APPENDIX S1. MODEL EQUATIONS AND PARAMETERS.

BIOCHEMICAL PART

Cell compartments

Param	Definition	Value	Reference
eter			
A _{cap}	Capacitive membrane area	$1.534 \times 10^{-4} \text{ cm}^2$	Bondarenko et al. [25]
V ^{cell}	Cell volume	38.00×10 ⁻⁶ μl	Bondarenko et al. [25]
V ^{cyt}	Cytosolic volume	25.84×10 ⁻⁶ μl	Bondarenko et al. [25]
V _{JSR}	Junctional SR volume	0.12×10 ⁻⁶ μl	Bondarenko et al. [25]
V _{NSR}	Network SR volume	2.098×10 ⁻⁶ μl	Bondarenko et al. [25]
V _{ss}	Subspace volume	1.485×10 ⁻⁹ μl	Bondarenko et al. [25]
V ^{cav}	Caveolar volume	0.02×V _{cell}	Heijman et al. [8]
Vecav	Extracaveolar volume	$0.04 \times V_{cell}$	Heijman et al. [8]

The protein P concentrations in the cell ([P]^{cell}), caveolae, extracaveolae, and cytosol

$$[P]^{cav} = f_p^{cav} \cdot [P]^{cell} \cdot \frac{V^{cell}}{V^{cav}}$$
(A.1)

$$[P]^{ecav} = f_{P}^{ecav} \cdot [P]^{cell} \cdot \frac{V^{cell}}{V^{ecav}}$$
(A.2)

$$[P]^{cyt} = (1 - f_P^{cav} - f_P^{ecav}) \cdot [P]^{cell} \cdot \frac{V^{cell}}{V^{cyt}}$$
(A.3)

β₁-adrenergic receptor module

Param	Definition	Value	Reference
eter			
[L]	Ligand concentration	0100 μΜ	
$[R_{\beta l}]_{tot}$	Total β_1 -adrenoceptor concentration	0.0103 µM	Hilal-Dandan et al. [29]
f_{a1}^{cav}	Fraction of β_1 -adrenoceptors located in	0.01	Rybin et al. [20]
βI	caveolae		Balijepali et al. [19]
f_{a1}^{ecav}	Fraction of β_1 -adrenoceptors located in	0.5	Rybin et al. [20]
βI	extracaveolae		Balijepali et al. [19]
f_{a1}^{cyt}	Fraction of β_1 -adrenoceptors located in cytosol	$f_{\alpha_1}^{cyt} = 1 - f_{\alpha_1}^{cav} - f_{\alpha_1}^{ecav}$	Rybin et al. [20]
ρ_1			Balijepali et al. [19]
$[G_s]_{tot}$	Total concentration of Gs protein	2.054 μM	Post et al. [41]
\mathbf{f}_{Gs}^{cav}	Fraction of G _s protein located in caveolae	0.4	Rybin et al. [20]
\mathbf{f}_{Gs}^{ecav}	Fraction of G _s protein located in extracaveolae	0.4	Rybin et al. [20]

\mathbf{f}_{Gs}^{cyt}	Fraction of G _s protein located in cytosol	$f_{Gs}^{cyt} = 1 - f_{Gs}^{cav} - f_{Gs}^{ecav}$	
$K_{\beta LL}$	Low affinity constant of β_1 -adrenoceptor for	0.567 uM	Heijman et al. [8]
<i>p</i> ,	isoproterenol		
$K_{\beta l,H}$	High affinity constant of β_1 -adrenoceptor for	0.0617 μM	Heijman et al. [8]
	Isoproterenol		
$K_{\beta I,C}$	Affinity constant of β_1 -adrenoceptor for G_s	2.86 µM	This paper
	protein		
k_{PKA+}	Rate of PKA phosphorylation of β_1 -	$0.00081 \ \mu M^{-1} \ s^{-1}$	Freedman et al. [32]
	adrenoceptor		
k _{PKA} -	Rate of PKA dephosphorylation of β_1 -	0.0002025 s ⁻¹	This paper
	adrenoceptor		
k_{GRK2+}	Rate of GRK2 phosphorylation of β_1 -	0.000243 s ⁻¹	This paper
	adrenoceptor		
k _{GRK2} -	Rate of GRK2 dephosphorylation of β_1 -	k _{PKA} -	This paper
	adrenoceptor		
k _{act1,Gs}	Activation rate for G _s by high affinity complex	4.9 s ⁻¹	Heijman et al. [8]
k _{act2,Gs}	Activation rate for G _s by low affinity complex	0.26 s ⁻¹	Heijman et al. [8]
k _{hyd,Gs}	Hydrolysis rate of G _{sa-GTP}	0.8 s ⁻¹	Saucerman et al. [10]
k _{reas,Gs}	Re-association rate for G _s	$1200 \ \mu M^{-1} \ s^{-1}$	Saucerman et al. [10]

Caveolae

$$[R_{\beta 1}]_{tot}^{cav} = \mathbf{f}_{\beta 1}^{cav} \cdot [R_{\beta 1}]_{tot} \cdot \frac{V_{cell}}{V_{cav}}$$
(A.4)

$$[G_s]^{cav}_{\alpha\beta\gamma} = \mathbf{f}^{cav}_{Gs} \cdot [G_s]_{tot} \cdot \frac{V_{cell}}{V_{cav}} - [G_s]^{cav}_{\alpha,GTP} - [G_s]^{cav}_{\alpha,GDP}$$
(A.5)

$$[R_{\beta 1}]_{np,tot}^{cav} = [R_{\beta 1}]_{tot}^{cav} - [R_{\beta 1}]_{PKA,tot}^{cav} - [R_{\beta 1}]_{GRK2,tot}^{cav}$$
(A.6)

$$a_{\beta 1}^{cav} = \frac{1}{K_{\beta 1,L}} \cdot \left(K_{\beta 1,L} + [L] \right) \cdot \left(K_{\beta 1,H} + [L] \right)$$
(A.7)

$$b_{\beta 1}^{cav} = [G_s]_{\alpha\beta\gamma}^{cav} \cdot \left(K_{\beta 1,H} + [L]\right) - [R_{\beta 1}]_{np,tot}^{cav} \cdot \left(K_{\beta 1,H} + [L]\right) + K_{\beta 1,C} \cdot K_{\beta 1,H} \left(1 + \frac{[L]}{K_{\beta 1,L}}\right)$$
(A.8)

$$c_{\beta 1}^{cav} = -[R_{\beta 1}]_{np,tot}^{cav} \cdot K_{\beta 1,C} \cdot K_{\beta 1,H}$$
(A.9)

$$[R_{\beta 1}]_{np,f}^{cav} = \frac{-b_{\beta 1}^{cav} + \sqrt{[b_{\beta 1}^{cav}]^2 - 4 \cdot a_{\beta 1}^{cav} \cdot c_{\beta 1}^{cav}}}{2 \cdot a_{\beta 1}^{cav}}$$
(A.10)

$$[G_{s}]_{f}^{cav} = \frac{[G_{s}]_{\alpha\beta\gamma}^{cav}}{1 + [R_{\beta1}]_{np,f}^{cav} \left(\frac{1}{K_{\beta1,C}} + \frac{[L]}{K_{\beta1,C} \cdot K_{\beta1,H}}\right)}$$
(A.11)

$$[LR_{\beta 1}]_{np}^{cav} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{cav}}{K_{\beta 1,L}}$$
(A.12)

$$[R_{\beta 1}G_s]_{np}^{cav} = \frac{[R_{\beta 1}]_{np,f}^{cav} \cdot [G_s]_f^{cav}}{K_{\beta 1,C}}$$
(A.13)

$$[LR_{\beta 1}G_{s}]_{np}^{cav} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{cav} \cdot [G_{s}]_{f}^{cav}}{K_{\beta 1,C} \cdot K_{\beta 1,H}}$$
(A.14)

$$\frac{d[R_{\beta 1}]_{PKA,tot}^{cav}}{dt} = k_{PKA+} \cdot [C]^{cav} \cdot [R_{\beta 1}]_{np,tot}^{cav} - k_{PKA-} \cdot [R_{\beta 1}]_{PKA,tot}^{cav}$$
(A.15)

$$\frac{d[R_{\beta 1}]_{GRK2,tot}^{cav}}{dt} = k_{GRK2+} \cdot \left([LR_{\beta 1}]_{np}^{cav} + [LR_{\beta 1}G_s]_{np}^{cav} \right) - k_{GRK2-} \cdot [R_{\beta 1}]_{GRK2,tot}^{cav}$$
(A.16)

$$\frac{d[G_s]_{\alpha,GTP}^{cav}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{cav} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{cav} - k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{cav}$$
(A.17)

$$\frac{d[G_s]_{\beta\gamma}^{cav}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{cav} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{cav} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{cav} \cdot [G_s]_{\alpha,GDP}^{cav}$$
(A.18)

$$\frac{d[G_s]_{\alpha,GDP}^{cav}}{dt} = k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{cav} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{cav} \cdot [G_s]_{\alpha,GDP}^{cav}$$
(A.19)

Extracaveolae

$$[R_{\beta 1}]_{tot}^{ecav} = \mathbf{f}_{\beta 1}^{ecav} \cdot [R_{\beta 1}]_{tot} \cdot \frac{V_{cell}}{V_{ecav}}$$
(A.20)

$$[G_s]^{ecav}_{\alpha\beta\gamma} = \mathbf{f}^{ecav}_{Gs} \cdot [G_s]_{tot} \cdot \frac{V_{cell}}{V_{ecav}} - [G_s]^{ecav}_{\alpha,GDP} - [G_s]^{ecav}_{\alpha,GDP}$$
(A.21)

$$[R_{\beta 1}]_{np,tot}^{ecav} = [R_{\beta 1}]_{tot}^{ecav} - [R_{\beta 1}]_{PKA,tot}^{ecav} - [R_{\beta 1}]_{GRK2,tot}^{ecav}$$
(A.22)

$$a_{\beta 1}^{ecav} = \frac{1}{K_{\beta 1,L}} \cdot \left(K_{\beta 1,L} + [L] \right) \cdot \left(K_{\beta 1,H} + [L] \right)$$
(A.23)

$$b_{\beta 1}^{ecav} = [G_s]_{\alpha\beta\gamma}^{ecav} \cdot \left(K_{\beta 1,H} + [L]\right) - [R_{\beta 1}]_{np,tot}^{ecav} \cdot \left(K_{\beta 1,H} + [L]\right) + K_{\beta 1,C} \cdot K_{\beta 1,H} \left(1 + \frac{[L]}{K_{\beta 1,L}}\right)$$
(A.24)

$$c_{\beta 1}^{ecav} = -[R_{\beta 1}]_{np,tot}^{ecav} \cdot K_{\beta 1,C} \cdot K_{\beta 1,H}$$
(A.25)

$$[R_{\beta 1}]_{np,f}^{ecav} = \frac{-b_{\beta 1}^{ecav} + \sqrt{[b_{\beta 1}^{ecav}]^2 - 4 \cdot a_{\beta 1}^{ecav} \cdot c_{\beta 1}^{ecav}}}{2 \cdot a_{\beta 1}^{ecav}}$$
(A.26)

$$[G_{s}]_{f}^{ecav} = \frac{[G_{s}]_{\alpha\beta\gamma}^{ecav}}{1 + [R_{\beta 1}]_{np,f}^{ecav} \left(\frac{1}{K_{\beta 1,C}} + \frac{[L]}{K_{\beta 1,C} \cdot K_{\beta 1,H}}\right)}$$
(A.27)

$$[LR_{\beta 1}]_{np}^{ecav} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{ecav}}{K_{\beta 1,L}}$$
(A.28)

$$[R_{\beta 1}G_{s}]_{np}^{ecav} = \frac{[R_{\beta 1}]_{np,f}^{ecav} \cdot [G_{s}]_{f}^{ecav}}{K_{\beta 1,C}}$$
(A.29)

$$[LR_{\beta 1}G_s]_{np}^{ecav} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{ecav} \cdot [G_s]_f^{ecav}}{K_{\beta 1,C} \cdot K_{\beta 1,H}}$$
(A.30)

$$\frac{d[R_{\beta 1}]_{PKA,tot}^{ecav}}{dt} = k_{PKA+} \cdot [C]^{ecav} \cdot [R_{\beta 1}]_{np,tot}^{ecav} - k_{PKA-} \cdot [R_{\beta 1}]_{PKA,tot}^{ecav}$$
(A.31)

$$\frac{d[R_{\beta 1}]_{GRK2,tot}^{ecav}}{dt} = k_{GRK2+} \cdot \left([LR_{\beta 1}]_{np}^{ecav} + [LR_{\beta 1}G_s]_{np}^{ecav} \right) - k_{GRK2-} \cdot [R_{\beta 1}]_{GRK2,tot}^{ecav}$$
(A.32)

$$\frac{d[G_s]_{\alpha,GTP}^{ecav}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{ecav} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{ecav} - k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{ecav}$$
(A.33)

$$\frac{d[G_s]_{\beta\gamma}^{ecav}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{ecav} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{ecav} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{ecav} \cdot [G_s]_{\alpha,GDP}^{ecav}$$
(A.34)

$$\frac{d[G_s]_{\alpha,GDP}^{ecav}}{dt} = k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{ecav} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{ecav} \cdot [G_s]_{\alpha,GDP}^{ecav}$$
(A.35)

Cytosol

$$[R_{\beta 1}]_{tot}^{cyt} = \mathbf{f}_{\beta 1}^{cyt} \cdot [R_{\beta 1}]_{tot} \cdot \frac{V_{cell}}{V_{cyt}}$$
(A.36)

$$[G_s]_{\alpha\beta\gamma}^{cyt} = \mathbf{f}_{Gs}^{cyt} \cdot [G_s]_{tot} \cdot \frac{V_{cell}}{V_{cyt}} - [G_s]_{\alpha,GTP}^{cyt} - [G_s]_{\alpha,GDP}^{cyt}$$
(A.37)

$$[R_{\beta 1}]_{np,tot}^{cyt} = [R_{\beta 1}]_{tot}^{cyt} - [R_{\beta 1}]_{PKA,tot}^{cyt} - [R_{\beta 1}]_{GRK2,tot}^{cyt}$$
(A.38)

$$a_{\beta 1}^{cyt} = \frac{1}{K_{\beta 1,L}} \cdot \left(K_{\beta 1,L} + [L] \right) \cdot \left(K_{\beta 1,H} + [L] \right)$$
(A.39)

$$b_{\beta 1}^{cyt} = [G_s]_{\alpha\beta\gamma}^{cyt} \cdot \left(K_{\beta 1,H} + [L]\right) - [R_{\beta 1}]_{np,tot}^{cyt} \cdot \left(K_{\beta 1,H} + [L]\right) + K_{\beta 1,C} \cdot K_{\beta 1,H} \left(1 + \frac{[L]}{K_{\beta 1,L}}\right)$$
(A.40)

$$c_{\beta 1}^{cyt} = -[R_{\beta 1}]_{np,tot}^{cyt} \cdot K_{\beta 1,C} \cdot K_{\beta 1,H}$$
(A.41)

$$[R_{\beta 1}]_{np,f}^{cyt} = \frac{-b_{\beta 1}^{cyt} + \sqrt{[b_{\beta 1}^{cyt}]^2 - 4 \cdot a_{\beta 1}^{cyt} \cdot c_{\beta 1}^{cyt}}}{2 \cdot a_{\beta 1}^{cyt}}$$
(A.42)

$$[G_{s}]_{f}^{cyt} = \frac{[G_{s}]_{\alpha\beta\gamma}^{cyt}}{1 + [R_{\beta1}]_{np,f}^{cyt} \left(\frac{1}{K_{\beta1,C}} + \frac{[L]}{K_{\beta1,C} \cdot K_{\beta1,H}}\right)}$$
(A.43)

$$[LR_{\beta 1}]_{np}^{cyt} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{cyt}}{K_{\beta 1,L}}$$
(A.44)

$$[R_{\beta 1}G_s]_{np}^{cyt} = \frac{[R_{\beta 1}]_{np,f}^{cyt} \cdot [G_s]_f^{cyt}}{K_{\beta 1,C}}$$
(A.45)

$$[LR_{\beta 1}G_{s}]_{np}^{cyt} = \frac{[L] \cdot [R_{\beta 1}]_{np,f}^{cyt} \cdot [G_{s}]_{f}^{cyt}}{K_{\beta 1,C} \cdot K_{\beta 1,H}}$$
(A.46)

$$\frac{d[R_{\beta 1}]_{PKA,tot}^{cyt}}{dt} = k_{PKA+} \cdot [C]^{cyt} \cdot [R_{\beta 1}]_{np,tot}^{cyt} - k_{PKA-} \cdot [R_{\beta 1}]_{PKA,tot}^{cyt}$$
(A.47)

$$\frac{d[R_{\beta 1}]_{GRK2,tot}^{cyt}}{dt} = k_{GRK2+} \cdot \left([LR_{\beta 1}]_{np}^{cyt} + [LR_{\beta 1}G_s]_{np}^{cyt} \right) - k_{GRK2-} \cdot [R_{\beta 1}]_{GRK2,tot}^{cyt}$$
(A.48)

$$\frac{d[G_s]_{\alpha,GTP}^{cyt}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{cyt} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{cyt} - k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{cyt}$$
(A.49)

$$\frac{d[G_s]_{\beta\gamma}^{cyt}}{dt} = k_{act2,Gs} \cdot [R_{\beta 1}G_s]_{np}^{cyt} + k_{act1,Gs} \cdot [LR_{\beta 1}G_s]_{np}^{cyt} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{cyt} \cdot [G_s]_{\alpha,GDP}^{cyt}$$
(A.50)

$$\frac{d[G_s]_{\alpha,GDP}^{cyt}}{dt} = k_{hyd,Gs} \cdot [G_s]_{\alpha,GTP}^{cyt} - k_{reas,Gs} \cdot [G_s]_{\beta\gamma}^{cyt} \cdot [G_s]_{\alpha,GDP}^{cyt}$$
(A.51)

Adenylyl cyclase module

Paramet	Definition	Value	Reference
er			
K _{m,ATP}	Adenylyl cyclase affinity for ATP	340 μM	This paper
[ATP]	ATP concentration	5000 μM	Heijman et al. [8]
$[AC]_{tot}$	Total cellular AC concentration	0.02622 μM	Post et al. [41]
$\mathbf{f}_{AC56,AC47}$	Fraction of AC that is of type 5 or 6	0.74	Heijman et al. [8]
\mathbf{f}_{AC56}^{cav}	Fraction of AC5/6 located in caveolae	0.0875	Heijman et al. [8]
\mathbf{f}_{AC47}^{ecav}	Fraction of AC4/7 located in extracaveolae space	0.1648	Heijman et al. [8]
$K^{AC56}_{m,Gslpha}$	AC5/6 affinity for $G_{s\alpha}$	0.0852 μM	Heijman et al. [8]
$h_{AC56,Gslpha}$	Hill coefficient for AC5/6 activation by $G_{s\alpha}$	1.357	Heijman et al. [8]
$V^{AC56}_{Geta\gamma}$	Maximum amplification of AC5/6 by $G_{s\beta\gamma}$	1.430	Gao et al. [39]
$K^{AC56}_{m,Gseta\gamma}$	Affinity constant for $G_{s\beta\gamma}$ modulation of AC5/6	0.003793 μM	Gao et al. [39]
$h_{AC56,Gs\beta\gamma}$	Hill coefficient for $G_{s\beta\gamma}$ modulation of AC5/6	1.0842	Gao et al. [39]
AC56 _{basal}	Basal AC5/6 activity	0.0377	Heijman et al. [8]
AF_{56}	Amplification factor for AC5/6	51.1335 s ⁻¹	This paper
$K^{AC47}_{m,Gslpha}$	AC4/7 affinity for $G_{s\alpha}$	0.05008 μΜ	Zimmermann and Taussig [40]
$h_{AC47,Gs\alpha}$	Hill coefficient for AC4/7 activation by $G_{s\alpha}$	1.1657	Zimmermann and Taussig [40]
$V^{AC47}_{Geta\gamma}$	Maximum amplification of AC4/7 by $G_{s\beta\gamma}$	1.3500	Zimmermann and Taussig [40]
$K^{AC47}_{m,Gs\beta\gamma}$	Affinity constant for $G_{s\beta\gamma}$ modulation of AC4/7	0.004466 µM	Zimmermann and Taussig [40]
$h_{AC47,Gs\beta\gamma}$	Hill coefficient for $G_{s\beta\gamma}$ modulation of AC4/7	0.8700	Zimmermann and Taussig [40]
AC47 _{basal}	Basal AC4/7 activity	0.04725	This paper
AF_{47}	Amplification factor for AC4/7	9.283 s ⁻¹	This paper

Caveolae

$$[AC56]^{cav} = \mathbf{f}_{AC56}^{cav} \cdot \mathbf{f}_{AC56,AC47} \cdot [AC]_{tot} \cdot \frac{V_{cell}}{V_{cav}}$$

$$k_{AC56}^{cav} = AF_{56} \cdot \left(AC56_{basal} + \frac{\left([G_s]_{\alpha,GTP}^{cav} \right)^{h_{AC56,Gs\alpha}}}{K_{m,Gs\alpha}^{AC56} + \left([G_s]_{\alpha,GTP}^{cav} \right)^{h_{AC56,Gs\alpha}}} \right) \cdot \left(1 + \frac{V_{G\beta\gamma}^{AC56} \cdot \left([G_s]_{\beta\gamma}^{cav} \right)^{h_{AC56,Gs\beta\gamma}}}{K_{m,Gs\beta\gamma}^{AC56} + \left([G_s]_{\beta\gamma}^{cav} \right)^{h_{AC56,Gs\beta\gamma}}} \right)$$
(A.52)
$$(A.52)$$

$$\frac{d[cAMP]_{AC56}^{cav}}{dt} = k_{AC56}^{cav} \cdot \frac{[AC56]^{cav} \cdot [ATP]}{K_{m,ATP} + [ATP]}$$
(A.54)

Extracaveolae

$$[AC47]^{ecav} = f_{AC47}^{ecav} \cdot (1 - f_{AC56, AC47}) \cdot [AC]_{tot} \cdot \frac{V_{cell}}{V_{ecav}}$$
(A.55)

$$k_{AC47}^{ecav} = AF_{47} \cdot \left(AC47_{basal} + \frac{\left([G_s]_{\alpha,GTP}^{ecav} \right)^{h_{AC47,Gs\alpha}}}{K_{m,Gs\alpha}^{AC47} + \left([G_s]_{\alpha,GTP}^{ecav} \right)^{h_{AC47,Gs\alpha}}} \right) \cdot \left(1 + \frac{V_{G\beta\gamma}^{AC47} \cdot \left([G_s]_{\beta\gamma}^{ecav} \right)^{h_{AC47,Gs\beta\gamma}}}{K_{m,Gs\beta\gamma}^{AC47} + \left([G_s]_{\beta\gamma}^{ecav} \right)^{h_{AC47,Gs\beta\gamma}}} \right)$$
(A.56)

$$\frac{d[cAMP]_{AC47}^{ecav}}{dt} = k_{AC47}^{ecav} \cdot \frac{[AC47]^{ecav} \cdot [ATP]}{K_{m,ATP} + [ATP]}$$
(A.57)

Cytosol

$$[AC56]^{cyt} = (1 - f_{AC56}^{cav}) \cdot f_{AC56, AC47} \cdot [AC]_{tot} \cdot \frac{V_{cell}}{V_{cyt}}$$
(A.58)

$$[AC47]^{cyt} = (1 - f_{AC47}^{ecav}) \cdot (1 - f_{AC56, AC47}) \cdot [AC]_{tot} \cdot \frac{V_{cell}}{V_{cyt}}$$
(A.59)

$$k_{AC56}^{cyt} = AF_{56} \cdot \left(AC56_{basal} + \frac{\left([G_s]_{\alpha,GTP}^{cyt} \right)^{h_{AC56,Gs\alpha}}}{K_{m,Gs\alpha}^{AC56} + \left([G_s]_{\alpha,GTP}^{cyt} \right)^{h_{AC56,Gs\alpha}}} \right) \cdot \left(1 + \frac{V_{G\beta\gamma}^{AC56} \cdot \left([G_s]_{\beta\gamma}^{cyt} \right)^{h_{AC56,Gs\beta\gamma}}}{K_{m,Gs\beta\gamma}^{AC56} + \left([G_s]_{\beta\gamma}^{cyt} \right)^{h_{AC56,Gs\beta\gamma}}} \right)$$
(A.60)

$$\frac{d[cAMP]_{AC56}^{cyt}}{dt} = k_{AC56}^{cyt} \cdot \frac{[AC56]^{cyt} \cdot [ATP]}{K_{m,ATP} + [ATP]}$$
(A.61)

$$k_{AC47}^{cyt} = AF_{47} \cdot \left(AC47_{basal} + \frac{\left([G_s]_{\alpha,GTP}^{cyt} \right)^{h_{AC47,Gs\alpha}}}{K_{m,Gs\alpha}^{AC47} + \left([G_s]_{\alpha,GTP}^{cyt} \right)^{h_{AC47,Gs\alpha}}} \right) \cdot \left(1 + \frac{V_{G\beta\gamma}^{AC47} \cdot \left([G_s]_{\beta\gamma}^{cyt} \right)^{h_{AC47,Gs\beta\gamma}}}{K_{m,Gs\beta\gamma}^{AC47} + \left([G_s]_{\beta\gamma}^{cyt} \right)^{h_{AC47,Gs\beta\gamma}}} \right)$$
(A.62)

$$\frac{d[cAMP]_{AC47}^{cyt}}{dt} = k_{AC47}^{cyt} \cdot \frac{[AC47]^{cyt} \cdot [ATP]}{K_{m,ATP} + [ATP]}$$
(A.63)

Phosphodiesterase module

Paramete	Definition	Value	Reference
r			
[IBMX]	Concentration of IBMX	0100 μΜ	
h _{IBMX,PDE2}	Hill coefficient for inhibition of PDE2 by IBMX	1.000	This paper
K_{PDE2}^{IBMX}	Affinity of IBMX for PDE2	29.50 μM	This paper
h _{IBMX,PDE3}	Hill coefficient for inhibition of PDE3 by IBMX	1.000	This paper
K ^{IBMX} _{PDE3}	Affinity of IBMX for PDE3	5.100 μM	This paper
<i>h_{IBMX,PDE4}</i>	Hill coefficient for inhibition of PDE4 by IBMX	1.000	This paper
K_{PDE4}^{IBMX}	Affinity of IBMX for PDE4	16.200 μM	This paper
k _{f,PDEp}	Rate of phosphorylation of PDE3/4 by PKA	$0.0196 \ \mu M^{-1} \ s^{-1}$	Heijman et al. [8]
k _{b,PDEp}	Rate of dephosphorylation of PDE3/4 by PKA	0.0102 s ⁻¹	Heijman et al. [8]
$\Delta_{k,PDE3/4}$	Increase in PDE3/4 activity after phosphorylation	3.0	Heijman et al. [8]
k _{PDE2}	Rate of cAMP hydrolysis by PDE2	20 s ⁻¹	Iancu et al. [14]
$K_{m,PDE2}$	Affinity of PDE2 for cAMP	33 µM	Bode et al. [45]
k _{PDE3}	Rate of cAMP hydrolysis by PDE3	2.5 s^{-1}	Heijman et al. [8]
$K_{m,PDE3}$	Affinity of PDE3 for cAMP	0.44 µM	Bode et al. [45]
k _{PDE4}	Rate of cAMP hydrolysis by PDE4	3.5 s^{-1}	This paper
$K_{m,PDE4}$	Affinity of PDE4 for cAMP	1.4 μM	This paper
$f_{PDE,part}$	Fraction of total PDE located in the particulate fraction	0.2	Osadchii [47]
r _{part,PDE2,PDE3}	Ratio of PDE2 and PDE3 activities in particulate fraction	0.570	Mongillo et al. [48]
r _{part,PDE3,PDE4}	Ratio of PDE3 and PDE4 activities in particulate fraction	0.748	Mongillo et al. [48]
[PDE2] _{tot}	Total cellular concentration of PDE2	0.034610 µM	This paper
[PDE3] _{tot}	Total cellular concentration of PDE3	0.010346 µM	This paper
[PDE4] _{tot}	Total cellular concentration of PDE4	0.026687 μM	This paper
f_{PDE2}^{cav}	Fraction of PDE2 located in caveolae	0.06608	This paper
\mathbf{f}_{PDE2}^{ecav}	Fraction of PDE2 located in extracaveolae	$2 \cdot f_{PDE2}^{cav}$	This paper
\mathbf{f}_{PDE2}^{cyt}	Fraction of PDE2 located in cytosol	$1 - \mathbf{f}_{PDE2}^{cav} - \mathbf{f}_{PDE2}^{ecav}$	This paper
f ^{cav} _{PDE3}	Fraction of PDE3 located in caveolae	0.29814	This paper
f ^{ecav} _{PDE3}	Fraction of PDE3 located in extracaveolae	0.0	This paper
f ^{cyt} _{PDE3}	Fraction of PDE3 located in cytosol	$1 - \mathbf{f}_{PDE3}^{cav} - \mathbf{f}_{PDE3}^{ecav}$	This paper
f ^{cav} _{PDE4}	Fraction of PDE4 located in caveolae	0.05366	This paper

\mathbf{f}_{PDE4}^{ecav}	Fraction of PDE4 located in extracaveolae	$2 \cdot \mathbf{f}_{PDE4}^{cav}$	This paper
\mathbf{f}_{PDE4}^{cyt}	Fraction of PDE4 located in cytosol	$1 - \mathbf{f}_{PDE4}^{cav} - \mathbf{f}_{PDE4}^{ecav}$	This paper

Caveolae

$$[PDE2]_{tot}^{cav} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE2}}}{K_{m,PDE2}^{IBMX} + [IBMX]^{h_{IBMX,PDE2}}}\right) \cdot \mathbf{f}_{PDE2}^{cav} \cdot [PDE2]_{tot} \cdot \frac{V^{cell}}{V^{cav}}$$
(A.64)

$$[PDE3]_{tot}^{cav} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE3}}}{K_{m,PDE3}^{IBMX} + [IBMX]^{h_{IBMX,PDE3}}}\right) \cdot f_{PDE3}^{cav} \cdot [PDE3]_{tot} \cdot \frac{V^{cell}}{V^{cav}}$$
(A.65)

$$[PDE4]_{tot}^{cav} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE4}}}{K_{m,PDE4}^{IBMX} + [IBMX]^{h_{IBMX,PDE4}}}\right) \cdot \mathbf{f}_{PDE4}^{cav} \cdot [PDE4]_{tot} \cdot \frac{V^{cell}}{V^{cav}}$$
(A.66)

$$\frac{d[PDE3]_p^{cav}}{dt} = k_{f,PDEp} \cdot [C]^{cav} \cdot ([PDE3]_{tot}^{cav} - [PDE3]_p^{cav}) - k_{b,PDEp} \cdot [PDE3]_p^{cav}$$
(A.67)

$$\frac{d[PDE4]_p^{cav}}{dt} = k_{f,PDEp} \cdot [C]^{cav} \cdot ([PDE4]_{tot}^{cav} - [PDE4]_p^{cav}) - k_{b,PDEp} \cdot [PDE4]_p^{cav}$$
(A.68)

$$\frac{d[cAMP]_{PDE2}^{cav}}{dt} = \frac{k_{PDE2} \cdot [PDE2]_{tot}^{cav} \cdot [cAMP]^{cav}}{K_{m,PDE2} + [cAMP]^{cav}}$$
(A.69)

$$\frac{d[cAMP]_{pDE3}^{cav}}{dt} = \frac{k_{pDE3} \cdot ([PDE3]_{tot}^{cav} - [PDE3]_{p}^{cav}) \cdot [cAMP]^{cav} + \Delta_{k,PDE3/4} \cdot k_{PDE3} \cdot [PDE3]_{p}^{cav} \cdot [cAMP]^{cav}}{K_{m,PDE3} + [cAMP]^{cav}}$$
(A.70)
$$\frac{d[cAMP]^{cav}}{dt} = \frac{k_{pDE3} \cdot ([PDE4]^{cav} - [PDE4]^{cav}) \cdot [cAMP]^{cav} + \Delta_{k,PDE3/4} \cdot k_{pDE3} \cdot [PDE4]^{cav} \cdot [cAMP]^{cav}}{([PDE4]^{cav} - [PDE4]^{cav}) \cdot [cAMP]^{cav}}$$

$$\frac{d[cAMP]_{PDE4}^{cav}}{dt} = \frac{k_{PDE4} \cdot ([PDE4]_{tot}^{cav} - [PDE4]_{p}^{cav}) \cdot [cAMP]^{cav} + \Delta_{k,PDE3/4} \cdot k_{PDE4} \cdot [PDE4]_{p}^{cav} \cdot [cAMP]^{cav}}{K_{m,PDE4} + [cAMP]^{cav}}$$
(A.71)

Extracaveolae

$$[PDE2]_{tot}^{ecav} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE2}}}{K_{m,PDE2}^{IBMX} + [IBMX]^{h_{IBMX,PDE2}}}\right) \cdot \mathbf{f}_{PDE2}^{ecav} \cdot [PDE2]_{tot} \cdot \frac{V^{cell}}{V^{ecav}}$$
(A.72)

$$[PDE4]_{tot}^{ecav} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE4}}}{K_{m,PDE4}^{IBMX} + [IBMX]^{h_{IBMX,PDE4}}}\right) \cdot \mathbf{f}_{PDE4}^{ecav} \cdot [PDE4]_{tot} \cdot \frac{V^{cell}}{V^{ecav}}$$
(A.73)

$$\frac{d[PDE4]_p^{ecav}}{dt} = k_{f,PDEp} \cdot [C]^{ecav} \cdot ([PDE4]_{tot}^{ecav} - [PDE4]_p^{ecav}) - k_{b,PDEp} \cdot [PDE4]_p^{ecav}$$
(A.74)

$$\frac{d[cAMP]_{PDE2}^{ecav}}{dt} = \frac{k_{PDE2} \cdot [PDE2]_{tot}^{ecav} \cdot [cAMP]^{ecav}}{K_{m,PDE2} + [cAMP]^{ecav}}$$
(A.75)

$$\frac{d[cAMP]_{PDE4}^{ecav}}{dt} = \frac{k_{PDE4} \cdot ([PDE4]_{tot}^{ecav} - [PDE4]_{p}^{ecav}) \cdot [cAMP]^{ecav} + \Delta_{k,PDE3/4} \cdot k_{PDE4} \cdot [PDE4]_{p}^{ecav} \cdot [cAMP]^{ecav}}{K_{m,PDE4} + [cAMP]^{ecav}}$$
(A.76)

Cytosol

$$[PDE2]_{tot}^{cyt} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE2}}}{K_{m,PDE2}^{IBMX} + [IBMX]^{h_{IBMX,PDE2}}}\right) \cdot f_{PDE2}^{cyt} \cdot [PDE2]_{tot} \cdot \frac{V^{cell}}{V^{cyt}}$$
(A.77)

$$[PDE3]_{tot}^{cyt} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE3}}}{K_{m,PDE3}^{IBMX} + [IBMX]^{h_{IBMX,PDE3}}}\right) \cdot \mathbf{f}_{PDE3}^{cyt} \cdot [PDE3]_{tot} \cdot \frac{V^{cell}}{V^{cyt}}$$
(A.78)

$$[PDE4]_{tot}^{cyt} = \left(1 - \frac{[IBMX]^{h_{IBMX,PDE4}}}{K_{m,PDE4}^{IBMX} + [IBMX]^{h_{IBMX,PDE4}}}\right) \cdot f_{PDE4}^{cyt} \cdot [PDE4]_{tot} \cdot \frac{V^{cell}}{V^{cyt}}$$
(A.79)

$$\frac{d[PDE3]_{p}^{cyt}}{dt} = k_{f,PDEp} \cdot [C]^{cyt} \cdot ([PDE3]_{tot}^{cyt} - [PDE3]_{p}^{cyt}) - k_{b,PDEp} \cdot [PDE3]_{p}^{cyt}$$
(A.80)

$$\frac{d[PDE4]_{p}^{cyt}}{dt} = k_{f,PDEp} \cdot [C]^{cyt} \cdot ([PDE4]_{tot}^{cyt} - [PDE4]_{p}^{cyt}) - k_{b,PDEp} \cdot [PDE4]_{p}^{cyt}$$
(A.81)

$$\frac{d[cAMP]_{PDE2}^{cyt}}{dt} = \frac{k_{PDE2} \cdot [PDE2]_{tot}^{cyt} \cdot [cAMP]^{cyt}}{K_{m,PDE2} + [cAMP]^{cyt}}$$
(A.82)

$$\frac{d[cAMP]_{PDE3}^{cyt}}{dt} = \frac{k_{PDE3} \cdot ([PDE3]_{tot}^{cyt} - [PDE3]_{p}^{cyt}) \cdot [cAMP]^{cyt} + \Delta_{k,PDE3/4} \cdot k_{PDE3} \cdot [PDE3]_{p}^{cyt} \cdot [cAMP]^{cyt}}{K_{m,PDE3} + [cAMP]^{cyt}}$$
(A.83)
$$\frac{d[cAMP]_{PDE4}^{cyt}}{dt} = \frac{k_{PDE4} \cdot ([PDE4]_{tot}^{cyt} - [PDE4]_{p}^{cyt}) \cdot [cAMP]^{cyt} + \Delta_{k,PDE3/4} \cdot k_{PDE4} \cdot [PDE4]_{p}^{cyt} \cdot [cAMP]^{cyt}}{K_{m,PDE4} + [cAMP]^{cyt}}$$
(A.84)

cAMP-PKA module

Paramet	Definition	Value	Reference
er			
$[PKA]_{tot}$	Total cellular concentration of PKA holoenzyme	0.5176 μM	Corbin et al., J Biol Chem 252: 3854-3861, 1977 [149]
$\mathbf{f}_{PK\!A}^{cav}$	Fraction of PKA located in caveolae	0.08	This paper
$\mathbf{f}_{PK\!A}^{ecav}$	Fraction of PKA located in extracaveolae	0.20	This paper
\mathbf{f}_{PKA}^{cyt}	Fraction of PKA located in cytosol	$1 - \mathbf{f}_{PKA}^{cav} - \mathbf{f}_{PKA}^{ecav}$	
$[PKI]_{tot}$	Total cellular concentration of PKA inhibitor	$2 \cdot 0.2 \cdot [PKA]_{tot}$	Beavo et al. [54]
\mathbf{f}_{PKI}^{cav}	Fraction of PKI located in caveolae	\mathbf{f}_{PKA}^{cav}	
\mathbf{f}_{PKI}^{ecav}	Fraction of PKI located in extracaveolae	\mathbf{f}_{PKA}^{ecav}	
\mathbf{f}_{PKI}^{cyt}	Fraction of PKI located in cytosol	\mathbf{f}_{PKA}^{cyt}	
$k_{PKAI,f1}$	Forward rate for binding of the first cAMP to PKA	$5.6 \ \mu M^{-1} \ s^{-1}$	This paper

$K_{PKAI,1}$	Equilibrium value for the binding of the first cAMP to PKA	2.9 μM	Dao et al. [55]
$k_{PKAI,f2}$	Forward rate for binding of the second cAMP to PKA	$k_{PKAI,f1}$	This paper
$K_{PKAI,2}$	Equilibrium value for binding of the second cAMP to PKA	2.9 μM	Dao et al. [55]
$k_{PKAI,f3}$	Forward rate for dissociation of C subunit	2.6 s ⁻¹	This paper
K _{PKAI,3}	Equilibrium value for dissociation of C subunit	1.3 μM	This paper
$k_{_{PKI,f}}$	Forward rate for inhibition of C subunit by PKI	$50 \ \mu M^{-1} \ s^{-1}$	Heijman et al. [8]
K _{PKI}	Equilibrium value for inhibition of C subunit by PKI	$2.6 \cdot 10^{-4} \mu\text{M}$	This paper
$k_{PKAII,f1}$	Forward rate for binding of the first cAMP to PKA	$k_{PKAI,f1}$	Heijman et al. [8]
K _{PKAII,1}	Equilibrium value for the binding of the first cAMP to PKA	2.5 μM	Heijman et al. [8]
k _{PKAII,f2}	Forward rate for binding of the second cAMP to PKA	k _{PKAI,f1}	Heijman et al. [8]
K _{PKAII,2}	Equilibrium value for binding of the second cAMP to PKA	2.5 μM	Heijman et al. [8]
k _{PKAII,f3}	Forward rate for dissociation of C subunit	k _{PKAI,f3}	This paper
K _{PKAII,3}	Equilibrium value for dissociation of C subunit	K _{PKAI,3}	This paper

Caveolae

$$[PKA]^{cav} = \mathbf{f}_{PKA}^{cav} \cdot [PKA]_{tot} \cdot \frac{V^{cell}}{V^{cav}}$$
(A.85)

$$[RC]_{f}^{cav} = 2 \cdot [PKA]^{cav} - [ARC]^{cav} - [A_2RC]^{cav} - [A_2R]^{cav}$$
(A.86)

$$[PKI]_{f}^{cav} = \mathbf{f}_{PKI}^{cav} \cdot [PKI]_{tot} \cdot \frac{V^{cell}}{V^{cav}} - [PKIC]^{cav}$$
(A.87)

$$k_{PKAII,b1} = k_{PKAII,f1} \cdot K_{PKAII,1}$$
(A.88)

$$k_{PKAII,b2} = k_{PKAII,f2} \cdot K_{PKAII,2} \tag{A.89}$$

$$k_{PKAII,b3} = k_{PKAII,f3} / K_{PKAII,3}$$
(A.90)

$$k_{PKI,b} = k_{PKI,f} \cdot K_{PKI} \tag{A.91}$$

$$\frac{d[cAMP]_{PKA}^{cav}}{dt} = -k_{PKAII,f1} \cdot [RC]_{f}^{cav} \cdot [cAMP]^{cav} + k_{PKAII,b1} \cdot [ARC]^{cav} - k_{PKAII,f2} \cdot [ARC]^{cav} \cdot [cAMP]^{cav} + k_{PKAII,b2} \cdot [A_2RC]^{cav} \cdot [cAMP]^{cav}$$
(A.92)

$$\frac{d[ARC]^{cav}}{dt} = k_{PKAII,f1} \cdot [RC]_{f}^{cav} \cdot [cAMP]^{cav} - k_{PKAII,b1} \cdot [ARC]^{cav} - k_{PKAII,f2} \cdot [ARC]^{cav} \cdot [cAMP]^{cav} + k_{PKAII,b2} \cdot [A_2RC]^{cav}$$
(A.93)

$$\frac{d[A_2RC]^{cav}}{dt} = k_{PKAII,f2} \cdot [ARC]^{cav} \cdot [cAMP]^{cav} - (k_{PKAII,b2} + k_{PKAII,f3}) \cdot [A_2RC]^{cav}$$

$$+k_{PKAII,b3} \cdot [A_2R]^{cav} \cdot [C]^{cav}$$
(A.94)

$$\frac{d[A_2R]^{cav}}{dt} = k_{PKAII,f3} \cdot [A_2RC]^{cav} - k_{PKAII,b3} \cdot [A_2R]^{cav} \cdot [C]^{cav}$$
(A.95)

$$\frac{d[C]^{cav}}{dt} = k_{PKAII,f3} \cdot [A_2RC]^{cav} - k_{PKAII,b3} \cdot [A_2R]^{cav} \cdot [C]^{cav} + k_{PKI,b} \cdot [PKIC]^{cav} - k_{PKI,f} \cdot [PKI]^{cav}_f \cdot [C]^{cav}$$
(A.96)
$$d[PKIC]^{cav}$$

$$\frac{d[PKIC]^{cav}}{dt} = -k_{PKI,b} \cdot [PKIC]^{cav} + k_{PKI,f} \cdot [PKI]_{f}^{cav} \cdot [C]^{cav}$$
(A.97)

Extracaveolae

$$[PKA]^{ecav} = \mathbf{f}_{PKA}^{ecav} \cdot [PKA]_{tot} \cdot \frac{V^{cell}}{V^{ecav}}$$
(A.98)

$$[RC]_{f}^{ecav} = 2 \cdot [PKA]^{ecav} - [ARC]^{ecav} - [A_{2}RC]^{ecav} - [A_{2}R]^{ecav}$$
(A.99)
$$U^{cell}$$

$$[PKI]_{f}^{ecav} = \mathbf{f}_{PKI}^{ecav} \cdot [PKI]_{tot} \cdot \frac{V^{ecav}}{V^{ecav}} - [PKIC]^{ecav}$$
(A.100)

$$k_{PKAII,b1} = k_{PKAII,f1} \cdot K_{PKAII,1}$$
(A.101)
$$k_{PKAII,b1} = k_{PKAII,f1} \cdot K_{PKAII,1}$$
(A.102)

$$k_{PKAII,b2} = k_{PKAII,f2} \cdot K_{PKAII,2}$$
(A.102)

$$k_{PKAII,b3} = k_{PKAII,f3} / K_{PKAII,3}$$
(A.103)

$$k_{PKI,b} = k_{PKI,f} \cdot K_{PKI} \tag{A.104}$$

$$\frac{d[cAMP]_{PKA}^{ecav}}{dt} = -k_{PKAII,f1} \cdot [RC]_{f}^{ecav} \cdot [cAMP]^{ecav} + k_{PKAII,b1} \cdot [ARC]^{ecav} - k_{PKAII,f2} \cdot [ARC]^{ecav} \cdot [cAMP]^{ecav} + k_{PKAII,b2} \cdot [A_{2}RC]^{ecav} \cdot [cAMP]^{ecav}$$
(A.105)

$$\frac{d[ARC]^{ecav}}{dt} = k_{PKAII,f1} \cdot [RC]_{f}^{ecav} \cdot [cAMP]^{ecav} - k_{PKAII,b1} \cdot [ARC]^{ecav} - k_{PKAII,f2} \cdot [ARC]^{ecav} \cdot [cAMP]^{ecav} + k_{PKAII,b2} \cdot [A_2RC]^{ecav} \quad (A.106)$$

$$\frac{d[A_2RC]^{ecav}}{dt} = k_{PKAII,f2} \cdot [ARC]^{ecav} \cdot [cAMP]^{ecav} - (k_{PKAII,b2} + k_{PKAII,f3}) \cdot [A_2RC]^{ecav}$$

$$+k_{PKAII,b3} \cdot [A_2R]^{ecav} \cdot [C]^{ecav}$$
(A.107)

$$\frac{d[A_2R]^{ecav}}{dt} = k_{PKAII,f3} \cdot [A_2RC]^{ecav} - k_{PKAII,b3} \cdot [A_2R]^{ecav} \cdot [C]^{ecav}$$
(A.108)

$$\frac{d[C]^{ecav}}{dt} = k_{PKAII,f3} \cdot [A_2RC]^{ecav} - k_{PKAII,b3} \cdot [A_2R]^{ecav} \cdot [C]^{ecav} + k_{PKI,b} \cdot [PKIC]^{ecav} - k_{PKI,f} \cdot [PKI]_f^{ecav} \cdot [C]^{ecav} (A.109)$$

$$\frac{d[PKIC]^{ecav}}{dt} = -k_{PKI,b} \cdot [PKIC]^{ecav} + k_{PKI,f} \cdot [PKI]_f^{ecav} \cdot [C]^{ecav} (A.110)$$

Cytosol

$$[PKA]^{cyt} = \mathbf{f}_{PKA}^{cyt} \cdot [PKA]_{tot} \cdot \frac{V^{cell}}{V^{cyt}}$$
(A.111)

$$[RC]_{f}^{cyt} = 2 \cdot [PKA]^{cyt} - [ARC]^{cyt} - [A_2RC]^{cyt} - [A_2R]^{cyt}$$
(A.112)

$$[PKI]_{f}^{cyt} = \mathbf{f}_{PKI}^{cyt} \cdot [PKI]_{tot} \cdot \frac{V^{cell}}{V^{cyt}} - [PKIC]^{cyt}$$
(A.113)

$$k_{PKAI,b1} = k_{PKAI,f1} \cdot K_{PKAI,1} \tag{A.114}$$

$$k_{PKAI,b2} = k_{PKAI,f2} \cdot K_{PKAI,2} \tag{A.115}$$

$$k_{PKAI,b3} = k_{PKAI,f3} / K_{PKAI,3}$$
(A.116)

$$k_{PKI,b} = k_{PKI,f} \cdot K_{PKI} \tag{A.117}$$

$$\frac{d[cAMP]_{PKA}^{cyt}}{dt} = -k_{PKAI,f1} \cdot [RC]_{f}^{cyt} \cdot [cAMP]^{cyt} + k_{PKAI,b1} \cdot [ARC]^{cyt} - k_{PKAI,f2} \cdot [ARC]^{cyt} \cdot [cAMP]^{cyt}$$

$$+k_{PKAI,b2} \cdot [A_2RC]^{cyt}$$
(A.118)
$$d[ABC]^{cyt}$$

$$\frac{d[ARC]^{cyt}}{dt} = k_{PKAI,f1} \cdot [RC]_{f}^{cyt} \cdot [cAMP]^{cyt} - k_{PKAI,b1} \cdot [ARC]^{cyt} - k_{PKAI,f2} \cdot [ARC]^{cyt} \cdot [cAMP]^{cyt} + k_{PKAI,b2} \cdot [A_2RC]^{cyt}$$
(A.119)

$$\frac{d[A_2RC]^{cyt}}{dt} = k_{PKAI,f2} \cdot [ARC]^{cyt} \cdot [cAMP]^{cyt} - (k_{PKAI,b2} + k_{PKAI,f3}) \cdot [A_2RC]^{cyt} + k_{PKAI,b3} \cdot [A_2R]^{cyt} \cdot [C]^{cyt} \quad (A.120)$$

$$\frac{d[A_2R]^{cyt}}{dt} = k_{PKAI,f3} \cdot [A_2RC]^{cyt} - k_{PKAI,b3} \cdot [A_2R]^{cyt} \cdot [C]^{cyt}$$
(A.121)

$$\frac{d[C]^{cyt}}{dt} = k_{PKAI,f3} \cdot [A_2RC]^{cyt} - k_{PKAI,b3} \cdot [A_2R]^{cyt} \cdot [C]^{cyt} + k_{PKI,b} \cdot [PKIC]^{cyt} - k_{PKI,f} \cdot [PKI]^{cyt}_f \cdot [C]^{cyt}$$
(A.122)
$$d[PKIC]^{cyt}$$

$$\frac{d[PKIC]^{cyt}}{dt} = -k_{PKI,b} \cdot [PKIC]^{cyt} + k_{PKI,f} \cdot [PKI]_f^{cyt} \cdot [C]^{cyt}$$
(A.123)

Parameter	Definition	Value	Reference
$[PP1]_{tot}^{cyt}$	Total concentration of PP1 in the cytosolic compartment	0.2 μΜ	Heijman et al. [8]
$[PP2A]^{cyt}$	Cytosolic concentration of PP2A	0.0607843 μM	This paper
$[PP1]^{cav}$	Concentration of PP1 in the caveolae compartment	0.1 µM	This paper
$[PP2A]^{cav}$	Concentration of PP2A in the caveolae compartment	0.1 μΜ	This paper
$[PP]^{cav}$	Total phosphatase concentration in caveolae compartment $[PP1]^{cav} + [PP2A]^{cav}$	0.2 μΜ	This paper
$[PP1]^{ecav}$	Concentration of PP1 in the extracaveolae compartment	0.1 μΜ	Heijman et al. [8]
$[Inhib1]_{tot}^{cyt}$	Total concentration of inhibitor 1 in the cytosolic compartment	0.08543 μM	El-Armouche et al. [65]
Kinhib1	Affinity for PP1 – Inhibitor 1 binding	1.0·10 ⁻³ μM	Saucerman et al. [10]
kpka_Inhib1	Rate of phosphorylation of inhibitor 1 by PKA	$1080.0 \ \mu M^{-1} \ s^{-1}$	This paper
K_{mPKA_Inhib1}	Affinity of inhibitor 1 for PKA catalytic subunit	1.5 μΜ	This paper
k_{PP2A_Inhib1}	Rate of dephosphorylation of inhibitor 1	$50.67 \ \mu M^{-1} \ s^{-1}$	This paper
KmPP2A_Inhib1	Affinity for PP2A – Inhibitor 1 binding	$1.0 \cdot 10^{-3} \mu M$	This paper

Protein phosphatases and inhibitor-1 module

$$[Inhib1]_{f}^{cyt} = [Inhib1]_{tot}^{cyt} - [Inhib1]_{p,tot}^{cyt}$$
(A.124)

$$a_{Inhib1} = 1.0$$
(A.125)

$$b_{Inhib1} = K_{Inhib1} + [PP1]_{tot}^{cyt} - [Inhib1]_{p,tot}^{cyt}$$
(A.126)

$$c_{Inhib1} = -[Inhib1]_{p,tot}^{cyt} \cdot K_{Inhib1}$$
(A.127)

$$[Inhib1]_{p}^{cyt} = \frac{-b_{Inhib1} + \sqrt{[b_{Inhib1}]^{2} - 4 \cdot a_{Inhib1} \cdot c_{Inhib1}}}{2 \cdot a_{Inhib1}}$$
(A.128)

$$[PP1]_{f}^{cyt} = \frac{[PP1]_{tot}^{cyt} \cdot K_{Inhib1}}{K_{Inhib1} + [Inhib1]_{p}^{cyt}}$$
(A.129)

$$\frac{d[Inhib1]_{p,tot}^{cyt}}{dt} = \frac{k_{PKA_Inhib1} \cdot [C]^{cyt} \cdot [Inhib1]_{f}^{cyt}}{K_{mPKA_Inhib1} + [Inhib1]_{f}^{cyt}} - \frac{k_{PP2A_Inhib1} \cdot [PP2A]^{cyt} \cdot [Inhib1]_{p,tot}^{cyt}}{K_{mPP2A_Inhib1} + [Inhib1]_{p,tot}^{cyt}}$$
(A.130)

cAMP fluxes

Paramet	Definition	Value	Reference
er			
$J_{am/aam}$	Rate of cAMP diffusion between caveolae	$5.000 \cdot 10^{-9} \ \mu L \ s^{-1}$	Iancu et al. [14]
cav/ecav	and extracaveolae compartments		
J	Rate of cAMP diffusion between caveolae	7.500 · 10 ^{−8} μL s ^{−1}	Iancu et al. [14]
- cav/cyt	and cytosolic compartments		
J	Rate of cAMP diffusion between	$9.000 \cdot 10^{-9} \mu\text{L s}^{-1}$	Iancu et al. [14]
ecav/cyt	extracaveolae and cytosolic compartments		

$$\frac{d[cAMP]^{cav}}{dt} = \frac{d[cAMP]^{cav}}{dt} + \frac{d[cAMP]^{cav}_{AC56}}{dt} - \frac{d[cAMP]^{cav}_{PDE2}}{dt} - \frac{d[cAMP]^{cav}_{PDE3}}{dt} - \frac{d[cAMP]^{cav}_{PDE4}}{dt}$$
$$-J_{cav/ecav} \cdot \frac{[cAMP]^{cav} - [cAMP]^{ecav}}{V_{cav}} - J_{cav/cyt} \cdot \frac{[cAMP]^{cav} - [cAMP]^{cyt}}{V_{cav}}$$
(A.131)

$$\frac{d[cAMP]^{ecav}}{dt} = \frac{d[cAMP]^{ecav}_{PKA}}{dt} + \frac{d[cAMP]^{ecav}_{AC47}}{dt} - \frac{d[cAMP]^{ecav}_{PDE2}}{dt} - \frac{d[cAMP]^{ecav}_{PDE4}}{dt} - J_{cav/ecav} \cdot \frac{[cAMP]^{ecav} - [cAMP]^{cav}}{V_{ecav}} - J_{ecav/cyt} \cdot \frac{[cAMP]^{ecav} - [cAMP]^{cyt}}{V_{ecav}}$$
(A.132)

$$\frac{d[cAMP]^{cyt}}{dt} = \frac{d[cAMP]^{cyt}_{PKA}}{dt} + \frac{d[cAMP]^{cyt}_{AC56}}{dt} + \frac{d[cAMP]^{cyt}_{AC47}}{dt} - \frac{d[cAMP]^{cyt}_{PDE2}}{dt} - \frac{d[cAMP]^{cyt}_{PDE3}}{dt} - \frac{d[cAMP]^{cyt}_{PDE4}}{dt} - \frac{d[cAMP]^{c$$

ELECTROPHYSIOLOGICAL PART. PKA SUBSTRATES

L-type Ca²⁺ current module

Paramet	Definition	Value	Reference
er			
$[I_{CaL}]_{tot}$	Total cellular concentration of the L-type Ca ²⁺ channels	0.0273 μM	Chu et al. [71] Bers and Stiffel [72]
$\mathbf{f}_{\mathit{ICaL}}^{\mathit{cav}}$	Fraction of the L-type Ca ²⁺ channels located in caveolae	0.2	Scriven et al. [21]
$\mathbf{f}_{\mathit{ICaL}}^{\mathit{ecav}}$	Fraction of the L-type Ca ²⁺ channels located in extracaveolae	$1 - f_{ICaL}^{cav}$	Scriven et al. [21]
G_{CaL}	Specific maximum conductivity for L-type Ca ²⁺ channel (non-phosphorylated)	0.3772 mS/µF	This paper
G_{CaLp}	Specific maximum conductivity for L-type Ca ²⁺ channel (phosphorylated)	0.7875 mS/µF	This paper
E _{CaL}	Reversal potential for L-type Ca ²⁺ channel	52.0 mV	Petkova-Kirova et al. [26]
K _{pc,max}	Maximum rate constant for Ca ²⁺ -induced inactivation	233.24 s ⁻¹	This paper
$K_{pc,half}$	Half-saturation constant for Ca ²⁺ -induced inactivation	10.0 µM	This paper
K _{pcf}	Forward voltage-insensitive rate constant for inactivation	40,000 s ⁻¹	This paper
K _{pcb}	Backward voltage-insensitive rate constant for inactivation	2.4 s ⁻¹	This paper
k _{co}	Forward voltage-insensitive rate constant for activation (non-phosphorylated)	1,000 s ⁻¹	This paper
k _{cop}	Forward voltage-insensitive rate constant for activation (phosphorylated)	4,000 s ⁻¹	This paper
k _{oc}	Backward voltage-insensitive rate constant for activation	1,000 s ⁻¹	This paper
I _{CaL,max}	Normalization constant for L-type Ca ²⁺ current	7.0 pA/pF	Bondarenko et al. [25]
k _{ICaL_PKA}	Phosphorylation rate of the L-type Ca ²⁺ channel by PKA	$1.74 \cdot 10^{-2} \mathrm{s}^{-1}$	This paper
k _{ICaL_PP}	Dephosphorylation rate of the L-type Ca ²⁺ channel by PP1 and PP2A	$2.325 \cdot 10^{-4} \mathrm{s}^{-1}$	This paper
K _{ICaL_PKA}	Affinity of the L-type Ca ²⁺ channel for PKA	0.5 μΜ	This paper
$K_{ICaL_{PP}}$	Affinity of the L-type Ca ²⁺ channel for PP1 and PP2A	0.2 μΜ	This paper

$$I_{CaL} = I_{ICaL}^{cav} + I_{ICaL}^{ecav}$$

 $\alpha = 0.4e^{(V+15.0)/15.0}$

$$\alpha_p = 0.4 e^{(V+15.0+20.0)/15.0}$$

(A.134)

(A.135)

(A.136)

(A.137)

$$\beta = 0.13e^{-(V+15.0)/18.0}$$

Caveolae

$$[I_{CaL}]_{tot}^{cav} = \mathbf{f}_{ICaL}^{cav} [I_{CaL}]_{tot} \frac{V_{cell}}{V_{cav}}$$
(A.138)

$$I_{CaL}^{cav} = \mathbf{f}_{ICaL}^{cav} \cdot (G_{CaL} \cdot O^{cav} + G_{CaLp} \cdot O_p^{cav})(V - E_{CaL})$$
(A.139)

$$\gamma^{cav} = \frac{K_{pc,\max}[Ca^{2+}]_i}{K_{pc,half} + [Ca^{2+}]_i}$$
(A.140)

$$\frac{dO^{cav}}{dt} = k_{co}C_{P}^{cav} - k_{oc}O^{cav} + K_{pcb}I_{1}^{cav} - \gamma^{cav}O^{cav} + 0.001(\alpha I_{2}^{cav} - K_{pcf}O^{cav})
- \frac{k_{ICaL_{PKA}}[C]^{cav}O^{cav}}{K_{ICaL_{PKA}} + [I_{CaL}]_{tot}^{cav}O^{cav}} + \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_{PP}}[PP]^{cav}O_{p}^{cav}}{K_{ICaL_{PP}} + [I_{CaL}]_{tot}^{cav}O_{p}^{cav}}$$
(A.141)

$$C_{1}^{cav} = 1 - (O^{cav} + C_{2}^{cav} + C_{3}^{cav} + C_{4}^{cav} + C_{p}^{cav} + I_{1}^{cav} + I_{2}^{cav} + I_{3}^{cav} + O_{p}^{cav} + C_{1p}^{cav} + C_{2p}^{cav} + C_{3p}^{cav} + C_{pp}^{cav} + I_{1p}^{cav} + I_{2p}^{cav} + I_{3p}^{cav})$$
(A.142)

$$\frac{dC_{2}^{cav}}{dt} = 4\alpha C_{1}^{cav} - \beta C_{2}^{cav} + 2\beta C_{3}^{cav} - 3\alpha C_{2}^{cav}$$

$$-\frac{k_{ICaL_PKA} [C]^{cav} C_{2}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav} C_{2}^{cav}} + \frac{\alpha_{p}^{2} k_{cop}}{\alpha^{2} k_{co}} \frac{k_{ICaL_PP} [PP]^{cav} C_{2p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav} C_{2p}^{cav}}$$
(A.143)

$$\frac{dC_{3}^{cav}}{dt} = 3\alpha C_{2}^{cav} - 2\beta C_{3}^{cav} + 3\beta C_{4}^{cav} - 2\alpha C_{3}^{cav} - \frac{k_{ICaL_PKA}[C]^{cav} C_{3}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav} C_{3}^{cav}} + \frac{\alpha_{p}k_{cop}}{\alpha k_{co}} \frac{k_{ICaL_PP}[PP]^{cav} C_{3p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav} C_{3p}^{cav}}$$
(A.144)

$$\frac{dC_{4}^{cav}}{dt} = 2\alpha C_{3}^{cav} - 3\beta C_{4}^{cav} + 4\beta C_{P}^{cav} - \alpha C_{4}^{cav} + 0.01(4K_{pcb}\beta I_{1}^{cav} - \frac{k_{co}}{k_{oc}}\alpha\gamma^{cav}C_{4}^{cav})
+ 0.002(4\beta I_{2}^{cav} - \frac{k_{co}}{k_{oc}}K_{pcf}C_{4}^{cav}) + 4\beta K_{pcb}I_{3}^{cav} - \frac{k_{co}}{k_{oc}}\gamma^{cav}K_{pcf}C_{4}^{cav}
- \frac{k_{ICaL_{PKA}}[C]^{cav}C_{4}^{cav}}{K_{ICaL_{PKA}} + [I_{CaL}]^{cav}C_{4}^{cav}} + \frac{k_{cop}}{k_{co}}\frac{k_{ICaL_{PP}}[PP]^{cav}C_{4p}^{cav}}{K_{ICaL_{PP}} + [I_{CaL}]^{cav}C_{4p}^{cav}}$$
(A.145)

$$\frac{dC_{P}^{cav}}{dt} = \alpha C_{4}^{cav} - 4\beta C_{P}^{cav} + k_{oc} O^{cav} - k_{co} C_{P}^{cav} - \frac{k_{ICaL_PKA} [C]^{cav} C_{P}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav} C_{P}^{cav}} + \frac{\alpha k_{cop}}{\alpha_{p} k_{co}} \frac{k_{ICaL_PP} [PP]^{cav} C_{Pp}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav} C_{Pp}^{cav}}$$
(A.146)

$$\frac{dI_{1}^{cav}}{dt} = \gamma^{cav}O^{cav} - K_{pcb}I_{1}^{cav} + 0.001(\alpha I_{3}^{cav} - K_{pcf}I_{1}^{cav}) + 0.01(\frac{k_{co}}{k_{oc}}\alpha\gamma^{cav}C_{4}^{cav} - 4\beta K_{pcb}I_{1}^{cav}) - \frac{k_{ICaL_PKA}[C]^{cav}I_{1}^{cav}}{K_{ICaL_PKA} + [I_{caL}]_{tot}^{cav}I_{1}^{cav}} + \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP]^{cav}I_{1p}^{cav}}{K_{ICaL_PP} + [I_{caL}]_{tot}^{cav}I_{1p}^{cav}}$$
(A.147)

$$\frac{dI_{2}^{cav}}{dt} = 0.001(K_{pcf}O^{cav} - \alpha I_{2}^{cav}) + K_{pcb}I_{3}^{cav} - \gamma^{cav}I_{2}^{cav} + 0.002(\frac{k_{co}}{k_{oc}}K_{pcf}C_{4}^{cav} - 4\beta I_{2}^{cav}) \\
- \frac{k_{ICaL_PKA}[C]^{cav}I_{2}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav}I_{2}^{cav}} + \frac{k_{ICaL_PP}[PP]^{cav}I_{2p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav}I_{2p}^{cav}} \tag{A.148}$$

$$\frac{dI_{3}^{cav}}{dt} = 0.001(K_{pcf}I_{1}^{cav} - \alpha I_{3}^{cav}) + \gamma^{cav}I_{2}^{cav} - K_{pcb}I_{3}^{cav} + \frac{k_{co}}{k_{oc}}\gamma^{cav}K_{pcf}C_{4}^{cav} - 4\beta K_{pcb}I_{3}^{cav} - \frac{k_{ICaL_PKA}[C]^{cav}I_{3}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav}I_{3}^{cav}} + \frac{k_{ICaL_PP}[PP]^{cav}I_{3p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav}I_{3p}^{cav}} \tag{A.149}$$

$$\frac{dO_{p}^{cav}}{dt} = k_{cop}C_{Pp}^{cav} - k_{oc}O_{p}^{cav} + K_{pcb}I_{1p}^{cav} - \gamma^{cav}O_{p}^{cav} + 0.001(\alpha_{p}I_{2p}^{cav} - K_{pcf}O_{p}^{cav})
+ \frac{k_{ICaL_{PKA}}[C]^{cav}O^{cav}}{K_{ICaL_{PKA}} + [I_{CaL}]_{tot}^{cav}O^{cav}} - \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_{PP}}[PP]^{cav}O_{p}^{cav}}{K_{ICaL_{PP}} + [I_{CaL}]_{tot}^{cav}O_{p}^{cav}}$$
(A.150)

$$\frac{dC_{1p}^{cav}}{dt} = \beta C_{2p}^{cav} - 4\alpha_p C_{1p}^{cav} + \frac{k_{ICaL_PKA} [C]^{cav} C_1^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav} C_1^{cav}} - \frac{\alpha_p^3 k_{cop}}{\alpha^3 k_{co}} \frac{k_{ICaL_PP} [PP]^{cav} C_{1p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav} C_{1p}^{cav}}$$
(A.151)

$$\frac{dC_{2p}^{cav}}{dt} = 4\alpha_p C_{1p}^{cav} - \beta C_{2p}^{cav} + 2\beta C_{3p}^{cav} - 3\alpha_p C_{2p}^{cav} + \frac{k_{ICaL_PKA}[C]^{cav} C_2^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav} C_2^{cav}} - \frac{\alpha_p^2 k_{cop}}{\alpha^2 k_{co}} \frac{k_{ICaL_PP}[PP]^{cav} C_{2p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav} C_{2p}^{cav}}$$
(A.152)

$$\frac{dC_{3p}^{cav}}{dt} = 3\alpha_p C_{2p}^{cav} - 2\beta C_{3p}^{cav} + 3\beta C_{4p}^{cav} - 2\alpha_p C_{3p}^{cav} + \frac{k_{ICaL_PKA}[C]^{cav} C_3^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav} C_3^{cav}} - \frac{\alpha_p k_{cop}}{\alpha k_{co}} \frac{k_{ICaL_PP}[PP]^{cav} C_{3p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav} C_{3p}^{cav}}$$
(A.153)

$$\frac{dC_{4p}^{cav}}{dt} = 2\alpha_{p}C_{3p}^{cav} - 3\beta C_{4p}^{cav} + 4\beta C_{pp}^{cav} - \alpha_{p}C_{4p}^{cav} + 0.01(4K_{pcb}\beta I_{1p}^{cav} - \frac{k_{cop}}{k_{oc}}\alpha\gamma^{cav}C_{4p}^{cav})
+ 0.002(4\beta I_{2p}^{cav} - \frac{k_{cop}}{k_{oc}}K_{pcf}C_{4p}^{cav}) + 4\beta K_{pcb}I_{3p}^{cav} - \frac{k_{cop}}{k_{oc}}\gamma^{cav}K_{pcf}C_{4p}^{cav}
+ \frac{k_{ICaL_{PKA}}[C]^{cav}C_{4}^{cav}}{K_{ICaL_{PKA}} + [I_{CaL}]_{tot}^{cav}C_{4}^{cav}} - \frac{k_{cop}}{k_{co}}\frac{k_{ICaL_{PP}}[PP]^{cav}C_{4p}^{cav}}{K_{ICaL_{PP}} + [I_{CaL}]_{tot}^{cav}C_{4p}^{cav}}$$
(A.154)

$$\frac{dC_{Pp}^{cav}}{dt} = \alpha_p C_{4p}^{cav} - 4\beta C_{Pp}^{cav} + k_{oc} O_p^{cav} - k_{cop} C_{Pp}^{cav}
+ \frac{k_{ICaL_PKA} [C]^{cav} C_P^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav} C_P^{cav}} - \frac{\alpha k_{cop}}{\alpha_p k_{co}} \frac{k_{ICaL_PP} [PP]^{cav} C_{Pp}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav} C_{Pp}^{cav}}$$
(A.155)

$$\frac{dI_{1p}^{cav}}{dt} = \gamma^{cav}O_{p}^{cav} - K_{pcb}I_{1p}^{cav} + 0.001(\alpha_{p}I_{3p}^{cav} - K_{pcf}I_{1p}^{cav}) + 0.01(\frac{k_{cop}}{k_{oc}}\alpha_{p}\gamma^{cav}C_{4p}^{cav} - 4\beta K_{pcb}I_{1p}^{cav}) \\
+ \frac{k_{ICaL_PKA}[C]^{cav}I_{1}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav}I_{1}^{cav}} - \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP]^{cav}I_{1p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav}I_{1p}^{cav}} \tag{A.156}$$

$$\frac{dI_{2p}^{cav}}{dt} = 0.001(K_{pcf}O_{p}^{cav} - \alpha_{p}I_{2p}^{cav}) + K_{pcb}I_{3p}^{cav} - \gamma^{cav}I_{2p}^{cav} + 0.002(\frac{k_{cop}}{k_{oc}}K_{pcf}C_{4p}^{cav} - 4\beta I_{2p}^{cav}) \\
+ \frac{k_{ICaL_PKA}[C]^{cav}I_{2}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{cav}I_{2}^{cav}} - \frac{k_{ICaL_PP}[PP]^{cav}I_{2p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{cav}I_{2p}^{cav}} \tag{A.157}$$

$$\frac{dI_{3p}^{cav}}{dt} = 0.001(K_{pcf}I_{1p}^{cav} - \alpha_{p}I_{3p}^{cav}) + \gamma^{cav}I_{2p}^{cav} - K_{pcb}I_{3p}^{cav} + \frac{k_{cop}}{k_{oc}}\gamma^{cav}K_{pcf}C_{4p}^{cav} - 4\beta K_{pcb}I_{3p}^{cav} + \frac{k_{ICaL_PKA}[C]^{cav}I_{3p}^{cav}}{K_{ICaL_PKA} + [I_{CaL}]^{cav}I_{30}^{cav}} - \frac{k_{ICaL_PP}[PP]^{cav}I_{3p}^{cav}}{K_{ICaL_PP} + [I_{CaL}]^{cav}I_{3p}^{cav}} \tag{A.158}$$

Extracaveolae

$$[I_{CaL}]_{tot}^{ecav} = \mathbf{f}_{ICaL}^{ecav} [I_{CaL}]_{tot} \frac{V_{cell}}{V_{ecav}}$$
(A.159)

$$I_{CaL}^{ecav} = \mathbf{f}_{ICaL}^{ecav} \cdot (G_{CaL} \cdot O^{ecav} + G_{CaLp} \cdot O_{p}^{ecav})(V - E_{CaL})$$
(A.160)

$$\gamma^{ecav} = \frac{K_{pc,max} [Ca^{2+}]_{ss}}{K_{pc,half} + [Ca^{2+}]_{ss}}$$
(A.161)

$$\frac{dO^{ecav}}{dt} = k_{co}C_{P}^{ecav} - k_{oc}O^{ecav} + K_{pcb}I_{1}^{ecav} - \gamma^{ecav}O^{ecav} + 0.001(\alpha I_{2}^{ecav} - K_{pcf}O^{ecav})$$
$$-\frac{k_{ICaL_PKA}[C]^{ecav}O^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}O^{ecav}} + \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP1]^{ecav}O_{p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}O_{p}^{ecav}}$$
(A.162)

$$C_{1}^{ecav} = 1 - (O^{ecav} + C_{2}^{ecav} + C_{3}^{ecav} + C_{4}^{ecav} + C_{p}^{ecav} + I_{1}^{ecav} + I_{2}^{ecav} + I_{3}^{ecav} + O_{p}^{ecav} + C_{1p}^{ecav} + C_{2p}^{ecav} + C_{3p}^{ecav} + C_{4p}^{ecav} + C_{pp}^{ecav} + I_{1p}^{ecav} + I_{2p}^{ecav} + I_{3p}^{ecav})$$
(A.163)

$$\frac{dC_{2}^{ecav}}{dt} = 4\alpha C_{1}^{ecav} - \beta C_{2}^{ecav} + 2\beta C_{3}^{ecav} - 3\alpha C_{2}^{ecav} - \frac{k_{ICaL_PKA}[C]^{ecav} C_{2}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav} C_{2}^{ecav}} + \frac{\alpha_{p}^{2} k_{cop}}{\alpha^{2} k_{co}} \frac{k_{ICaL_PP}[PP1]^{ecav} C_{2p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav} C_{2p}^{ecav}}$$
(A.164)

$$\frac{dC_{3}^{ecav}}{dt} = 3\alpha C_{2}^{ecav} - 2\beta C_{3}^{ecav} + 3\beta C_{4}^{ecav} - 2\alpha C_{3}^{ecav} - \frac{k_{ICaL_PKA}[C]^{ecav}C_{3}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]^{ecav}C_{3}^{ecav}} + \frac{\alpha_{p}k_{cop}}{\alpha k_{co}} \frac{k_{ICaL_PP}[PP1]^{ecav}C_{3p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]^{ecav}C_{3p}^{ecav}}$$
(A.165)

$$\frac{dC_{4}^{ecav}}{dt} = 2\alpha C_{3}^{ecav} - 3\beta C_{4}^{ecav} + 4\beta C_{P}^{ecav} - \alpha C_{4}^{ecav} + 0.01(4K_{pcb}\beta I_{1}^{ecav} - \frac{k_{co}}{k_{oc}}\alpha\gamma^{ecav}C_{4}^{ecav})
+ 0.002(4\beta I_{2}^{ecav} - \frac{k_{co}}{k_{oc}}K_{pcf}C_{4}^{ecav}) + 4\beta K_{pcb}I_{3}^{ecav} - \frac{k_{co}}{k_{oc}}\gamma^{ecav}K_{pcf}C_{4}^{ecav}
- \frac{k_{ICaL_{PKA}}[C]^{ecav}C_{4}^{ecav}}{K_{ICaL_{PKA}} + [I_{CaL}]_{tot}^{ecav}C_{4}^{ecav}} + \frac{k_{cop}}{k_{co}}\frac{k_{ICaL_{PP}}[PP1]^{ecav}C_{4p}^{ecav}}{K_{ICaL_{PP}} + [I_{CaL}]_{tot}^{ecav}C_{4p}^{ecav}}$$
(A.166)

$$\frac{dC_P^{ecav}}{dt} = \alpha C_4^{ecav} - 4\beta C_P^{ecav} + k_{oc} O^{ecav} - k_{co} C_P^{ecav}$$

$$-\frac{k_{ICaL_PKA} [C]^{ecav} C_P^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav} C_P^{ecav}} + \frac{\alpha k_{cop}}{\alpha_p k_{co}} \frac{k_{ICaL_PP} [PP1]^{ecav} C_{Pp}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav} C_{Pp}^{ecav}}$$
(A.167)

$$\frac{dI_{1}^{ecav}}{dt} = \gamma^{ecav}O^{ecav} - K_{pcb}I_{1}^{ecav} + 0.001(\alpha I_{3}^{ecav} - K_{pcf}I_{1}^{ecav}) + 0.01(\frac{k_{co}}{k_{oc}}\alpha\gamma^{ecav}C_{4}^{ecav} - 4\beta K_{pcb}I_{1}^{ecav}) \\
- \frac{k_{ICaL_PKA}[C]^{ecav}I_{1}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}I_{1}^{ecav}} + \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP1]^{ecav}I_{1p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}I_{1p}^{ecav}} \tag{A.168}$$

$$\frac{dI_{2}^{ecav}}{dt} = 0.001(K_{pcf}O^{ecav} - \alpha I_{2}^{ecav}) + K_{pcb}I_{3}^{ecav} - \gamma^{ecav}I_{2}^{ecav} + 0.002(\frac{k_{co}}{k_{oc}}K_{pcf}C_{4}^{ecav} - 4\beta I_{2}^{ecav}) \\
- \frac{k_{ICaL_PKA}[C]^{ecav}I_{2}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}I_{2}^{ecav}} + \frac{k_{ICaL_PP}[PP1]^{ecav}I_{2p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}I_{2p}^{ecav}} \tag{A.169}$$

$$\frac{dI_{3}^{ecav}}{dt} = 0.001(K_{pcf}I_{1}^{ecav} - \alpha I_{3}^{ecav}) + \gamma^{ecav}I_{2}^{ecav} - K_{pcb}I_{3}^{ecav} + \frac{k_{co}}{k_{oc}}\gamma^{ecav}K_{pcf}C_{4}^{ecav} - 4\beta K_{pcb}I_{3}^{ecav} - \frac{k_{ICaL_PKA}[C]^{ecav}I_{3}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}I_{3}^{ecav}} + \frac{k_{ICaL_PP}[PP1]^{ecav}I_{3p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}I_{3p}^{ecav}} \tag{A.170}$$

$$\frac{dO_{p}^{ecav}}{dt} = k_{cop}C_{Pp}^{ecav} - k_{oc}O_{p}^{ecav} + K_{pcb}I_{1p}^{ecav} - \gamma^{ecav}O_{p}^{ecav} + 0.001(\alpha_{p}I_{2p}^{ecav} - K_{pcf}O_{p}^{ecav})
+ \frac{k_{ICaL_PKA}[C]^{ecav}O^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}O^{ecav}} - \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP1]^{ecav}O_{p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}O_{p}^{ecav}}$$
(A.171)

$$\frac{dC_{1p}^{ecav}}{dt} = \beta C_{2p}^{ecav} - 4\alpha_p C_{1p}^{ecav} + \frac{k_{ICaL_PKA}[C]^{ecav} C_1^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]^{ecav} C_1^{ecav}} - \frac{\alpha_p^3 k_{cop}}{\alpha^3 k_{co}} \frac{k_{ICaL_PP}[PP1]^{ecav} C_{1p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]^{ecav} C_{1p}^{ecav}}$$
(A.172)

$$\frac{dC_{2p}^{ecav}}{dt} = 4\alpha_{p}C_{1p}^{ecav} - \beta C_{2p}^{ecav} + 2\beta C_{3p}^{ecav} - 3\alpha_{p}C_{2p}^{ecav} + \frac{k_{ICaL_PKA}[C]^{ecav}C_{2}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}C_{2}^{ecav}} - \frac{\alpha_{p}^{2}k_{cop}}{\alpha^{2}k_{co}} \frac{k_{ICaL_PP}[PP1]^{ecav}C_{2p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}C_{2p}^{ecav}}$$
(A.173)

$$\frac{dC_{3p}^{ecav}}{dt} = 3\alpha_{p}C_{2p}^{ecav} - 2\beta C_{3p}^{ecav} + 3\beta C_{4p}^{ecav} - 2\alpha_{p}C_{3p}^{ecav} + \frac{k_{ICaL_PKA}[C]^{ecav}C_{3}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]^{ecav}C_{3}^{ecav}} - \frac{\alpha_{p}k_{cop}}{\alpha k_{co}} \frac{k_{ICaL_PP}[PP1]^{ecav}C_{3p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]^{ecav}C_{3p}^{ecav}}$$
(A.174)

$$\frac{dC_{4p}^{ecav}}{dt} = 2\alpha_{p}C_{3p}^{ecav} - 3\beta C_{4p}^{ecav} + 4\beta C_{Pp}^{ecav} - \alpha_{p}C_{4p}^{ecav} + 0.01(4K_{pcb}\beta I_{1p}^{ecav} - \frac{k_{cop}}{k_{oc}}\alpha\gamma^{ecav}C_{4p}^{ecav})
+ 0.002(4\beta I_{2p}^{ecav} - \frac{k_{cop}}{k_{oc}}K_{pcf}C_{4p}^{ecav}) + 4\beta K_{pcb}I_{3p}^{ecav} - \frac{k_{cop}}{k_{oc}}\gamma^{ecav}K_{pcf}C_{4p}^{ecav}
+ \frac{k_{ICaL_{PKA}}[C]^{ecav}C_{4}^{ecav}}{K_{ICaL_{PKA}} + [I_{CaL}]_{tot}^{ecav}C_{4}^{ecav}} - \frac{k_{cop}}{k_{co}}\frac{k_{ICaL_{PP}}[PP1]^{ecav}C_{4p}^{ecav}}{K_{ICaL_{PP}} + [I_{CaL}]_{tot}^{ecav}C_{4p}^{ecav}}$$
(A.175)

$$\frac{dC_{Pp}^{ecav}}{dt} = \alpha_p C_{4p}^{ecav} - 4\beta C_{Pp}^{ecav} + k_{oc} O_p^{ecav} - k_{cop} C_{Pp}^{ecav}
+ \frac{k_{ICaL_PKA} [C]^{ecav} C_P^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav} C_P^{ecav}} - \frac{\alpha k_{cop}}{\alpha_p k_{co}} \frac{k_{ICaL_PP} [PP1]^{ecav} C_{Pp}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav} C_{Pp}^{ecav}}$$
(A.176)

$$\frac{dI_{1p}^{ecav}}{dt} = \gamma^{ecav}O_{p}^{ecav} - K_{pcb}I_{1p}^{ecav} + 0.001(\alpha_{p}I_{3p}^{ecav} - K_{pcf}I_{1p}^{ecav}) + 0.01(\frac{k_{cop}}{k_{oc}}\alpha_{p}\gamma^{ecav}C_{4p}^{ecav} - 4\beta K_{pcb}I_{1p}^{ecav}) + \frac{k_{ICaL_PKA}[C]^{ecav}I_{1}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}I_{1}^{ecav}} - \frac{\alpha}{\alpha_{p}}\frac{k_{ICaL_PP}[PP1]^{ecav}I_{1p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}I_{1p}^{ecav}}$$
(A.177)

$$\frac{dI_{2p}^{ecav}}{dt} = 0.001(K_{pcf}O_{p}^{ecav} - \alpha_{p}I_{2p}^{ecav}) + K_{pcb}I_{3p}^{ecav} - \gamma^{ecav}I_{2p}^{ecav} + 0.002(\frac{k_{cop}}{k_{oc}}K_{pcf}C_{4p}^{ecav} - 4\beta I_{2p}^{ecav}) \\
+ \frac{k_{ICaL_{PKA}}[C]^{ecav}I_{2}^{ecav}}{K_{ICaL_{PKA}} + [I_{CaL}]^{ecav}I_{2p}^{ecav}} - \frac{k_{ICaL_{PP}}[PP1]^{ecav}I_{2p}^{ecav}}{K_{ICaL_{PP}} + [I_{CaL}]^{ecav}I_{2p}^{ecav}} \qquad (A.178)$$

$$\frac{dI_{3p}^{ecav}}{dt} = 0.001(K_{pcf}I_{1p}^{ecav} - \alpha_{p}I_{3p}^{ecav}) + \gamma^{ecav}I_{2p}^{ecav} - K_{pcb}I_{3p}^{ecav} + \frac{k_{cop}}{k_{oc}}\gamma^{ecav}K_{pcf}C_{4p}^{ecav} - 4\beta K_{pcb}I_{3p}^{ecav} + \frac{k_{ICaL_PKA}[C]^{ecav}I_{3p}^{ecav}}{K_{ICaL_PKA} + [I_{CaL}]_{tot}^{ecav}I_{3p}^{ecav}} - \frac{k_{ICaL_PP}[PP1]^{ecav}I_{3p}^{ecav}}{K_{ICaL_PP} + [I_{CaL}]_{tot}^{ecav}I_{3p}^{ecav}} \tag{A.179}$$

Fast Na⁺ current module

Paramet	Definition	Value	Reference
er			
$G_{\scriptscriptstyle Na}$	Specific maximum conductivity for the fast Na ⁺ channel (non-phosphorylated)	14.4 mS/µF	This paper
$G_{\scriptscriptstyle Nap}$	Specific maximum conductivity for the fast Na ⁺ channel (phosphorylated)	18.0 mS/µF	This paper
$k_{\scriptscriptstyle INa_PKA}$	Phosphorylation-traffiking rate of the fast Na ⁺ channel by PKA	$\begin{array}{c} 6.8400\cdot 10^{-3} \ \mu M^{-1} \\ s^{-1} \end{array}$	This paper
k _{INa_PP}	Dephosphorylation rate of the fast Na ⁺ channel by PP1 and PP2A	$\frac{1.9804\cdot 10^{-2}\ \mu\text{M}^{-1}}{\text{s}^{-1}}$	This paper
K _{INa_PKA}	Affinity of the fast Na ⁺ channel for PKA	$5.49415 \cdot 10^{-3}$	This paper
K _{INa_PP}	Affinity of the fast Na ⁺ channel for PP1 and PP2A	0.393025	This paper

$$E_{Na} = \frac{RT}{F} \ln\left(\frac{0.9[Na^+]_o + 0.1[K^+]_o}{0.9[Na^+]_i + 0.1[K^+]_i}\right)$$
(A.180)

$$I_{Na} = (G_{Na} \cdot O_{Na} + G_{Nap} \cdot O_{Nap})(V - E_{Na})$$
(A.181)

$$C_{Na3} = 1 - (O_{Na} + C_{Na2} + C_{Na1} + IF_{Na} + I1_{Na} + I2_{Na} + IC_{Na2} + IC_{Na3} + O_{Nap} + C_{Na3p} + C_{Na2p} + C_{Na1p} + IF_{Nap} + I1_{Nap} + I2_{Nap} + IC_{Na2p} + IC_{Na3p})$$
(A.182)

$$\frac{dC_{Na2}}{dt} = \alpha_{Na11}C_{Na3} - \beta_{Na11}C_{Na2} + \beta_{Na12}C_{Na1} - \alpha_{Na12}C_{Na2} + \alpha_{Na3}IC_{Na2} - \beta_{Na3}C_{Na2} - \frac{k_{INa_PKA}[C]^{cav}C_{Na2}}{K_{INa_PKA} + C_{Na2}} + \frac{k_{INa_PP}[PP]^{cav}C_{Na2p}}{K_{INa_PP} + C_{Na2p}}$$
(A.183)

$$\frac{dC_{Na1}}{dt} = \alpha_{Na12}C_{Na2} - \beta_{Na12}C_{Na1} + \beta_{Na13}O_{Na} - \alpha_{Na13}C_{Na1} + \alpha_{Na3}IF_{Na} - \beta_{Na3}C_{Na1}
- \frac{k_{INa_PKA}[C]^{cav}C_{Na1}}{K_{INa_PKA} + C_{Na1}} + \frac{k_{INa_PP}[PP]^{cav}C_{Na1p}}{K_{INa_PP} + C_{Na1p}}$$
(A.184)

$$\frac{dO_{Na}}{dt} = \alpha_{Na13}C_{Na1} - \beta_{Na13}O_{Na} + \beta_{Na2}IF_{Na} - \alpha_{Na2}O_{Na}
- \frac{k_{INa_PKA}[C]^{cav}O_{Na}}{K_{INa_PKA} + O_{Na}} + \frac{k_{INa_PP}[PP]^{cav}O_{Nap}}{K_{INa_PP} + O_{Nap}}$$
(A.185)

$$\frac{dIF_{Na}}{dt} = \alpha_{Na2}O_{Na} - \beta_{Na2}IF_{Na} + \beta_{Na3}C_{Na1} - \alpha_{Na3}IF_{Na} + \beta_{Na4}I1_{Na} - \alpha_{Na4}IF_{Na} + \alpha_{Na12}IC_{Na2} - \beta_{Na12}IF_{Na} - \frac{k_{INa_PKA}[C]^{cav}IF_{Na}}{K_{INa_PKA} + IF_{Na}} + \frac{k_{INa_PP}[PP]^{cav}IF_{Nap}}{K_{INa_PP} + IF_{Nap}}$$
(A.186)

$$\frac{dI1_{Na}}{dt} = \alpha_{Na4}IF_{Na} - \beta_{Na4}I1_{Na} + \beta_{Na5}I2_{Na} - \alpha_{Na5}I1_{Na} - \frac{k_{INa_PKA}[C]^{cav}I1_{Na}}{K_{INa_PKA} + I1_{Na}} + \frac{k_{INa_PP}[PP]^{cav}I1_{Nap}}{K_{INa_PP} + I1_{Nap}}$$
(A.187)

$$\frac{dI2_{Na}}{dt} = \alpha_{Na5}I1_{Na} - \beta_{Na5}I2_{Na} - \frac{k_{INa_PKA}[C]^{cav}I2_{Na}}{K_{INa_PKA} + I2_{Na}} + \frac{k_{INa_PP}[PP]^{cav}I2_{Nap}}{K_{INa_PP} + I2_{Nap}}$$
(A.188)

$$\frac{dIC_{Na2}}{dt} = \alpha_{Na11}IC_{Na3} - \beta_{Na11}IC_{Na2} + \beta_{Na12}IF_{Na} - \alpha_{Na12}IC_{Na2} + \beta_{Na3}C_{Na2} - \alpha_{Na3}IC_{Na2} - \frac{k_{INa_PKA}[C]^{cav}IC_{Na2}}{K_{INa_PKA} + IC_{Na2}} + \frac{k_{INa_PP}[PP]^{cav}IC_{Na2p}}{K_{INa_PP} + IC_{Na2p}}$$
(A.189)

$$\frac{dIC_{Na3}}{dt} = \beta_{Na11}IC_{Na2} - \alpha_{Na11}IC_{Na3} + \beta_{Na3}C_{Na3} - \alpha_{Na3}IC_{Na3} - \frac{k_{INa_PKA}[C]^{cav}IC_{Na3}}{K_{INa_PKA} + IC_{Na3}} + \frac{k_{INa_PP}[PP]^{cav}IC_{Na3p}}{K_{INa_PP} + IC_{Na3p}}$$
(A.190)

$$\frac{dC_{Na3p}}{dt} = \beta_{Na11}C_{Na2p} - \alpha_{Na11}C_{Na3p} + \alpha_{Na3}IC_{Na3p} - \beta_{Na3}C_{Na3p}
+ \frac{k_{INa_PKA}[C]^{cav}C_{Na3}}{K_{INa_PKA} + C_{Na3}} - \frac{k_{INa_PP}[PP]^{cav}C_{Na3p}}{K_{INa_PP} + C_{Na3p}}$$
(A.191)

$$\frac{dC_{Na2p}}{dt} = \alpha_{Na11}C_{Na3p} - \beta_{Na11}C_{Na2p} + \beta_{Na12}C_{Na1p} - \alpha_{Na12}C_{Na2p} + \alpha_{Na3}IC_{Na2p} - \beta_{Na3}C_{Na2p}
+ \frac{k_{INa_PKA}[C]^{cav}C_{Na2}}{K_{INa_PKA} + C_{Na2}} - \frac{k_{INa_PP}[PP]^{cav}C_{Na2p}}{K_{INa_PP} + C_{Na2p}}$$
(A.192)

$$\frac{dC_{Na1p}}{dt} = \alpha_{Na12}C_{Na2p} - \beta_{Na12}C_{Na1p} + \beta_{Na13}O_{Nap} - \alpha_{Na13}C_{Na1p} + \alpha_{Na3}IF_{Nap} - \beta_{Na3}C_{Na1p}
+ \frac{k_{INa_PKA}[C]^{cav}C_{Na1}}{K_{INa_PKA} + C_{Na1}} - \frac{k_{INa_PP}[PP]^{cav}C_{Na1p}}{K_{INa_PP} + C_{Na1p}}$$
(A.193)

$$\frac{dO_{Nap}}{dt} = \alpha_{Na13}C_{Na1p} - \beta_{Na13}O_{Nap} + \beta_{Na2}IF_{Nap} - \alpha_{Na2}O_{Nap}
+ \frac{k_{INa_PKA}[C]^{cav}O_{Na}}{K_{INa_PKA} + O_{Na}} - \frac{k_{INa_PP}[PP]^{cav}O_{Nap}}{K_{INa_PP} + O_{Nap}}$$
(A.194)

$$\frac{dIF_{Nap}}{dt} = \alpha_{Na2}O_{Nap} - \beta_{Na2}IF_{Nap} + \beta_{Na3}C_{Na1p} - \alpha_{Na3}IF_{Nap} + \beta_{Na4}I1_{Nap} - \alpha_{Na4}IF_{Nap}
+ \alpha_{Na12}IC_{Na2p} - \beta_{Na12}IF_{Nap} + \frac{k_{INa_PKA}[C]^{cav}IF_{Na}}{K_{INa_PKA} + IF_{Na}} - \frac{k_{INa_PP}[PP]^{cav}IF_{Nap}}{K_{INa_PP} + IF_{Nap}}$$
(A.195)

$$\frac{dI1_{Nap}}{dt} = \alpha_{Na4}IF_{Nap} - \beta_{Na4}I1_{Nap} + \beta_{Na5}I2_{Nap} - \alpha_{Na5}I1_{Nap}
+ \frac{k_{INa_PKA}[C]^{cav}I1_{Na}}{K_{INa_PKA} + I1_{Na}} - \frac{k_{INa_PP}[PP]^{cav}I1_{Nap}}{K_{INa_PP} + I1_{Nap}}$$
(A.196)

$$\frac{dI2_{_{Nap}}}{dt} = \alpha_{_{Na5}}I1_{_{Nap}} - \beta_{_{Na5}}I2_{_{Nap}} + \frac{k_{_{INa_PKA}}[C]^{_{cav}}I2_{_{Na}}}{K_{_{INa_PKA}} + I2_{_{Na}}} - \frac{k_{_{INa_PP}}[PP]^{_{cav}}I2_{_{Nap}}}{K_{_{INa_PP}} + I2_{_{Nap}}}$$
(A.197)

$$\frac{dIC_{Na2p}}{dt} = \alpha_{Na11}IC_{Na3p} - \beta_{Na11}IC_{Na2p} + \beta_{Na12}IF_{Nap} - \alpha_{Na12}IC_{Na2p} + \beta_{Na3}C_{Na2p} - \alpha_{Na3}IC_{Na2p}
+ \frac{k_{INa_PKA}[C]^{cav}IC_{Na2}}{K_{INa_PKA} + IC_{Na2}} - \frac{k_{INa_PP}[PP]^{cav}IC_{Na2p}}{K_{INa_PP} + IC_{Na2p}}$$
(A.198)

$$\frac{dIC_{Na3p}}{dt} = \beta_{Na11}IC_{Na2p} - \alpha_{Na11}IC_{Na3p} + \beta_{Na3}C_{Na3p} - \alpha_{Na3}IC_{Na3p}
+ \frac{k_{INa_PKA}[C]^{cav}IC_{Na3}}{K_{INa_PKA} + IC_{Na3}} - \frac{k_{INa_PP}[PP]^{cav}IC_{Na3p}}{K_{INa_PP} + IC_{Na3p}}$$
(A.199)

$$\alpha_{Na11} = \frac{3.802}{0.1027e^{-(V-2.5)/17.0} + 0.20e^{-(V-2.5)/150.0}}$$
(A.200)

$$\alpha_{Na12} = \frac{3.802}{0.1027e^{-(V-2.5)/15.0} + 0.23e^{-(V-2.5)/150.0}}$$
(A.201)

$$\alpha_{Na13} = \frac{3.802}{0.1027e^{-(V-2.5)/12.0} + 0.25e^{-(V-2.5)/150.0}}$$
(A.202)

$$\beta_{Na11} = 0.1917 e^{-(V-2.5)/20.3} \tag{A.203}$$

$$\beta_{Na12} = 0.20e^{-(V-7.5)/20.3} \tag{A.204}$$

$$\beta_{Na13} = 0.22e^{-(V-12.5)/20.3} \tag{A.205}$$

$$\alpha_{Na3} = 7.0 \times 10^{-7} e^{-(V+7.0)/7.7}$$
(A.206)

$$\beta_{Na3} = 0.0084 + 0.00002(V + 7.0) \tag{A.207}$$

$$\alpha_{Na2} = \frac{1.0}{0.188495e^{-(V+7.0)/16.6} + 0.393956} \tag{A.208}$$

$$\beta_{Na2} = \alpha_{Na13} \alpha_{Na2} \alpha_{Na3} / (\beta_{Na13} \beta_{Na3}) \tag{A.209}$$

$\alpha_{\scriptscriptstyle Na4} = \alpha_{\scriptscriptstyle Na2} / 100.0$	(A.210)
$\beta_{Na4} = \alpha_{Na3}$	(A.211)
$\alpha_{Na5} = \alpha_{Na2} / 95000$	(A.212)
$\beta_{Na5} = \alpha_{Na3} / 50.0$	(A.213)

Ryanodine receptor module

Paramet	Definition	Value	Reference
er			
$[RyR]_{tot}$	Total cellular concentration of ryanodine receptors	0.1993 μΜ	Chu et al. [71]
ν_1	Maximum RyR channel Ca ²⁺ permeability	$4,500 \text{ s}^{-1}$	Bondarenko et al. [25]
n	RyR Ca ²⁺ cooperativity parameter $P_{C1} - P_{O1}$	4	Bondarenko et al. [25]
т	RyR Ca^{2+} cooperativity parameter $P_{O1} - P_{O2}$	3	Bondarenko et al. [25]
k_a^+	$RyR P_{C1} - P_{O1}$ rate constant	$6.075 \ \mu M^{-4} \ s^{-1}$	Bondarenko et al. [25]
k_a^-	$RyR P_{O1} - P_{C1}$ rate constant	71.25 s ⁻¹	Bondarenko et al. [25]
k_b^+	$RyR P_{O1} - P_{O2}$ rate constant	$4.05 \ \mu M^{-3} \ s^{-1}$	Bondarenko et al. [25]
k_b^-	$RyR P_{O2} - P_{O1}$ rate constant	965.0 s ⁻¹	Bondarenko et al. [25]
k_c^+	$RyR P_{O1} - P_{C2}$ rate constant	9.0 s ⁻¹	Bondarenko et al. [25]
k_c^-	$RyR P_{C2} - P_{O1}$ rate constant	0.8 s ⁻¹	Bondarenko et al. [25]
k_{ap}^+	$RyR P_{C1p} - P_{O1p}$ rate constant	$5k_a^+$	This paper
k_{ap}^{-}	$RyR P_{O1p} - P_{C1p}$ rate constant	$3k_a^-$	This paper
k_{bp}^+	$RyR P_{O1p} - P_{O2p}$ rate constant	$5k_b^+$	This paper
k_{bp}^-	$RyR P_{O2p} - P_{O1p}$ rate constant	$3k_b^-$	This paper
k_{cp}^+	RyR $P_{O1p} - P_{C2p}$ rate constant	$50k_{c}^{+}$	This paper
k_{cp}^{-}	$RyR P_{C2p} - P_{O1p}$ rate constant	$30k_c^-$	This paper
f_{RyR}	Allosteric factor for RyR	0.001	This paper
k _{RyR_PKA}	Phosphorylation rate of ryanodine receptors by PKA	$5.775 \cdot 10^{-2} \mu M^{-1} s^{-1}$	This paper

$k_{_{RyR}_PP}$	Dephosphorylation rate of ryanodine receptors by PP1	$0.28875 \ \mu M^{-1} \ s^{-1}$	This paper
$K_{RyR_{PKA}}$	Affinity of ryanodine receptors for PKA	0.5 μΜ	This paper
$K_{RyR_{PP}}$	Affinity of ryanodine receptors for PP1	0.05 μΜ	This paper

$$[RyR]^{ecav} = [RyR]_{tot} \frac{V_{cell}}{V_{ecav}}$$
(A.214)

$$P_{C1} = 1 - (P_{C2} + P_{O1} + P_{O2} + P_{C1p} + P_{C2p} + P_{O1p} + P_{O2p})$$
(A.215)

$$\frac{dP_{O1}}{dt} = k_a^+ [Ca^{2+}]_{ss}^n P_{C1} - k_a^- P_{O1} - k_b^+ [Ca^{2+}]_{ss}^m P_{O1} + k_b^- P_{O2} - k_c^+ P_{O1} + k_c^- P_{C2} - \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{O1}}{K_{RyR_PKA} + [RyR]^{ecav} P_{O1}} + \frac{k_a^+ k_{ap}^-}{k_{ap}^+ k_a^-} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{O1p}}{K_{RyR_PP} + [RyR]^{ecav} P_{O1p}}$$
(A.216)

$$\frac{dP_{O2}}{dt} = k_b^+ [Ca^{2+}]_{ss}^m P_{O1} - k_b^- P_{O2} - \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{O2}}{K_{RyR_PKA} + [RyR]^{ecav} P_{O2}} + \frac{k_a^+ k_{ap}^- k_b^+ k_{bp}^-}{k_{ap}^+ k_a^- k_{bp}^+ k_b^-} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{O2p}}{K_{RyR_PP} + [RyR]^{ecav} P_{O2p}}$$
(A.217)

$$\frac{dP_{C2}}{dt} = k_c^+ P_{O1} - k_c^- P_{C2} - \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{C2}}{K_{RyR_PKA} + [RyR]^{ecav} P_{C2}} + \frac{k_a^+ k_{ap}^- k_c^+ k_{cp}^-}{k_{ap}^+ k_a^- k_c^+ k_c^-} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{C2p}}{K_{RyR_PP} + [RyR]^{ecav} P_{C2p}}$$
(A.218)

$$\frac{dP_{C1p}}{dt} = -k_{ap}^{+} [Ca^{2+}]_{ss}^{n} P_{C1p} + k_{ap}^{-} P_{O1p}
+ \frac{k_{RyR_PKA} [C]^{ecav} P_{C1}}{K_{RyR_PKA} + [RyR]^{ecav} P_{C1}} - \frac{k_{RyR_PP} [PP1]^{ecav} P_{C1p}}{K_{RyR_PP} + [RyR]^{ecav} P_{C1p}}$$
(A.219)

$$\frac{dP_{O1p}}{dt} = k_{ap}^{+} [Ca^{2+}]_{ss}^{n} P_{C1p} - k_{ap}^{-} P_{O1p} - k_{bp}^{+} [Ca^{2+}]_{ss}^{m} P_{O1p} + k_{bp}^{-} P_{O2p} - k_{cp}^{+} P_{O1p} + k_{cp}^{-} P_{C2p}
+ \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{O1}}{K_{RyR_PKA} + [RyR]^{ecav} P_{O1}} - \frac{k_{a}^{+} k_{ap}^{-}}{k_{ap}^{+} k_{a}^{-}} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{O1p}}{K_{Ap}^{+} k_{a}^{-}} \frac{f_{RyR} k_{RyR_PP} + [RyR]^{ecav} P_{O1p}}{K_{Ap}^{-} R_{Ap}^{-} R_{Ap}^{-} R_{Ap}^{-}} \right)$$
(A.220)

$$\frac{dP_{O2p}}{dt} = k_{bp}^{+} [Ca^{2+}]_{ss}^{m} P_{O1p} - k_{bp}^{-} P_{O2p}
+ \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{O2}}{K_{RyR_PKA} + [RyR]^{ecav} P_{O2}} - \frac{k_a^{+} k_{ap}^{-} k_b^{+} k_{bp}^{-}}{k_{ap}^{+} k_a^{-} k_b^{+} k_b^{-}} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{O2p}}{K_{RyR_PP} + [RyR]^{ecav} P_{O2p}}$$
(A.221)

$$\frac{dP_{C2p}}{dt} = k_{cp}^{+} P_{O1p} - k_{cp}^{-} P_{C2p} + \frac{f_{RyR} k_{RyR_PKA} [C]^{ecav} P_{C2}}{K_{RyR_PKA} + [RyR]^{ecav} P_{C2}} - \frac{k_a^{+} k_{ap}^{-} k_c^{+} k_{cp}^{-}}{k_a^{+} k_a^{-} k_c^{+} k_c^{-}} \frac{f_{RyR} k_{RyR_PP} [PP1]^{ecav} P_{C2p}}{K_{RyR_PP} + [RyR]^{ecav} P_{C2p}}$$
(A.222)

Na⁺-K⁺ pump module

Paramet	Definition	Value	Reference
er			
$I_{\it NaK}^{\rm max}$	Maximum Na ⁺ -K ⁺ pump current	4.0 pA/pF	This paper
$K^{np}_{m,Nai}$	Na ⁺ half-saturation constant for Na ⁺ -K ⁺ pump current (non-phosphorylated PLM)	18,800 µM	Despa et al. [100]
$K^{p}_{m,Nai}$	Na ⁺ half-saturation constant for Na ⁺ -K ⁺ pump current (phosphorylated PLM)	13,600 µM	Despa et al. [100]
$K_{m,Ko}$	K+ half-saturation constant Na ⁺ -K ⁺ pump current	1,500 µM	Bondarenko et al. [25]
$k_{\scriptscriptstyle PLM_PKA}$	Rate of PLM phosphorylation by PKA	$3.053 \cdot 10^{-3} \ \mu M^{-1} \ s^{-1}$	This paper
$K_{PLM_{PKA}}$	Relative affinity for PLM phosphorylation by PKA	0.0011001	Heijman et al. [8]
k_{PLM_PP}	Rate of PLM dephosphorylation by PP1 and PP2A	$\frac{1.8491\cdot 10^{-2}\ \mu M^{-1}}{s^{-1}}$	This paper
K_{PLM_PP}	Relative affinity for PLM dephosphorylation by PP1 and PP2A	5.7392	Heijman et al. [8]

$$\frac{df_{PLM,p}^{cav}}{dt} = \frac{k_{PLM_{PKA}}[C]^{cav}(1 - f_{PLM,p}^{cav})}{K_{PLM_{PKA}} + (1 - f_{PLM,p}^{cav})} - \frac{k_{PLM_{PP}}[PP]^{cav}f_{PLM,p}^{cav}}{K_{PLM_{PP}} + f_{PLM,p}^{cav}}$$
(A.223)

$$I_{NaK} = I_{NaK}^{\max} f_{NaK} \frac{1}{1 + (K_{m,Nai} / [Na^+]_i)^3} \frac{[K^+]_0}{[K^+]_0 + K_{m,Ko}}$$
(A.224)

$$f_{NaK} = \frac{1}{1 + 0.1245e^{-0.1VF/RT} + 0.0365\sigma e^{-VF/RT}}$$
(A.225)

$$\sigma = \frac{1}{7} (e^{[Na^+]_0 / 67300} - 1)$$
(A.226)

$$K_{m,Nai} = K_{m,Nai}^{np} (1 - f_{PLM,p}^{cav}) + K_{m,Nai}^{p} f_{PLM,p}^{cav}$$
(A.227)

Ultra-rapidly activating delayed rectifier K⁺ current module

Paramet	Definition	Value	Reference
er			
G_{Kur}	Specific maximum conductivity for the ultra- rapidly activating delayed rectifier K ⁺ current (non-phosphorylated)	0.3424 pA/pF	Petkova-Kirova et al. [26]
G_{Kurp}	Specific maximum conductivity for the ultra- rapidly activating delayed rectifier K ⁺ current (phosphorylated)	0.53307 pA/pF	This paper
$k_{_{IKur}_{PKA}}$	Rate of I_{Kur} phosphorylation by PKA	$\begin{array}{c} 6.9537 \cdot 10^{-3} \ \mu M^{-1} \\ s^{-1} \end{array}$	This paper
$K_{IKur_{PKA}}$	Relative affinity for I_{Kur} phosphorylation by PKA	0.138115	This paper
$k_{\rm IKur_PP}$	Rate of I_{Kur} dephosphorylation by PP1	$3.170 \cdot 10^{-2} \ \mu M^{-1} \ s^{-1}$	This paper
$K_{IKur_{PP}}$	Relative affinity for I_{Kur} dephosphorylation by PP1	0.23310	This paper

$$E_{K} = \frac{RT}{F} \ln\left(\frac{[K^{+}]_{o}}{[K^{+}]_{i}}\right)$$
(A.228)

$$I_{Kur} = (G_{Kur}a_{ur}i_{ur}f_{IKur}^{ecav} + G_{Kurp}a_{urp}i_{urp}(1 - f_{IKur}^{ecav}))(V - E_K)$$
(A.229)

$$\frac{df_{IKur}^{ecav}}{dt} = \frac{k_{IKur_{PP}} [PP1]^{ecav} (1 - f_{IKur}^{ecav})}{K_{IKur_{PP}} + (1 - f_{IKur}^{ecav})} - \frac{k_{IKur_{PKA}} [C]^{ecav} f_{IKur}^{ecav}}{K_{IKur_{PKA}} + f_{IKur}^{ecav}}$$
(A.230)

$$a_{ss} = \frac{1}{1 + e^{-(V+22.5)/7.7}}$$
(A.231)

$$i_{ss} = \frac{1}{1 + e^{(V+45.2)/5.7}} \tag{A.232}$$

$$\tau_{aur} = \frac{6.1}{e^{0.0629(V+40.0)} + e^{-0.0629(V+40.0)}} + 2.058 \tag{A.233}$$

$$\tau_{iur} = 1200.0 - \frac{170.0}{1 + e^{(V+45.2)/5.7}}$$
(A.234)

$$\frac{da_{ur}}{dt} = \frac{a_{ss} - a_{ur}}{\tau_{aur}}$$
(A.235)

$$\frac{di_{ur}}{dt} = \frac{i_{ss} - i_{ur}}{\tau_{iur}}$$
(A.236)

$$\frac{da_{urp}}{dt} = \frac{a_{ss} - a_{urp}}{\tau_{aur}}$$
(A.237)

$$\frac{di_{urp}}{dt} = \frac{i_{ss} - i_{urp}}{\tau_{iur}}$$
(A.238)

Rapidly inactivating transient outward $\mathbf{K}^{\!\!+}$ current module

Paramet	Definition	Value	Reference
er			
$G_{Kto,f}$	Specific maximum conductivity for the rapidly inactivating transient outward K ⁺ current (non-phosphorylated)	0.3846 pA/pF	Petkova-Kirova et al. [26]
$G_{Kto,fp}$	Specific maximum conductivity for the rapidly inactivating transient outward K ⁺ current (phosphorylated)	$G_{Kto,f}$	Petkova-Kirova et al. [26]
$k_{IKto,f_{PKA}}$	Rate of $I_{Kto,f}$ phosphorylation by PKA	$\begin{array}{c} 4.38983 \cdot 10^{-2} \mu M^{-1} \\ s^{-1} \end{array}$	This paper
K _{IKto,f_PKA}	Relative affinity for $I_{Kto,f}$ phosphorylation by PKA	0.27623	This paper
k_{IKto,f_PP}	Rate of $I_{Kto,f}$ dephosphorylation by PP1	$9.09678 \cdot 10^{-2} \mu M^{-1} \\ s^{-1}$	This paper
K _{IKto,f_PP}	Relative affinity for $I_{Kto,f}$ dephosphorylation by PP1	0.23310	This paper

$$I_{Kto,f} = (G_{Kto,f}a_{to,f}^{3}i_{to,f}(1 - f_{IKto,f}^{ecav}) + G_{Kto,fp}a_{to,fp}^{3}i_{to,fp}f_{IKto,f}^{ecav})(V - E_{K})$$
(A.239)

$$\frac{df_{IKto,f}^{ecav}}{dt} = \frac{k_{IKto,f_PKA}[C]^{ecav}(1 - f_{IKto,f}^{ecav})}{K_{IKto,f_PKA} + (1 - f_{IKto,f}^{ecav})} - \frac{k_{IKto,f_PP}[PP1]^{ecav}f_{IKto,f}^{ecav}}{K_{IKto,f_PP} + f_{IKto,f}^{ecav}}$$
(A.240)

$$\frac{da_{to,f}}{dt} = \alpha_a (1 - a_{to,f}) - \beta_a a_{to,f}$$
(A.241)

$$\frac{di_{to,f}}{dt} = \alpha_i (1 - i_{to,f}) - \beta_i i_{to,f}$$
(A.242)

$$\frac{da_{io,fp}}{dt} = \alpha_{ap}(1 - a_{io,fp}) - \beta_{ap}a_{io,fp}$$
(A.243)

$$\frac{di_{i_{0,fp}}}{dt} = \alpha_{i_{p}}(1 - i_{i_{0,fp}}) - \beta_{i_{p}}i_{i_{0,fp}}$$
(A.244)

$$\alpha_a = 0.18064 e^{0.03577(V+33.0)} \tag{A.245}$$

$$\beta_a = 0.3956e^{-0.06237(V+33.0)} \tag{A.246}$$

$$\alpha_i = \frac{0.000152e^{-(V+15.5)/7.0}}{0.067083e^{-(V+35.5)/7.0} + 1}$$
(A.247)

$$\beta_i = \frac{0.00095e^{(V+35.5)/7.0}}{0.051335e^{(V+35.5)/7.0} + 1} \tag{A.248}$$

$$\alpha_{ap} = 0.18064e^{0.03577(V+17.0)} \tag{A.249}$$

$$\beta_{ap} = 0.3956e^{-0.06237(V+17.0)} \tag{A.250}$$

$$\alpha_{ip} = \frac{0.000152e^{-(V+7.5)/7.0}}{0.067083e^{-(V+27.5)/7.0} + 1}$$
(A.251)

$$\beta_{ip} = \frac{0.00095e^{(V+27.5)/7.0}}{0.051335e^{(V+27.5)/7.0} + 1} \tag{A.252}$$

Time-independent K⁺ current module

$$\alpha_{K1} = \frac{1.02}{1 + \exp(0.2385(V - E_K - 59.215))}$$
(A.253)

$$\beta_{K1} = \frac{0.8 \exp(0.08032(V - E_K + 5.476)) + \exp(0.06175(V - E_K - 594.31))}{1 + \exp(-0.5143(V - E_K + 4.753))}$$
(A.254)

$$I_{\rm K1} = 0.27 \sqrt{\frac{[K^+]_o}{5400}} \frac{\alpha_{\rm K1}}{\alpha_{\rm K1} + \beta_{\rm K1}} (V - E_K)$$
(A.255)

Phospholamban module

Paramet	Definition	Value	Reference
er			
$K^{np}_{m,up}$	Half-saturation constant for SR Ca ²⁺ -ATPase pump (non-phosphorylated)	0.41 µM	This paper
$K^{p}_{m,up}$	Half-saturation constant for SR Ca ²⁺ -ATPase pump (phosphorylated)	0.31 µM	This paper
V_3	SR Ca ²⁺ -ATPase maximum pump rate	$306.0 \ \mu M \ s^{-1}$	This paper
k_{PLB_PKA}	Rate of PLB phosphorylation by PKA	$0.108917 \ \mu M^{-1} \ s^{-1}$	This paper
K_{PLB_PKA}	Relative affinity for PLB phosphorylation by PKA	$4.90970 \cdot 10^{-4}$	Heijman et al. [8]
$k_{_{PLB}_PP1}$	Rate of PLB dephosphorylation by PP1	$\begin{array}{c} 4.41956 \cdot 10^{-2} \mu M^{-1} \\ s^{-1} \end{array}$	This paper
K_{PLB_PP1}	Relative affinity for PLB dephosphorylation by PP1	$1.69376 \cdot 10^{-2}$	This paper

$$K_{m,up} = K_{m,up}^{np} \left(1 - f_{PLB,p}^{cyt}\right) + K_{m,up}^{p} f_{PLB,p}^{cyt}$$
(A.256)

$$\frac{df_{PLB,p}^{cyt}}{dt} = \frac{k_{PLB_PKA} \cdot [C]^{cyt} \cdot (1 - f_{PLB,p}^{cyt})}{K_{PLB_PKA} + (1 - f_{PLB,p}^{cyt})} - \frac{k_{PLB_PP1} \cdot [PP1]_f^{cyt} \cdot f_{PLB,p}^{cyt}}{K_{PLB_PP1} + f_{PLB,p}^{cyt}}$$
(A.257)

Troponin I module

Parameter	Definition	Value	Reference
[LTRPN] _{tot}	Total cytosolic troponin low-affinity site concentration	70.0 μM	Bondarenko et al. [25]
[HTRPN] _{tot}	Total cytosolic troponin high-affinity site concentration	140.0 μΜ	Bondarenko et al. [25]
k_{htrpn}^+	Ca ²⁺ on rate constant for troponin high- affinity sites	$2.37 \ \mu M \ s^{-1}$	Bondarenko et al. [25]

k^{-}_{htron}	Ca ²⁺ off rate constant for troponin high-	0.032 s^{-1}	Bondarenko et al. [25]
napa	affinity sites		
k_{ν}^{+}	Ca ²⁺ on rate constant for troponin low-	32.7 µM s ⁻¹	Bondarenko et al. [25]
ltrpn	affinity sites		
k^{-}	Ca ²⁺ off rate constant for troponin low-	19.6 s ⁻¹	Bondarenko et al. [25]
Wltrpn,np	affinity sites (non-phosphorylated)		
k^{-}	Ca ²⁺ off rate constant for troponin low-	29.4 s ⁻¹	This paper
W ltrpn,p	affinity sites (phosphorylated)		
k_{TnI_PKA}	Rate of TnI phosphorylation by PKA	$0.0247254 \; \mu M^{-1} \; s^{-1}$	This paper
K	Relative affinity for TnI phosphorylation	$2.71430 \cdot 10^{-5}$	Heijman et al. [8]
TnI_PKA	by PKA		5 - 1 - 1
$k_{TnI PP2A}$	Rate of TnI dephosphorylation by PP2A	$0.0865898 \ \mu M^{-1} \ s^{-1}$	This paper
¹ ¹ ¹ ¹ ² ¹			
$K_{T_{nI} PP2A}$	Relative affinity for TnI dephosphorylation	0.801420	This paper
$I^{III} _ I^{II} 2^{I}$	by PP2A		

$$k_{ltrpn}^{-} = k_{ltrpn,np}^{-} \left(1 - f_{TnI,p}^{cyt}\right) + k_{ltrpn,p}^{-} f_{TnI,p}^{cyt}$$
(A.258)

$$\frac{df_{TnI,p}^{cyt}}{dt} = \frac{k_{TnI_PKA} \cdot [C]^{cyt} \cdot (1 - f_{TnI,p}^{cyt})}{K_{TnI_PKA} + (1 - f_{TnI,p}^{cyt})} - \frac{k_{TnI_PP2A} \cdot [PP2A]^{cyt} \cdot f_{TnI,p}^{cyt}}{K_{TnI_PP2A} + f_{TnI,p}^{cyt}}$$
(A.259)

$$\frac{d[LTRPNCa]}{dt} = k_{ltrpn}^{+} [Ca^{2+}]_{i} ([LTRPN]_{tot} - [LTRPNCa]) - k_{ltrpn}^{-} [LTRPNCa]$$
(A.260)

$$\frac{d[HTRPNCa]}{dt} = k_{htrpn}^{+} [Ca^{2+}]_{i} ([HTRPN]_{tot} - [HTRPNCa]) - k_{htrpn}^{-} [HTRPNCa]$$
(A.261)

ELECTROPHYSIOLOGICAL PART. UNAFFECTED BY PKA

Membrane potential

$$\frac{dV}{dt} = -\frac{1}{C_m} (I_{CaL} + I_{p(Ca)} + I_{NaCa} + I_{Cab} + I_{Na} + I_{Nab} + I_{NaK} + I_{Kto,f} + I_{K1} + I_{Kur} + I_{Kss} + I_{Kr} + I_{Cl,Ca} - I_{stim})$$
(A.262)

Calcium dynamics: Calcium concentrations

$$\frac{d[Ca^{2+}]_{i}}{dt} = B_{i} \left\{ J_{leak} + J_{xfer} - J_{up} - J_{trpn} - (I_{Cab} - 2I_{NaCa} + I_{p(Ca)} + I_{CaL}^{cav}) \frac{A_{cap}C_{m}}{2V^{cyt}F} \right\}$$
(A.263)

$$\frac{d[Ca^{2+}]_{ss}}{dt} = B_{ss} \left\{ J_{rel} \frac{V_{JSR}}{V_{ss}} - J_{xfer} \frac{V^{cyt}}{V_{ss}} - I_{CaL}^{ecav} \frac{A_{cap}C_m}{2V_{ss}F} \right\}$$
(A.264)

$$\frac{d[Ca^{2+}]_{JSR}}{dt} = B_{JSR} \left\{ J_{tr} - J_{rel} \right\}$$
(A.265)

$$\frac{d[Ca^{2+}]_{NSR}}{dt} = \left\{J_{up} - J_{leak}\right\} \frac{V^{cyt}}{V_{NSR}} - J_{tr} \frac{V_{JSR}}{V_{NSR}}$$
(A.266)

$$B_{i} = \left\{ 1 + \frac{[CMDN]_{tot} K_{m}^{CMDN}}{(K_{m}^{CMDN} + [Ca^{2+}]_{i})^{2}} \right\}^{-1}$$
(A.267)

$$B_{ss} = \left\{ 1 + \frac{[CMDN]_{tot} K_m^{CMDN}}{(K_m^{CMDN} + [Ca^{2+}]_{ss})^2} \right\}^{-1}$$
(A.268)

$$B_{JSR} = \left\{ 1 + \frac{[CSQN]_{tot} K_m^{CSQN}}{(K_m^{CSQN} + [Ca^{2+}]_{JSR})^2} \right\}^{-1}$$
(A.269)

Calcium dynamics: Calcium fluxes

$$J_{rel} = v_1 (P_{O1} + P_{O2} + P_{O1p} + P_{O2p}) ([Ca^{2+}]_{JSR} - [Ca^{2+}]_{ss} P_{RyR})$$
(A.270)

$$J_{tr} = \frac{[Ca^{2+}]_{NSR} - [Ca^{2+}]_{JSR}}{\tau_{tr}}$$
(A.271)

$$J_{xfer} = \frac{[Ca^{2+}]_{ss} - [Ca^{2+}]_{i}}{\tau_{xfer}}$$
(A.272)

$$J_{leak} = v_2([Ca^{2+}]_{NSR} - [Ca^{2+}]_i)$$
(A.273)

$$J_{up} = v_3 \frac{[Ca^{2+}]_i^2}{K_{m,up}^2 + [Ca^{2+}]_i^2}$$
(A.274)

$$J_{trpn} = k_{htrpn}^{+} [Ca^{2+}]_{i} ([HTRPN]_{tot} - [HTRPNCa]) - k_{htrpn}^{-} [HTRPNCa] + k_{ltrpn}^{+} [Ca^{2+}]_{i} ([LTRPN]_{tot} - [LTRPNCa]) - k_{ltrpn}^{-} [LTRPNCa]$$
(A.275)

$$\frac{dP_{RyR}}{dt} = -0.04P_{RyR} - 0.1\frac{I_{CaL}^{ecav}}{I_{CaL,max}}e^{-\frac{(V+5.0)^2}{648.0}}$$
(A.276)

Calcium pump current

$$I_{p(Ca)} = I_{p(Ca)}^{\max} \frac{[Ca^{2+}]_{i}^{2}}{K_{m,p(Ca)}^{2} + [Ca^{2+}]_{i}^{2}}$$
(A.277)

Na⁺/Ca²⁺ exchanger current

$$I_{NaCa} = k_{NaCa} \frac{1}{K_{m,Na}^{3} + [Na^{+}]_{o}^{3}} \frac{1}{K_{m,Ca} + [Ca^{2^{+}}]_{o}} \frac{1}{1 + k_{sat}e^{(\eta - 1)VF/RT}} \times (e^{\eta VF/RT} [Na^{+}]_{i}^{3} [Ca^{2^{+}}]_{o} - 2.0e^{(\eta - 1)VF/RT} [Na^{+}]_{o}^{3} [Ca^{2^{+}}]_{i})$$
(A.278)

Calcium background current

 $I_{Cab} = G_{Cab} (V - E_{CaN})$ (A.279)

$$E_{CaN} = \frac{RT}{2F} \ln\left(\frac{[Ca^{2+}]_o}{[Ca^{2+}]_i}\right)$$
(A.280)

Sodium dynamics: Sodium concentration

$$\frac{d[Na^{+}]_{i}}{dt} = -(I_{Na} + I_{Nab} + 3I_{NaCa} + 3I_{NaK})\frac{A_{cap}C_{m}}{V^{cyt}F}$$
(A.281)

Sodium background current

$$I_{Nab} = G_{Nab}(V - E_{Na}) \tag{A.282}$$

Potassium dynamics: Potassium concentration

$$\frac{d[K^{+}]_{i}}{dt} = -(I_{Kto,f} + I_{Kto,s} + I_{Kur} + I_{Kss} + I_{K1} + I_{Kr} + I_{Ks} - 2I_{NaK})\frac{A_{cap}C_{m}}{V^{cyt}F}$$
(A.283)

Non-inactivating steady-state K⁺ current

$$I_{Kss} = G_{Kss} a_{Kss} (V - E_K)$$
(A.284)

$$\frac{da_{Kss}}{dt} = \frac{a_{ss} - a_{Kss}}{\tau_{Kss}}$$
(A.285)

$$\tau_{Kss} = \frac{1235.5}{e^{0.0862(V+40.0)} + e^{-0.0862(V+40.0)}} + 13.17$$
(A.286)

Rapid delayed rectifier K⁺ current

$$I_{Kr} = G_{Kr}O_{Kr}(V - E_{Kr})$$
(A.287)

$$E_{Kr} = \frac{RT}{F} \ln\left(\frac{0.98[K^+]_o + 0.02[Na^+]_o}{0.98[K^+]_i + 0.02[Na^+]_i}\right)$$
(A.288)

$$C_{Kr0} = 1 - (C_{Kr1} + C_{Kr2} + O_{Kr} + I_{Kr1})$$
(A.289)

$$\frac{dC_{Kr1}}{dt} = \alpha_{a0}C_{Kr0} - \beta_{a0}C_{Kr1} + k_bC_{Kr2} - k_fC_{Kr1}$$
(A.290)

$$\frac{dC_{Kr2}}{dt} = k_f C_{Kr1} - k_b C_{Kr2} + \beta_{a1} O_{Kr} - \alpha_{a1} C_{Kr2}$$
(A.291)

$$\frac{dO_{Kr}}{dt} = \alpha_{a1}C_{Kr2} - \beta_{a1}O_{Kr} + \beta_{ir}I_{Kr1} - \alpha_{ir}O_{Kr}$$
(A.292)

$$\frac{dI_{Kr1}}{dt} = \alpha_{ir}O_{Kr} + \beta_{ir}I_{Kr1}$$
(A.293)

$$\alpha_{a0} = 0.022348e^{0.01176V} \tag{A.294}$$

$$\beta_{a0} = 0.047002e^{-0.0631V} \tag{A.295}$$

$$\alpha_{a1} = 0.013733e^{0.038198V} \tag{A.296}$$

$$\beta_{a1} = 0.0000689e^{-0.04178V} \tag{A.297}$$

$$\alpha_{ir} = 0.090821e^{0.023391(V+5.0)} \tag{A.298}$$

$$\beta_{ir} = 0.006497 e^{-0.03268(V+5.0)} \tag{A.299}$$

Ca²⁺-activated Cl⁻ current

$$I_{Cl,Ca} = G_{Cl,Ca} O_{Cl,Ca} \frac{[Ca^{2+}]_i}{[Ca^{2+}]_i + K_{m,Cl}} (V - E_{Cl})$$
(A.300)

$$O_{Cl,Ca} = \frac{0.2}{1 + e^{-(V - 46.7)/7.8}}$$
(A.301)

Extracellular ion concentrations

Paramet	Definition	Value	Reference
er			
$[K^+]_o$	Extracellular K ⁺ concentration	5,400 μM	Bondarenko et al. [25]
$[Na^+]_o$	Extracellular Na ⁺ concentration	140,000 μM	Bondarenko et al. [25]
$[Ca^{2+}]_o$	Extracellular Ca ²⁺ concentration	1,800 µM	Bondarenko et al. [25]

Sarcoplasmic reticulum parameters

Paramet	Definition	Value	Reference
er			
v ₂	Ca ²⁺ leak rate constant from the NSR	$1.74 \cdot 10^{-2} \mathrm{s}^{-1}$	Bondarenko et al. [25]
$ au_{tr}$	Time constant for transfer from NSR to JSR	0.02 s	Bondarenko et al. [25]
$ au_{\it xfer}$	Time constant for transfer from subspace to cytosol	0.008 s	Bondarenko et al. [25]

Calmodulin and calsequestrin parameters

Paramete	Definition	Value	Reference
r			
$[CMDN]_{tot}$	Total cytosolic calmodulin concentration	50.0 μM	Bondarenko et al. [25]
$[CSQN]_{tot}$	Total JSR calsequestrin concentration	15,000.0 μΜ	Bondarenko et al. [25]
K_m^{CMDN}	Ca ²⁺ half-saturation constant for calmodulin	0.238 μM	Bondarenko et al. [25]
K_m^{CSQN}	Ca ²⁺ half-saturation constant for calsequestrin	800.0 μM	Bondarenko et al. [25]

Membrane current parameters

Paramete	Definition	Value	Reference
r			
C_m	Specific membrane capacitance	$1.0 \ \mu F/cm^2$	Bondarenko et al. [25]
F	Faraday constant	96.5 C/mmol	Bondarenko et al. [25]
Т	Absolute temperature	298 K	Bondarenko et al. [25]
R	Ideal gas constant	8.314 J mol ⁻¹ K ⁻¹	Bondarenko et al. [25]

k _{NaCa}	Scaling factor for Na ⁺ /Ca ²⁺ exchanger	275 pA/pF	This paper
K _{m,Na}	Na ⁺ half-saturation constant for Na ⁺ /Ca ²⁺ exchanger	87,500 μΜ	Bondarenko et al. [25]
$K_{m,Ca}$	Ca ²⁺ half-saturation constant for Na ⁺ /Ca ²⁺ exchanger	1,380 µM	Bondarenko et al. [25]
k _{sat}	Na ⁺ /Ca ²⁺ exchanger saturation factor at very negative potentials	0.27	This paper
η	Controls voltage dependence of Na ⁺ /Ca ²⁺ exchanger	0.35	Bondarenko et al. [25]
$I_{p(Ca)}^{\max}$	Maximum sarcolemmal Ca ²⁺ pump current	0.051	This paper
$K_{m,p(Ca)}$	Ca ²⁺ half-saturation constant for sarcolemmal Ca ²⁺ pump current	0.5 μΜ	Bondarenko et al. [25]
GCab	Maximum background Ca ²⁺ current conductance	0.000284 mS/µF	This paper
GNab	Maximum background Na ⁺ current conductance	0.0063 mS/µF	This paper
$G_{Kto,s}$	Specific maximum conductivity for the slowly inactivating transient outward K ⁺ current	0.0 mS/µF	Bondarenko et al. [25]
$G_{_{Kss}}$	Specific maximum conductivity for the noninactivating steady-state K ⁺ current	0.0611 mS/µF	Petkova-Kirova et al. [26]
G_{Ks}	Specific maximum conductivity for the slow delayed rectifier K ⁺ current	0.00575 mS/µF	Bondarenko et al. [25]
G_{Kr}	Specific maximum conductivity for the rapid delayed rectifier K ⁺ current	0.078 mS/µF	Bondarenko et al. [25]
k _f	Rate constant for the rapid delayed rectifier K ⁺ current	23.761 s ⁻¹	Bondarenko et al. [25]
k _b	Rate constant for the rapid delayed rectifier K^+ current	36.778 s ⁻¹	Bondarenko et al. [25]
$G_{Cl,Ca}$	Specific maximum conductivity for the Ca ²⁺ -activated Cl ⁻ current	10.0 mS/µF	Bondarenko et al. [25]
$K_{m,Cl}$	Half-saturation constant for the Ca ²⁺ - activated Cl ⁻ current	10.0 µM	Bondarenko et al. [25]
E _{Cl}	Reversal potential for the Ca ²⁺ -activated Cl ⁻ current	-40 mV	Bondarenko et al. [25]

INITIAL CONDITIONS

Variable	Definition	Initial Value
V	Membrane potential	-78.2787 mV
[Ca ²⁺]i	Myoplasmic Ca^{2+} concentration	0.100157 μM
$[Ca^{2+}]_{ss}$	Subspace SR Ca^{2+} concentration	0.100157 μM
[Ca ²⁺]JSR	Junctional SR Ca ²⁺ concentration	1081.23 μM
[Ca ²⁺]NSR	Network SR Ca ²⁺ concentration	1081.23 μM
[LTRPNCa]	Concentration Ca ²⁺ bound by low-affinity troponin binding sites	8.66981 µM
[HTRPNCa]	Concentration Ca ²⁺ bound by high-affinity troponin binding sites	123.369 μM
O^{cav}	L-type Ca ²⁺ channel conducting state (non-phosphorylated, caveolae)	0.320206 · 10 ⁻¹¹
C_1^{cav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, caveolae)	0.973685
C_2^{cav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, caveolae)	0.524483 · 10 ⁻²
C_3^{cav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, caveolae)	0.105944 · 10 ⁻⁴
C_4^{cav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, caveolae)	0.951124 · 10 ⁻⁸
C_P^{cav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, caveolae)	0.320207 · 10 ⁻¹¹
I_1^{cav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, caveolae)	0.308577 · 10 ⁻¹¹
I_2^{cav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, caveolae)	0.217536 · 10 ⁻⁷
I_3^{cav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, caveolae)	0.209641 · 10 ⁻⁷
O_p^{cav}	L-type Ca ²⁺ channel conducting state (phosphorylated, caveolae)	0.562222 · 10 ⁻¹⁰
C_{1p}^{cav}	L-type Ca ²⁺ channel closed state (phosphorylated, caveolae)	$0.206347 \cdot 10^{-1}$
C_{2p}^{cav}	L-type Ca ²⁺ channel closed state (phosphorylated, caveolae)	0.421668 · 10 ⁻³
C_{3p}^{cav}	L-type Ca ²⁺ channel closed state (phosphorylated, caveolae)	0.323128 · 10 ⁻⁵
C_{4p}^{cav}	L-type Ca ²⁺ channel closed state (phosphorylated, caveolae)	0.110051 · 10 ⁻⁷
C_{Pp}^{cav}	L-type Ca ²⁺ channel closed state (phosphorylated, caveolae)	0.140555 · 10 ⁻¹⁰
I_{1p}^{cav}	L-type Ca ²⁺ channel inactivated state (phosphorylated, caveolae)	0.541817 · 10 ⁻¹⁰
I_{2p}^{cav}	L-type Ca ²⁺ channel inactivated state (phosphorylated, caveolae)	0.100683 · 10 ⁻⁶
I ^{cav} _{3p}	L-type Ca ²⁺ channel inactivated state (phosphorylated, caveolae)	0.970287 · 10 ⁻⁷
O ^{ecav}	L-type Ca ²⁺ channel conducting state (non-phosphorylated, extracaveolae)	0.286851 · 10 ⁻¹¹
C_1^{ecav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, extracaveolae)	0.872261
C_2^{ecav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, extracaveolae)	0.469850 · 10 ⁻²
C_3^{ecav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, extracaveolae)	0.949082 · 10 ⁻⁵

C_4^{ecav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, extracaveolae)	$0.852050 \cdot 10^{-8}$
C_P^{ecav}	L-type Ca ²⁺ channel closed state (non-phosphorylated, extracaveolae)	0.286852 · 10 ⁻¹¹
I_1^{ecav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, extracaveolae)	0.276420 · 10 ⁻¹¹
I_2^{ecav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, extracaveolae)	0.194870 · 10 ⁻⁷
I ₃ ^{ecav}	L-type Ca ²⁺ channel inactivated state (non-phosphorylated, extracaveolae)	0.187798 · 10 ⁻⁷
O_p^{ecav}	L-type Ca ²⁺ channel conducting state (phosphorylated, extracaveolae)	0.328449 · 10 ⁻⁹
C_{1p}^{ecav}	L-type Ca ²⁺ channel closed state (phosphorylated, extracaveolae)	0.120548
C_{2p}^{ecav}	L-type Ca ²⁺ channel closed state (phosphorylated, extracaveolae)	0.246338 · 10 ⁻²
C_{3p}^{ecav}	L-type Ca ²⁺ channel closed state (phosphorylated, extracaveolae)	$0.188771 \cdot 10^{-4}$
C_{4p}^{ecav}	L-type Ca ²⁺ channel closed state (phosphorylated, extracaveolae)	0.642918 · 10 ⁻⁷
C_{Pp}^{ecav}	L-type Ca ²⁺ channel closed state (phosphorylated, extracaveolae)	$0.821123 \cdot 10^{-10}$
I_{1p}^{ecav}	L-type Ca ²⁺ channel inactivated state (phosphorylated, extracaveolae)	0.316528 · 10 ⁻⁹
I_{2p}^{ecav}	L-type Ca ²⁺ channel inactivated state (phosphorylated, extracaveolae)	0.588189 · 10 ⁻⁶
I ^{ecav} _{3p}	L-type Ca ²⁺ channel inactivated state (phosphorylated, extracaveolae)	0.566840 · 10 ⁻⁶
C _{Na3}	Fast Na ⁺ channel closed state (non-phosphorylated)	0.436222
C _{Na2}	Fast Na ⁺ channel closed state (non-phosphorylated)	$0.132248 \cdot 10^{-1}$
C _{Na1}	Fast Na ⁺ channel closed state (non-phosphorylated)	0.161178 · 10 ⁻³
O _{Na}	Fast Na ⁺ channel open state (non-phosphorylated)	0.367777 · 10 ⁻⁶
IF _{Na}	Fast Na ⁺ channel inactivated state (non-phosphorylated)	0.153271 · 10 ⁻³
I1 _{Na}	Fast Na ⁺ channel inactivated state (non-phosphorylated)	0.146044 · 10 ⁻⁴
I2 _{Na}	Fast Na ⁺ channel inactivated state (non-phosphorylated)	0.545874 · 10 ⁻⁷
IC _{Na2}	Fast Na ⁺ channel inactivated state (non-phosphorylated)	0.125760 · 10 ⁻¹
IC _{Na3}	Fast Na ⁺ channel inactivated state (non-phosphorylated)	0.414822
C _{Na3p}	Fast Na ⁺ channel closed state (phosphorylated)	$0.610809 \cdot 10^{-1}$
C _{Na2p}	Fast Na ⁺ channel closed state (phosphorylated)	0.185179 · 10 ⁻²
C _{Na1p}	Fast Na ⁺ channel closed state (phosphorylated)	0.225696 · 10-4
$O_{\scriptscriptstyle Nap}$	Fast Na ⁺ channel open state (phosphorylated)	0.515006 · 10 ⁻⁷
IF _{Nap}	Fast Na ⁺ channel inactivated state (phosphorylated)	0.214630 · 10 ⁻⁴
I1 _{Nap}	Fast Na ⁺ channel inactivated state (phosphorylated)	0.217162 · 10 ⁻⁵
I2 _{Nap}	Fast Na ⁺ channel inactivated state (phosphorylated)	0.301835 · 10 ⁻⁷

IC _{Na2p}	Fast Na ⁺ channel inactivated state (phosphorylated)	0.176099 · 10 ⁻²
IC _{Na3p}	Fast Na ⁺ channel inactivated state (phosphorylated)	0.580859 · 10 ⁻¹
<i>P</i> _{<i>C</i>1}	RyR channel closed state (non-phosphorylated)	0.996216
P _{C2}	RyR channel closed state (non-phosphorylated)	0.961561 · 10 ⁻⁴
P ₀₁	RyR channel open state (non-phosphorylated)	0.854737 · 10 ⁻⁵
P _{O2}	RyR channel open state (non-phosphorylated)	0.360412 · 10 ⁻¹⁰
P_{C1p}	RyR channel closed state (phosphorylated)	0.367832 · 10 ⁻²
P_{C2p}	RyR channel closed state (phosphorylated)	0.986431 · 10 ⁻⁶
P_{O1p}	RyR channel open state (phosphorylated)	0.526065 · 10 ⁻⁷
P _{02p}	RyR channel open state (phosphorylated)	0.369705 · 10 ⁻¹²
$[Na^+]_i$	Myoplasmic Na ⁺ concentration	10,508.5 µM
$[K^+]_i$	Myoplasmic K ⁺ concentration	145,400 μM
$f_{PLM,p}^{cav}$	Fraction of phosphorylated phospholemman	0.225905
f_{IKur}^{ecav}	Fraction of non-phosphorylated I _{Kur}	0.908852
aur	Activation gate of non-phosphorylated I _{Kur}	0.713943 · 10 ⁻³
iur	Inactivation gate of non-phosphorylated I _{Kur}	0.996991
aurp	Activation gate of phosphorylated I _{Kur}	0.713943 · 10 ⁻³
İurp	Inactivation gate of phosphorylated I _{Kur}	0.996991
$f_{IKto,f}^{ecav}$	Fraction of phosphorylated I _{Kto,f}	0.252661
a _{to,f}	Activation gate of non-phosphorylated IKto,f	0.533799 · 10 ⁻²
ito,f	Inactivation gate of non-phosphorylated IKto,f	0.999945
ato,fp	Activation gate of phosphorylated I _{Kto,f}	0.111499 · 10 ⁻²
i _{to,fp}	Inactivation gate of phosphorylated I _{Kto,f}	0.999983
$f_{PLB,p}^{cyt}$	Fraction of phosphorylated phospholamban	0.186637
$f_{TnI,p}^{cyt}$	Fraction of phosphorylated troponin I	0.364102
P_{RyR}	RyR modulation factor	0.254152 · 10 ⁻¹¹
akss	Activation gate of I _{Kss}	0.713943 · 10 ⁻³
Ско	mERG channel closed state	0.997365
Ск1	mERG channel closed state	0.135218 · 10 ⁻²
Ск2	mERG channel closed state	0.873596 · 10 ⁻³
Ок	mERG channel open state	0.332600 · 10 ⁻³
Ік	mERG channel inactivated state	0.763767 · 10 ⁻⁴
$[R_{\beta 1}]^{cav}_{PKA,tot}$	Concentration of total β_1 -ARs phosphorylated by PKA (caveolae)	0.799452 · 10 ⁻³ μM

$[R_{\beta 1}]^{cav}_{GRK2,tot}$	Concentration of total β_1 -ARs phosphorylated by GRK2 (caveolae)	$0.626341 \cdot 10^{-27} \mu M$
$[G_s]^{cav}_{\alpha,GTP}$	Concentration of active $G_{s\alpha}$ subunit (caveolae)	$0.132189 \cdot 10^{-2} \mu M$
$[G_s]^{cav}_{\beta\gamma}$	Concentration of $G_{s\beta\gamma}$ subunit (caveolae)	$0.180824 \cdot 10^{-2} \mu M$
$[G_s]^{cav}_{\alpha,GDP}$	Concentration of inactive $G_{s\alpha}$ subunit (caveolae)	$0.487356 \cdot 10^{-3} \mu M$
$[R_{\beta 1}]^{ecav}_{PKA,tot}$	Concentration of total β_1 -ARs phosphorylated by PKA (extracaveolae)	$0.478002 \cdot 10^{-1} \mu M$
$[R_{\beta 1}]^{ecav}_{GRK2,tot}$	Concentration of total β_1 -ARs phosphorylated by GRK2 (extracaveolae)	$0.626341 \cdot 10^{-27} \mu M$
$[G_s]^{ecav}_{\alpha,GTP}$	Concentration of active $G_{s\alpha}$ subunit (extracaveolae)	$0.230801 \cdot 10^{-1} \mu M$
$[G_s]^{ecav}_{\beta\gamma}$	Concentration of $G_{s\beta\gamma}$ subunit (extracaveolae)	$0.237276 \cdot 10^{-1} \mu M$
$[G_s]^{ecav}_{\alpha,GDP}$	Concentration of inactive $G_{s\alpha}$ subunit (extracaveolae)	$0.648475 \cdot 10^{-3} \mu M$
$[R_{\beta 1}]^{cyt}_{PKA,tot}$	Concentration of total β_1 -ARs phosphorylated by PKA (cytosol)	$0.155949 \cdot 10^{-2} \mu M$
$[R_{\beta 1}]^{cyt}_{GRK2,tot}$	Concentration of total β_1 -ARs phosphorylated by GRK2 (cytosol)	$0.626341 \cdot 10^{-27} \mu M$
$[G_s]^{cyt}_{\alpha,GTP}$	Concentration of active $G_{s\alpha}$ subunit (cytosol)	$0.331511 \cdot 10^{-3} \mu M$
$[G_s]^{cyt}_{\beta\gamma}$	Concentration of $G_{s\beta\gamma}$ subunit (cytosol)	$0.663570 \cdot 10^{-3} \mu\text{M}$
$[G_s]^{cyt}_{\alpha,GDP}$	Concentration of inactive $G_{s\alpha}$ subunit (cytosol)	$0.333058 \cdot 10^{-3} \mu M$
$[cAMP]^{cav}_{AC56}$	cAMP concentration produced by AC5/6 (caveolae)	0.000000 μΜ
$[cAMP]^{ecav}_{AC47}$	cAMP concentration produced by AC4/7 (extracaveolae)	0.000000 µM
$[cAMP]^{cyt}_{AC56}$	cAMP concentration produced by AC5/6 (cytosol)	0.000000 µM
$[cAMP]^{cyt}_{AC47}$	cAMP concentration produced by AC4/7 (cytosol)	0.000000 µM
$[PDE3]_p^{cav}$	Concentration of phosphorylated PDE3 (caveolae)	$0.125103 \cdot 10^{-1} \mu M$
$[PDE4]_p^{cav}$	Concentration of phosphorylated PDE4 (caveolae)	$0.580798 \cdot 10^{-2} \mu M$
$[cAMP]^{cav}_{PDE2}$	cAMP concentration degraded by PDE2 (caveolae)	0.000000 µM
$[cAMP]^{cav}_{PDE3}$	cAMP concentration degraded by PDE3 (caveolae)	0.000000 μΜ
$[cAMP]^{cav}_{PDE4}$	cAMP concentration degraded by PDE4 (caveolae)	0.000000 μΜ
$[PDE4]_p^{ecav}$	Concentration of phosphorylated PDE4 (extracaveolae)	$0.158226 \cdot 10^{-1} \mu\text{M}$
$[cAMP]^{ecav}_{PDE2}$	cAMP concentration degraded by PDE2 (extracaveolae)	0.000000 μΜ
$[cAMP]^{ecav}_{PDE4}$	cAMP concentration degraded by PDE4 (extracaveolae)	0.000000 μΜ
$[PDE3]_p^{cyt}$	Concentration of phosphorylated PDE3 (cytosol)	$0.120998 \cdot 10^{-2} \mu M$
$[PDE4]_p^{cyt}$	Concentration of phosphorylated PDE4 (cytosol)	$0.373102 \cdot 10^{-2} \mu M$
$[cAMP]^{cyt}_{PDE2}$	cAMP concentration degraded by PDE2 (cytosol)	0.000000 µM

$[cAMP]^{cyt}_{PDE3}$	cAMP concentration degraded by PDE3 (cytosol)	0.000000 µM
$[cAMP]^{cyt}_{PDE4}$	cAMP concentration degraded by PDE4 (cytosol)	0.000000 µM
$[cAMP]^{cav}_{PKA}$	cAMP concentration change due to binding to PKA (caveolae)	7.92317 μM
$[ARC]^{cav}$	Concentration of PKA RC dimer with 1 cAMP molecule bound (caveolae)	0.299288 μM
$[A_2 RC]^{cav}$	Concentration of PKA RC dimer with 2 cAMP molecules bound (caveolae)	0.303358 · 10 ⁻¹ μM
$[A_2 R]^{cav}$	Concentration of PKA R subunit with 2 cAMP molecules bound (caveolae)	0.858440 μM
$[C]^{cav}$	Concentration of free PKA catalytic subunit (caveolae)	$0.459397 \cdot 10^{-1} \mu M$
$[PKIC]^{cav}$	Concentration of PKI inactivated PKA catalytic subunit (caveolae)	0.823499 μM
$[cAMP]^{ecav}_{PKA}$	cAMP concentration change due to binding to PKA (extracaveolae)	6.74029 μM
[ARC] ^{ecav}	Concentration of PKA RC dimer with 1 cAMP molecule bound (extracaveolae)	0.653988 μM
$\left[A_2 R C\right]^{ecav}$	Concentration of PKA RC dimer with 2 cAMP molecules bound (extracaveolae)	0.132861 μM
$[A_2 R]^{ecav}$	Concentration of PKA R subunit with 2 cAMP molecules bound (extracaveolae)	1.17000 μM
$[C]^{ecav}$	Concentration of free PKA catalytic subunit (extracaveolae)	0.147623 μM
[PKIC] ^{ecav}	Concentration of PKI inactivated PKA catalytic subunit (extracaveolae)	1.03338 μM
$[cAMP]^{cyt}_{PKA}$	cAMP concentration change due to binding to PKA (cytosol)	9.32461 μM
$[ARC]^{cyt}$	Concentration of PKA RC dimer with 1 cAMP molecule bound (cytosol)	0.996350 · 10 ⁻¹ μM
$[A_2 RC]^{cyt}$	Concentration of PKA RC dimer with 2 cAMP molecules bound (cytosol)	$0.140099 \cdot 10^{-1} \mu M$
$[A_2 R]^{cyt}$	Concentration of PKA R subunit with 2 cAMP molecules bound (cytosol)	0.273868 μM
$[C]^{cyt}$	Concentration of free PKA catalytic subunit (cytosol)	$0.665022 \cdot 10^{-1} \mu\text{M}$
$[PKIC]^{cyt}$	Concentration of PKI inactivated PKA catalytic subunit (cytosol)	0.218365 μM
$[Inhib1]_{p,tot}^{cyt}$	Concentration of total phosphorylated PP1 inhibitor 1 (cytosol)	$0.213571 \cdot 10^{-1} \mu M$
$[cAMP]^{cav}$	Concentration of cAMP in caveolae	0.253399 μM
$[cAMP]^{ecav}$	Concentration of cAMP in extracaveolae	0.507889 µM
$[cAMP]^{cyt}$	Concentration of cAMP in cytosol	0.407775 μΜ