 (3)	0.019 (3)	-0.030 (3)	-0.0177 (19)
Cl27	0.0318 (19)	0.047 (3)	0.056 (3)	0.0025 (14)	-0.0096 (16)	-0.0139 (19)
Cl28	0.065 (3)	0.081 (3)	0.131 (5)	-0.026 (2)	-0.034 (3)	0.014 (3)

Geometric parameters (Å, °)

Br1-C2	1.889 (3)	N13-C19	1.349 (3)
C2-C3	1.391 (4)	C14—C15	1.534 (3)
C2-C10	1.384 (4)	C14-C16	1.536 (3)
C3—N4	1.374 (3)	C15—H151	0.958
C3—C7	1.416 (4)	C15—H152	0.967
N4-C5	1.385 (3)	C15—H153	0.945
N4—H41	0.840	C16-C17	1.516 (4)
C5—C6	1.374 (3)	C16—H161	0.957
C5-C14	1.502 (3)	C16—H162	0.977
C6—C7	1.429 (4)	C17-C18	1.520 (4)
C6-C11	1.499 (4)	C17—H171	0.952
C7—C8	1.415 (4)	C17—H172	0.966
C8—C9	1.371 (5)	C18-C19	1.507 (4)
C8-H81	0.926	C18-H181	0.961
C9-C10	1.399 (5)	C18—H182	0.969
C9—H91	0.936	C19—O20	1.244 (3)
C10-H101	0.914	C21-Cl22	1.738 (3)
C11-C12	1.527 (4)	C21-Cl23	1.746 (3)
C11-H111	0.972	C21-Cl24	1.743 (3)
C11-H112	0.984	C21—H211	0.972
C12-N13	1.477 (3)	C25-Cl26	1.740 (5)
C12-H121	0.976	C25-Cl27	1.743 (5)
C12-H122	0.968	C25-Cl28	1.744 (5)
N13-C14	1.489 (3)	C25—H251	0.976
Br1-C2-C3	119.8 (2)	N13-C14-C15	110.0 (2)
Br1-C2-C10	121.2 (2)	C5-C14-C16	109.1 (2)
C3-C2-C10	119.0 (3)	N13-C14-C16	110.1 (2)
C2-C3-N4	130.7 (2)	C15-C14-C16	111.0 (2)
C2-C3-C7	121.0 (2)	C14-C15-H151	109.7

N4-C3-C7	108.3 (2)	C14-C15-H152	108.4
C3-N4-C5	108.0 (2)	H151-C15-H152	111.2
C3-N4-H41	126.0	C14-C15-H153	109.9
C5-N4-H41	125.9	H151-C15-H153	108.9
N4-C5-C6	110.2 (2)	H152—C15—H153	108.7
N4-C5-C14	122.6 (2)	C14-C16-C17	111.1 (2)
C6-C5-C14	127.2 (2)	C14-C16-H161	108.2
C5—C6—C7	106.6 (2)	C17-C16-H161	109.8
C5-C6-C11	121.9 (2)	C14-C16-H162	108.8
C7-C6-C11	131.5 (2)	C17-C16-H162	110.1
C6-C7-C3	106.8 (2)	H161—C16—H162	108.7
C6-C7-C8	134.0 (3)	C16-C17-C18	108.3 (2)
C3-C7-C8	119.2 (3)	C16-C17-H171	110.9
C7—C8—C9	118.5 (3)	C18-C17-H171	107.3
C7-C8-H81	120.6	C16-C17-H172	110.8
C9-C8-H81	120.8	C18-C17-H172	110.4
C8-C9-C10	122.1 (3)	H171-C17-H172	109.0
C8-C9-H91	117.7	C17-C18-C19	115.2 (2)
C10-C9-H91	120.1	C17-C18-H181	110.1
C9-C10-C2	120.1 (3)	C19-C18-H181	104.1
C9-C10-H101	120.0	C17-C18-H182	110.5
C2-C10-H101	119.8	C19-C18-H182	106.4
C6-C11-C12	108.2 (2)	H181-C18-H182	110.4
C6-C11-H111	111.1	C18-C19-N13	120.3 (2)
C12-C11-H111	109.4	C18-C19-O20	118.8 (2)
C6-C11-H112	110.9	N13-C19-O20	120.9 (3)
C12-C11-H112	109.0	Cl22-C21-Cl23	110.61 (6)
H111-C11-H112	108.2	Cl22-C21-Cl24	110.54 (6)
C11-C12-N13	110.4 (2)	Cl23-C21-Cl24	110.61 (6)
C11-C12-H121	108.5	Cl22-C21-H211	107.9
N13-C12-H121	108.3	Cl23-C21-H211	108.7
C11-C12-H122	112.6	Cl24-C21-H211	108.5
N13-C12-H122	108.7	Cl26-C25-Cl27	110.58 (6)
H121-C12-H122	108.3	Cl26-C25-Cl28	110.60 (6)
C12-N13-C14	116.3 (2)	Cl27-C25-Cl28	110.59 (6)
C12-N13-C19	119.0 (2)	Cl26-C25-H251	108.9
C14-N13-C19	124.7 (2)	Cl27-C25-H251	108.4
C5-C14-N13	105.81 (19)	Cl28-C25-H251	107.6
C5-C14-C15	110.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H···A	D····A	D—H…A
C16—H161…O20 ⁱ	0.96	2.33	3.229 (4)	155 (1)
C21—H211…C7	0.97	2.55	3.511 (4)	170 (1)
C25—H211…C7	1.11	2.55	3.517 (4)	145 (1)
C25—H251…C7	0.98	2.60	3.517 (4)	157 (1)
N4—H41…O20 ⁱ	0.84	1.99	2.809 (4)	166 (1)

Symmetry code: (i) -*x*+1/2, -*y*+1, *z*+1/2.

5.2. X-Ray data for compound 15a

11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-

b]indole 3,3-dioxide

(15a)

Crystal data

 $C_{21}H_{21}BrN_2O_2S$

F(000) = 912

 $M_r = 445.38$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 10.4507 (1) Å b = 16.2752 (2) Å c = 11.5043 (1) Å $\beta = 101.0903$ (5)° V = 1920.19 (3) Å³ Z = 4

Data collection

Nonius KappaCCD
diffractometer7894 reflections with $I > 2.0\sigma(I)$ Graphite monochromator $R_{int} = 0.063$
 $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.1^{\circ}$ ω scans $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.1^{\circ}$ Absorption correction: Multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997) $h = -13 \rightarrow 13$ $T_{min} = 0.54, T_{max} = 0.71$ $k = -21 \rightarrow 19$ 35947 measured reflections $I = -14 \rightarrow 14$ 8412 independent reflections $a = -14 \rightarrow 14$

Refinement

Refinement on F^2 Hydrogen site location: Difference Fourier map Least-squares matrix: Full H-atom parameters constrained Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + ($ $R[F^2 > 2\sigma(F^2)] = 0.029$ $(0.03P)^2 + 1.16P$, where $P = (max(F_o^2, 0) + 2F_c^2)/3$ $wR(F^2) = 0.064$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{max} = 1.11 \text{ e } \text{\AA}^{-3}$ S = 0.99 $\Delta \rho_{\rm min} = -0.93 \ {\rm e} \ {\rm \AA}^{-3}$ 8412 reflections 488 parameters Absolute structure: Flack (1983), 3898 Friedel-pairs 1 restraint Flack parameter: 0.010 (4) Primary atom site location: Structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	X	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.41297 (2)	0.38134 (3)	0.34172 (2)	0.0285
C2	1.3005 (2)	0.46900 (15)	0.2792 (2)	0.0226
C3	1.1759 (2)	0.45052 (14)	0.2192 (2)	0.0208
C4	1.0911 (2)	0.51396 (14)	0.1758 (2)	0.0205
C5	1.1330 (2)	0.59512 (15)	0.1918 (2)	0.0256
C6	1.2588 (3)	0.61223 (16)	0.2519 (2)	0.0295
C7	1.3438 (2)	0.54976 (17)	0.2968 (2)	0.0287
C8	0.9538 (2)	0.49079 (14)	0.1142 (2)	0.0228
N9	0.86899 (18)	0.56083 (12)	0.08136 (17)	0.0205
C10	0.8749 (2)	0.60797 (14)	-0.0176 (2)	0.0206
C11	0.9386 (2)	0.59243 (16)	-0.1112 (2)	0.0245

T = 150 KBlock, Clear_pale_colourless $0.50 \times 0.30 \times 0.15 \text{ mm}$ 7894 reflections with L > 2.0

Melting point: not measured K

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 4512 reflections

 $D_{\rm x} = 1.541 {\rm Mg m^{-3}}$

 $\theta = 5 - 27^{\circ}$

 $\mu = 2.27 \text{ mm}^{-1}$

C12	0.9203 (3)	0.64855 (17)	-0.2034 (2)	0.0276
C13	0.8431 (2)	0.71881 (16)	-0.2021 (2)	0.0263
C14	0.7847 (2)	0.73585 (15)	-0.1068 (2)	0.0247
C15	0.8018 (2)	0.68067 (14)	-0.0121 (2)	0.0211
C16	0.7523 (2)	0.67577 (14)	0.0958 (2)	0.0209
C17	0.7947 (2)	0.60349 (14)	0.1504 (2)	0.0201
C18	0.7553 (2)	0.56948 (14)	0.2609 (2)	0.0213
N19	0.66573 (19)	0.63045 (12)	0.30024 (17)	0.0222
S20	0.72133 (6)	0.66744 (5)	0.43267 (5)	0.0261
021	0.6787 (2)	0.61696 (14)	0.51981 (17)	0.0420
022	0.6911 (2)	0.75361 (12)	0.43494 (18)	0.0378
C23	0.8865 (3)	0.64467 (16)	0.4315 (2)	0.0296
C24	0.8725 (3)	0.56237 (15)	0.3669 (2)	0.0263
C25	0.5806 (2)	0.68198 (16)	0.2122 (2)	0.0268
C26	0.6594 (2)	0.73246 (16)	0.1396 (2)	0.0266
C27	0.6827 (3)	0.48793 (16)	0.2380 (3)	0.0307
Br28	0.97901 (3)	0.32754 (3)	0.39862 (3)	0.0391
C29	0.8383 (2)	0.32493 (17)	0.4816 (2)	0.0267
C30	0.7437 (3)	0.26470 (16)	0.4539 (2)	0.0289
C31	0.6397 (3)	0.26565 (16)	0.5129 (2)	0.0274
C32	0.6313 (2)	0.32589 (16)	0.5970 (2)	0.0230
C33	0.7276 (2)	0.38529 (16)	0.62490 (18)	0.0207
C34	0.8335 (2)	0.38422 (16)	0.56645 (19)	0.0224
C35	0.7227 (2)	0.45407 (15)	0.7126 (2)	0.0227
N36	0.64904 (19)	0.43309 (12)	0.80417 (17)	0.0219
C37	0.6932 (2)	0.37513 (16)	0.89065 (19)	0.0228
C38	0.6024 (2)	0.36932 (15)	0.9660 (2)	0.0233
C39	0.4999 (2)	0.42615 (15)	0.9219 (2)	0.0229
C40	0.5304 (2)	0.46350 (14)	0.8242 (2)	0.0210
C41	0.4522 (2)	0.53135 (14)	0.7525 (2)	0.0216
N42	0.32641 (19)	0.53898 (13)	0.79549 (18)	0.0241
S43	0.20060 (6)	0.50210 (5)	0.70227 (6)	0.0298
044	0.1293 (2)	0.56807 (15)	0.63536 (19)	0.0477
045	0.1262 (2)	0.44851 (15)	0.76296 (19)	0.0450
C46	0.2931 (2)	0.45221 (17)	0.6100 (2)	0.0296
C47	0.4093 (2)	0.50934 (15)	0.6192 (2)	0.0253
C48	0.3300 (3)	0.53143 (17)	0.9239 (2)	0.0290
C49	0.3814 (2)	0.44762 (16)	0.9713 (2)	0.0271
C50	0.5235 (3)	0.61384 (15)	0.7699 (2)	0.0287
C51	0.6273 (3)	0.31427 (16)	1.0623 (2)	0.0300
C52	0.7391 (3)	0.26805 (17)	1.0798 (2)	0.0363
C53	0.8298 (3)	0.27482 (17)	1.0041 (2)	0.0339
C54	0.8077 (2)	0.32787 (17)	0.9083 (2)	0.0299
H31	1.1491	0.3960	0.2068	0.0270*
H51	1.0756	0.6379	0.1623	0.0299*
H61	1.2857	0.6670	0.2623	0.0363*
H71	1.4282	0.5614	0.3364	0.0342*
H81	0.9166	0.4571	0.1684	0.0282*
H82	0.9589	0.4601	0.0431	0.0281*
H111	0.9921	0.5464	-0.1109	0.0302*

H121	0.9601	0.6385	-0.2681	0.0355*
H131	0.8301	0.7549	-0.2672	0.0273*
H141	0.7350	0.7834	-0.1051	0.0321*
H231	0.9229	0.6857	0.3847	0.0360*
H232	0.9390	0.6411	0.5113	0.0359*
H241	0.8532	0.5197	0.4199	0.0333*
H242	0.9514	0.5494	0.3388	0.0331*
H251	0.5302	0.7191	0.2529	0.0329*
H252	0.5226	0.6463	0.1588	0.0332*
H262	0.7075	0.7748	0.1883	0.0328*
H261	0.6021	0.7573	0.0731	0.0329*
H272	0.6491	0.4727	0.3074	0.0469*
H271	0.6120	0.4938	0.1716	0.0470*
H273	0.7424	0.4459	0.2212	0.0471*
H301	0.7504	0.2247	0.3964	0.0338*
H311	0.5751	0.2252	0.4965	0.0308*
H321	0.5599	0.3262	0.6348	0.0293*
H341	0.9011	0.4224	0.5859	0.0268*
H351	0.6820	0.5011	0.6698	0.0308*
H352	0.8113	0.4677	0.7496	0.0309*
H462	0.2456	0.4477	0.5289	0.0352*
H461	0.3205	0.3981	0.6406	0.0348*
H472	0.3853	0.5577	0.5718	0.0322*
H471	0.4803	0.4814	0.5922	0.0319*
H481	0.2415	0.5390	0.9379	0.0329*
H482	0.3877	0.5736	0.9652	0.0330*
H491	0.4041	0.4489	1.0576	0.0331*
H492	0.3152	0.4064	0.9474	0.0330*
H501	0.4693	0.6565	0.7280	0.0460*
H502	0.5448	0.6273	0.8528	0.0461*
H503	0.6027	0.6101	0.7397	0.0461*
H511	0.5675	0.3105	1.1133	0.0423*
H521	0.7544	0.2303	1.1425	0.0472*
H531	0.9059	0.2427	1.0187	0.0368*
H541	0.8669	0.3322	0.8573	0.0380*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	<i>U</i> ¹²	U^{13}	U ²³
Br1	0.02460 (11)	0.03028 (12)	0.02933 (12)	0.00474 (10)	0.00169 (9)	0.00640 (11)
C2	0.0225 (11)	0.0244 (11)	0.0212 (11)	0.0034 (9)	0.0049 (9)	0.0025 (9)
C3	0.0221 (11)	0.0198 (11)	0.0216 (11)	0.0010 (9)	0.0071 (9)	0.0010 (9)
C4	0.0211 (11)	0.0217 (12)	0.0193 (11)	0.0015 (9)	0.0053 (9)	-0.0025 (9)
C5	0.0250 (12)	0.0211 (12)	0.0296 (13)	0.0010 (10)	0.0022 (10)	0.0006 (10)
C6	0.0307 (13)	0.0213 (12)	0.0357 (14)	-0.0051 (10)	0.0047 (11)	-0.0021 (10)
C7	0.0239 (12)	0.0358 (14)	0.0255 (12)	-0.0033 (11)	0.0029 (10)	-0.0023 (11)
C8	0.0211 (11)	0.0190 (11)	0.0275 (12)	0.0031 (9)	0.0028 (9)	-0.0028 (9)
N9	0.0204 (9)	0.0188 (9)	0.0222 (10)	0.0031 (8)	0.0039 (8)	-0.0018 (8)
C10	0.0181 (10)	0.0222 (11)	0.0208 (11)	-0.0010 (9)	0.0019 (8)	-0.0024 (9)
C11	0.0217 (11)	0.0272 (12)	0.0252 (12)	-0.0006 (10)	0.0062 (9)	-0.0054 (10)

C12	0.0286 (13)	0.0353 (14)	0.0207 (12)	-0.0091 (10)	0.0097 (10)	-0.0070 (10)
C13	0.0293 (13)	0.0282 (13)	0.0221 (12)	-0.0063 (11)	0.0063 (10)	0.0017 (10)
C14	0.0261 (12)	0.0227 (11)	0.0256 (12)	-0.0009 (10)	0.0059 (10)	0.0021 (10)
C15	0.0206 (11)	0.0223 (11)	0.0204 (11)	0.0013 (9)	0.0040 (9)	-0.0022 (9)
C16	0.0207 (11)	0.0223 (11)	0.0204 (11)	0.0025 (9)	0.0056 (9)	-0.0001 (9)
C17	0.0197 (11)	0.0213 (11)	0.0191 (11)	-0.0005 (9)	0.0033 (9)	-0.0020 (9)
C18	0.0211 (11)	0.0206 (11)	0.0224 (11)	0.0025 (9)	0.0051 (9)	0.0006 (9)
N19	0.0223 (10)	0.0258 (10)	0.0189 (9)	0.0033 (8)	0.0052 (8)	-0.0012 (8)
S20	0.0333 (3)	0.0253 (3)	0.0204 (3)	0.0026 (3)	0.0068 (2)	-0.0016 (2)
021	0.0581 (13)	0.0468 (12)	0.0250 (10)	0.0043 (10)	0.0174 (9)	0.0065 (9)
022	0.0465 (12)	0.0251 (10)	0.0408 (11)	0.0051 (9)	0.0060 (9)	-0.0097 (8)
C23	0.0278 (13)	0.0338 (14)	0.0250 (13)	0.0028 (11)	-0.0009 (10)	-0.0035 (10)
C24	0.0294 (13)	0.0262 (12)	0.0224 (12)	0.0048 (10)	0.0031 (10)	0.0026 (10)
C25	0.0240 (12)	0.0345 (14)	0.0225 (12)	0.0092 (10)	0.0055 (9)	0.0019 (10)
C26	0.0300 (13)	0.0259 (12)	0.0251 (12)	0.0092 (10)	0.0083 (10)	0.0045 (10)
C27	0.0299 (13)	0.0255 (13)	0.0386 (15)	-0.0049 (10)	0.0113 (11)	-0.0017 (11)
Br28	0.04223 (16)	0.04041 (15)	0.04193 (16)	0.01248 (13)	0.02604 (12)	0.00676 (13)
C29	0.0299 (12)	0.0266 (11)	0.0256 (12)	0.0087 (11)	0.0104 (9)	0.0067 (10)
C30	0.0406 (15)	0.0255 (12)	0.0206 (12)	0.0056 (11)	0.0056 (10)	-0.0031 (10)
C31	0.0311 (13)	0.0233 (12)	0.0257 (12)	-0.0036 (10)	0.0004 (10)	-0.0011 (10)
C32	0.0221 (11)	0.0242 (11)	0.0229 (11)	0.0000 (10)	0.0045 (9)	0.0030 (10)
C33	0.0203 (10)	0.0216 (10)	0.0198 (10)	0.0025 (10)	0.0032 (8)	0.0033 (10)
C34	0.0206 (10)	0.0237 (11)	0.0235 (10)	0.0018 (10)	0.0061 (8)	0.0046 (10)
C35	0.0211 (11)	0.0245 (12)	0.0238 (12)	-0.0027 (9)	0.0076 (9)	-0.0021 (9)
N36	0.0241 (10)	0.0210 (10)	0.0210 (10)	0.0024 (8)	0.0056 (8)	0.0009 (8)
C37	0.0288 (11)	0.0205 (11)	0.0176 (10)	-0.0001 (11)	0.0012 (8)	-0.0038 (9)
C38	0.0268 (11)	0.0230 (12)	0.0185 (10)	-0.0006 (10)	-0.0001 (9)	-0.0027 (9)
C39	0.0251 (12)	0.0239 (12)	0.0193 (11)	-0.0024 (9)	0.0036 (9)	-0.0024 (9)
C40	0.0204 (11)	0.0214 (11)	0.0213 (11)	-0.0007 (9)	0.0044 (9)	–0.0035 (9)
C41	0.0252 (12)	0.0207 (11)	0.0193 (11)	0.0018 (9)	0.0056 (9)	-0.0021 (9)
N42	0.0234 (10)	0.0258 (10)	0.0230 (10)	0.0036 (8)	0.0044 (8)	-0.0047 (8)
S43	0.0215 (3)	0.0392 (4)	0.0274 (3)	0.0046 (3)	0.0012 (2)	-0.0061 (3)
044	0.0384 (11)	0.0639 (15)	0.0374 (11)	0.0288 (11)	-0.0014 (9)	-0.0022 (10)
045	0.0324 (10)	0.0618 (14)	0.0418 (11)	-0.0150 (10)	0.0094 (9)	-0.0119 (10)
C46	0.0263 (13)	0.0342 (14)	0.0270 (13)	0.0038 (11)	0.0021 (10)	-0.0089 (11)
C47	0.0301 (13)	0.0265 (12)	0.0185 (11)	0.0045 (10)	0.0032 (9)	-0.0013 (9)
C48	0.0285 (13)	0.0356 (14)	0.0242 (12)	0.0016 (11)	0.0082 (10)	-0.0088 (10)
C49	0.0254 (12)	0.0358 (14)	0.0208 (12)	-0.0038 (11)	0.0063 (9)	-0.0017 (10)
C50	0.0325 (13)	0.0211 (12)	0.0326 (13)	0.0005 (10)	0.0068 (11)	-0.0024 (10)
C51	0.0403 (14)	0.0284 (13)	0.0198 (11)	-0.0037 (11)	0.0022 (10)	-0.0004 (10)
C52	0.0541 (18)	0.0255 (13)	0.0247 (13)	0.0014 (12)	-0.0037 (12)	0.0015 (10)
C53	0.0378 (15)	0.0278 (13)	0.0309 (14)	0.0115 (11)	-0.0060 (11)	-0.0032 (11)
C54	0.0316 (13)	0.0286 (12)	0.0275 (12)	0.0061 (11)	0.0007 (10)	-0.0062 (11)

Geometric parameters (Å, °)

Br1-C2	1.900 (2)	Br28-C29	1.901 (2)
C2-C3	1.385 (3)	C29-C30	1.386 (4)
C2—C7	1.392 (4)	C29—C34	1.381 (4)
C3—C4	1.389 (3)	C30-C31	1.387 (4)

C3—H31	0.933	C30-H301	0.940
C4—C5	1.393 (3)	C31-C32	1.392 (4)
C4—C8	1.521 (3)	C31—H311	0.936
C5—C6	1.390 (4)	C32—C33	1.388 (3)
C5—H51	0.938	C32—H321	0.934
C6—C7	1.383 (4)	C33—C34	1.401 (3)
C6—H61	0.936	C33—C35	1.514 (3)
C7—H71	0.931	C34—H341	0.935
C8—N9	1.449 (3)	C35—N36	1.460 (3)
C8-H81	0.967	C35—H351	0.963
C8-H82	0.969	С35—Н352	0.968
N9-C10	1.384 (3)	N36-C37	1.384 (3)
N9-C17	1.397 (3)	N36-C40	1.395 (3)
C10-C11	1.394 (3)	C37—C38	1.406 (3)
C10-C15	1.416 (3)	C37—C54	1.404 (3)
C11-C12	1.384 (4)	C38—C39	1.432 (3)
C11—H111	0.934	C38—C51	1.410 (3)
C12-C13	1.401 (4)	C39—C40	1.368 (3)
C12—H121	0.935	C39—C49	1.500 (3)
C13-C14	1.382 (4)	C40-C41	1.519 (3)
C13—H131	0.941	C41—N42	1.497 (3)
C14—C15	1.396 (3)	C41—C47	1.554 (3)
C14—H141	0.934	C41—C50	1.529 (3)
C15-C16	1.437 (3)	N42—S43	1.642 (2)
C16-C17	1.367 (3)	N42-C48	1.475 (3)
C16—C26	1.495 (3)	S43—O44	1.442 (2)
C17—C18	1.515 (3)	S43—O45	1.436 (2)
C18—N19	1.493 (3)	S43—C46	1.765 (3)
C18-C24	1.557 (3)	C46—C47	1.517 (4)
C18-C27	1.526 (3)	C46—H462	0.972
N19—S20	1.637 (2)	C46—H461	0.971
N19-C25	1.475 (3)	C47—H472	0.963
S20—O21	1.432 (2)	C47—H471	0.971
S20—O22	1.4389 (19)	C48—C49	1.528 (4)
S20-C23	1.768 (3)	C48—H481	0.977
C23-C24	1.525 (4)	C48—H482	0.975
C23—H231	0.980	C49—H491	0.976
C23—H232	0.976	C49—H492	0.965
C24—H241	0.971	C50—H501	0.964
C24—H242	0.966	C50—H502	0.962
C25—C26	1.522 (3)	C50—H503	0.960
C25—H251	0.978	C51-C52	1.372 (4)
C25—H252	0.969	C51—H511	0.938
C26—H262	0.966	C52—C53	1.409 (4)
C26—H261	0.964	C52—H521	0.938
C27—H272	0.964	C53—C54	1.384 (4)
C27—H271	0.960	C53—H531	0.940
C27—H273	0.970	C54—H541	0.933
Br1-C2-C3	118.66 (18)	Br28-C29-C30	119.17 (19)

Br1-C2-C7	119.59 (18)	Br28-C29-C34	118.45 (19)
C3-C2-C7	121.7 (2)	C30-C29-C34	122.4 (2)
C2-C3-C4	119.4 (2)	C29-C30-C31	118.1 (2)
C2-C3-H31	120.6	C29-C30-H301	120.3
C4-C3-H31	120.0	C31-C30-H301	121.6
C3-C4-C5	119.7 (2)	C30-C31-C32	120.5 (2)
C3-C4-C8	117.6 (2)	C30-C31-H311	119.7
C5-C4-C8	122.8 (2)	C32-C31-H311	119.8
C4-C5-C6	119.9 (2)	C31-C32-C33	120.8 (2)
C4-C5-H51	119.5	C31-C32-H321	119.4
C6-C5-H51	120.6	C33-C32-H321	119.8
C5-C6-C7	121.1 (2)	C32-C33-C34	119.0 (2)
C5-C6-H61	119.1	C32—C33—C35	123.6 (2)
C7-C6-H61	119.8	C34-C33-C35	117.4 (2)
C2-C7-C6	118.2 (2)	C33—C34—C29	119.2 (2)
C2-C7-H71	121.0	C33-C34-H341	120.5
C6-C7-H71	120.8	C29-C34-H341	120.3
C4-C8-N9	113.68 (19)	C33-C35-N36	113.44 (19)
C4-C8-H81	107.5	C33-C35-H351	108.4
N9-C8-H81	108.3	N36-C35-H351	108.2
C4-C8-H82	108.7	C33—C35—H352	108.1
N9-C8-H82	108.4	N36-C35-H352	109.2
H81-C8-H82	110.3	H351—C35—H352	109.5
C8-N9-C10	121.95 (19)	C35-N36-C37	121.92 (19)
C8-N9-C17	128.4 (2)	C35-N36-C40	130.2 (2)
C10-N9-C17	108.04 (18)	C37—N36—C40	107.90 (19)
N9-C10-C11	129.7 (2)	N36-C37-C38	108.5 (2)
N9-C10-C15	108.5 (2)	N36-C37-C54	129.4 (2)
C11-C10-C15	121.9 (2)	C38-C37-C54	122.1 (2)
C10-C11-C12	117.1 (2)	C37—C38—C39	106.6 (2)
C10-C11-H111	121.1	C37-C38-C51	118.8 (2)
C12-C11-H111	121.8	C39-C38-C51	134.6 (2)
C11-C12-C13	121.7 (2)	C38-C39-C40	107.6 (2)
C11-C12-H121	118.5	C38—C39—C49	129.2 (2)
C13-C12-H121	119.8	C40-C39-C49	123.2 (2)
C12-C13-C14	121.0 (2)	N36-C40-C39	109.4 (2)
C12-C13-H131	119.8	N36-C40-C41	124.8 (2)
C14-C13-H131	119.2	C39-C40-C41	125.7 (2)
C13-C14-C15	118.7 (2)	C40-C41-N42	107.20 (18)
C13-C14-H141	121.0	C40-C41-C47	113.02 (19)
C15-C14-H141	120.4	N42-C41-C47	103.86 (18)
C10-C15-C14	119.5 (2)	C40-C41-C50	111.70 (19)
C10-C15-C16	106.2 (2)	N42-C41-C50	108.67 (19)
C14-C15-C16	134.1 (2)	C47-C41-C50	111.9 (2)
C15-C16-C17	107.8 (2)	C41-N42-S43	113.44 (15)
C15-C16-C26	128.5 (2)	C41-N42-C48	117.98 (19)
C17-C16-C26	123.4 (2)	S43—N42—C48	119.11 (17)
N9-C17-C16	109.5 (2)	N42—S43—O44	110.06 (13)
N9-C17-C18	124.5 (2)	N42—S43—O45	110.16 (12)
C16-C17-C18	125.7 (2)	044—S43—O45	116.07 (14)
			(= -)

C17-C18-N19	107.40 (18)	N42-S43-C46	95.66 (11)
C17-C18-C24	112.60 (19)	O44—S43—C46	107.95 (13)
N19-C18-C24	104.89 (19)	O45-S43-C46	115.04 (14)
C17-C18-C27	112.3 (2)	S43-C46-C47	101.51 (17)
N19-C18-C27	108.10 (19)	S43-C46-H462	112.0
C24-C18-C27	111.1 (2)	C47-C46-H462	111.6
C18-N19-S20	113.29 (15)	S43-C46-H461	110.9
C18-N19-C25	120.05 (18)	C47-C46-H461	110.7
S20-N19-C25	119.29 (16)	H462—C46—H461	109.9
N19-S20-O21	109.75 (12)	C41-C47-C46	106.6 (2)
N19-S20-022	109.60 (11)	C41-C47-H472	111.4
021-S20-022	116.58 (13)	C46-C47-H472	110.1
N19-S20-C23	95.05 (11)	C41-C47-H471	109.3
O21-S20-C23	108.72 (13)	C46-C47-H471	109.9
022-S20-C23	115.00 (13)	H472-C47-H471	109.4
S20-C23-C24	100.68 (17)	N42-C48-C49	111.8 (2)
S20-C23-H231	110.1	N42-C48-H481	108.2
C24-C23-H231	110.0	C49-C48-H481	109.4
S20-C23-H232	112.2	N42-C48-H482	108.9
C24-C23-H232	113.0	C49-C48-H482	108.2
H231-C23-H232	110.5	H481-C48-H482	110.3
C23-C24-C18	107.68 (19)	C48-C49-C39	109.4 (2)
C23-C24-H241	109.5	C48-C49-H491	110.1
C18-C24-H241	108.6	C39-C49-H491	109.5
C23-C24-H242	110.3	C48-C49-H492	109.6
C18-C24-H242	110.4	C39-C49-H492	109.2
H241-C24-H242	110.3	H491-C49-H492	109.0
N19-C25-C26	111.43 (19)	C41-C50-H501	110.0
N19-C25-H251	109.4	C41-C50-H502	110.1
C26-C25-H251	109.1	H501-C50-H502	109.5
N19-C25-H252	108.4	C41-C50-H503	109.2
C26-C25-H252	108.3	H501-C50-H503	109.2
H251-C25-H252	110.2	H502-C50-H503	108.8
C25-C26-C16	107.9 (2)	C38-C51-C52	119.1 (2)
C25-C26-H262	110.1	C38-C51-H511	119.2
C16-C26-H262	109.7	C52-C51-H511	121.7
C25-C26-H261	110.0	C51-C52-C53	121.5 (2)
C16-C26-H261	109.6	C51-C52-H521	119.1
H262—C26—H261	109.6	C53-C52-H521	119.4
C18-C27-H272	109.2	C52-C53-C54	120.8 (2)
C18-C27-H271	109.4	C52-C53-H531	119.5
H272-C27-H271	109.7	C54-C53-H531	119.7
C18-C27-H273	109.3	C37-C54-C53	117.6 (2)
H272-C27-H273	109.5	C37-C54-H541	121.1
H271-C27-H273	109.8	C53-C54-H541	121.2

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D−H…A
C12—H121…O44 ⁱ	0.94	2.54	3.390 (4)	152

C23—H232…O44 ⁱⁱ	0.98	2.51	3.347 (4)	143
C35—H351…O21	0.96	2.55	3.430 (4)	152
C46—H461…O22 ⁱⁱⁱ	0.97	2.50	3.282 (4)	137

Symmetry codes: (i) *x*+1, *y*, *z*-1; (ii) *x*+1, *y*, *z*; (iii) *-x*+1, *y*-1/2, *-z*+1.

For both compounds, data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997). Program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) for (10b); *SIR92* (Altomare *et al.*, 1994) for (15a). For both compounds, program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

5.3. X-ray references

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

6. References

¹ P. Wipf, J. K. Jung. *J. Org. Chem.* **2000**, 65, 6319-6337

² R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan. *J. Am. Chem. Soc.* **2006**, 128, 84-86

³ K. Maruoka, T. Itoh, Y. Araki, T. Shirasaka, H. Yamamoto. Bull. Chem. Soc. Jpn. **1988**, 61, 2975-2976

⁴ M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J. Dixon. *J. Am. Chem. Soc.* **2009**, *131*, 31, 10796– 10797

⁵ M. E. Muratore, L. Shi , A. W. Pilling , R. I. Storer. D. J. Dixon. *Chem. Commun.* **2012**, Advance Article

⁶ F. Hadjaz, S. Besret, S. Yous, S. Dilly, N. Lebegue, P. Chavatte, P. Berthelot, P. Carato, F. Martin-Nizard, P. Duriez. *European Journal of Medicinal Chemistry*, **2011**, 46, 6, 2575-2585

⁷ T. Newhouse, C. A. Lewis, K. J. Eastman, P. S. Baran. *J. Am. Chem. Soc.* **2010**, 132, 20, 7119-7137

⁸ Two step reduction for the preparation of 5-cyano-tryptamine: M. Somel, M. Wakida, T. Ohta. *Chem. Pharm. Bull.* **1988**, 34, 3, 1162-1168.

⁹ Sulfonyl chloride formed following literature procedure: F. K. Cheung, A. M. Hayes, D. J. Morris, M. Wills. *Org. Biomol. Chem*, **2007**, *5*, 1093–1103

¹⁰ S. Chang, M. Lee, D. Y. Jung, E. J. Yoo, S. H. Cho, S. K. Han. *J. Am. Chem. Soc.* **2006**. 128, 38, 12366-12367

¹¹ Single crystal X-ray diffraction data were collected using a Nonius Kappa CCD diffractometer and data were reduced using Denzo-SMN.¹² The structures were solved with SIR92/SuperFlip¹³ and refined with CRYSTALS.¹⁴ The Flack x parameter¹⁵ refined to -0.007(8) and 0.010(4) for **10b** and **15a** respectively. For further information, see ESI (CIF); full crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC XXXXX-X, respectively. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

¹² Otwinowski, Z.; Minor, W. *Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol.* Carter, C.
W, Sweet, R. M, Eds.; Academic Press. **1997**, 276,

¹³a) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.; *J. Appl. Cryst.* 1994, 27, 435; b) Palatinus, L.; Chapuis, G. *J. Appl. Cryst.* 2007, 40, 786.

¹⁴a) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. *J. Appl. Cryst.* **2003**, 36, 1487; b) Cooper, R. I.; Thompson, A. L.; Watkin, D. J.; *J. Appl. Cryst.* **2010**, 43, 1100.

¹⁵ a) Flack, H. D. Acta Cryst. **1983**, A39, 876; b) Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. **2011**, 44, 1017.