Appendix A

Correla	ations	among	Passage	<i>WCPM</i>	within	Grade	and	Passage Se	et
---------	--------	-------	---------	-------------	--------	-------	-----	------------	----

Passage	e Set and												
Num	ber (#)		Gra	de 6			Gra	de 7			Gra	de 8	
А	#	1	6	11	16	6	11	16	21	11	16	21	26
	6	.85											
	11	.88	.91			.90							
	16	.87	.91	.92		.85	.91			.95			
	21	.87	.89	.91	.92	.85	.94	.92		.94	.94		
	26					.85	.91	.90	.92	.92	.91	.92	
	31									.92	.92	.93	.94
	М		.8	39			.9	00			.9)3	
В	#	2	7	12	17	7	12	17	22	12	17	22	27
	7	.88											
	12	.86	.86			.92							
	17	.87	.87	.91		.91	.92			.91			
	22	.84	.84	.87	.88	.91	.87	.90		.87	.90		
	27					.91	.89	.90	.90	.87	.86	.89	
	32									.90	.90	.88	.91
	М		.8	37			.9	91			.8	39	
С	#	3	8	13	18	8	13	18	23	13	18	23	28
	8	.85											
	13	.90	.91			.91							
	18	.85	.89	.89		.89	.92			.92			
	23	.87	.86	.91	.89	.88	.89	.88		.92	.91		
	28					.87	.91	.90	.88	.87	.90	.91	
	33									.87	.90	.90	.92
	М		.8	38			.8	39			.9	00	
D	#	4	9	14	19	9	14	19	24	14	19	24	29
	9	.88											
	14	.88	.90			.88							
	19	.86	.89	.91		.88	.94			.94			
	24	.89	.87	.89	.91	.85	.94	.92		.92	.93		
	29					.87	.93	.92	.93	.91	.93	.92	
	34									.89	.91	.92	.92
	M		.8	39			.9	01			.9	02	
E	#	5	10	15	20	10	15	20	25	15	20	25	30
	10	.91											
	15	.91	.92			.83							

20	.89	.91	.90		.87	.86			.91			
25	.87	.89	.88	.89	.78	.81	.81		.86	.85		
30					.83	.83	.84	.83	.87	.90	.85	
35									.79	.83	.80	.89
М	.90				.8	33			.8	36		

Note. Within Grade and Passage Set, the same students read all five passages, and the passages are ordered from least to highest Lexile score. Passages listed in corresponding orders across Passage Sets within Grade fall within the same Lexile band (e.g., Passages 1 -5 were the first passages read in sets A-D, respectively, within Grade 6 and all fall within Lexile Band 350-460; Passages 6-10 were the second passages read in sets A-D, respectively, within Grade 6 and all fall within Grade 6 and all fall within Lexile Band 461-570, etc.).

Appendix B

Covariance Model Fits and Estimates

		С	ovariance N	Iodel Fits						
Covariance Structure		AIC	BIC	SRMR		AIC	BIC	SRMR		
			NG - NG	Ĵ		G - NG				
Variance Compo	nents (VC)	78604	78615	.06		78606	78628	.14		
Banded Main Dia	gonal	78153	78185	.10		78155	78198	.17		
Autoregressive (A	AR)	78035	78051	.06		78038	78065	.14		
			NG - G			G - G				
Variance Compor	nents	78603	78625	.13		78606	78638	.15		
Banded Main Dia	gonal	77957	78045	.15		77959	78057	.17		
Autoregressive		77892	77931	.19		77890	77939	.15		
		Cova	ariance Mod	lel Estimate	S					
				Intercept		Residual				
Covariance Structure		Grade	Intercept	Variance		Variance	ρ	R^2		
NG-NG VC		6,7,8	125.28	1285.50		269.32		.83		
NG-NG AR		6,7,8	125.47	1178.60		376.97	.46	.76		
NG-G AR		6	124.78	1120.86		286.5	.21	.80		
		7				443.35	.54	.72		
G-G AR		8				640.28	.73	.64		
		6	125.27	1191.63		285.67	.21	.81		
		7		1161.4		437.78	.54	.73		
		8		778.73		855.42	.80	.48		
	NG NG AR Residual Covariance Estimates									
R	ead 1	1	2	3	4	5				
	1 376	5.97								

	3	80.68	174 39	376 97			
	5	00.00	1/4.57	510.71			
	4	37.32	80.68	174.39	376.97		
	5	17.27	37.32	80.68	174.39	376.97	
e. NG-NG	= No gra	de (NG) dif	ferences in	either interc	ept (betwee	n student) or i	residual
hin studen	t) varianc	es in readin	g fluency; C	G-NG = Grader	de (G) diffe	rences in inte	rcept
ances but r	no grade ((NG) differe	ences in resi	dual varianc	es. The cov	ariance struct	ure refe
on loubing	variance	The cover	ionoo struct	ura of the in	targant vari	nnoo woo wori	onaa

174.39 376.97

2

Note (with varia ers to the residual covariances. The covariance structure of the intercept variance was variance components in every case. Variance components models assume a single residual variance (for each of the five reads in this case) and covariances between residuals = 0. The autoregressive

model assumes a single residual variance estimate as well as a single multiplicative factor (ρ). Residual covariances are a function of the variance and ρ estimates as well as the distance between reads (e.g., adjacent residuals such as the residuals for reads 1 and 2, reads 2 and 3, etc. are assumed to have the same covariance which is higher than non-adjacent residuals such as those for reads 1 and 3, reads 2 and 4, etc.). R^2 represents the proportion of variance due to the intercept, i.e., the proportion of variances due to differences between students versus differences within students.