Supplementary Tables to:

Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1)

Anne T. Nies, Elke Schaeffeler, Heiko van der Kuip, Ingolf Cascorbi, Oliver Bruhn, Michael Kneba, Christiane Pott, Ute Hofmann, Christopher Volk, Shuiying Hu, Sharyn D. Baker, Alex Sparreboom, Peter Ruth, Hermann Koepsell, Matthias Schwab **Supplementary Table S1.** Overview of conflicting reports regarding the importance of OCT1 genetics, OCT1 expression, or cellular imatinib uptake for imatinib pharmacokinetics and response

OCT1 genetics	Reference	OCT1 variant	Number of	Effects on imatinib	Effects on imatinib	Significant
_			patients	response	pharmacokinetics	association
	Zach et al. (1)	rs12208357	32	No effect on MMR	No effect on steady state	No
		(c.181C>T, p.R61C)			imatinib plasma level	
	Kim et al. (2)	rs683369	229	Higher rate of loss of		Yes
		(c.480G>C, p.L160F)		response		
	Gromicho et al. (3)	rs683369	33	No correlation with		No
		(c.480G>C, p.L160F)		treatment response		
	Bazeos et el. (4)	rs3413049	60	Higher rate of MMR		Yes
		(c.1201G>A, p.G401S)				
	Takahashi et al. (5)	rs628031	62	Higher rate of MMR		Yes
		(c.1222A>G, p.M408V)				
		rs628031	62		No effect on C _{minutes}	No
		(c.1222A>G, p.M408V)				
	White et al. (6)	rs12208357	136	No effect on MMR		No
		(c.181C>T, p.R61C)				
		rs72552763				
		(c.1260_1262delGAT, p.M420del)				
		and others				
	Maffioli et al. (7)	rs12208357	65	No correlation with		No
		(c.181C>T, p.R61C)		overall inadequate		
		rs72552763		response		
		(c.1260_1262delGAT, p.M420del)				
		rs628031				
		(c.1222A>G, p.M408V)				
		rs6935207	65	Correlation with overall		Yes
		(c105-1690G>A)		inadequate response		
	Giannoudis et al. (8)	rs35191146	177	Higher risk of treatment		Yes
		(c.1260_1262delGAT, p.M420del)		failure		
	Angelini et al. (9)	combination of several alleles	189	Higher rate of MMR		Yes
	Seong et al. (10)	rs2282143	82	No effect on CCR or	No effect on imatinib	No
		(c.1022C>T, p.P341L)		MMR	trough concentration	
	Nambu et al. (11)	rs2282143	15		No effect on steady state	No
		(c.1022C>T, p.P341L)			imatinib plasma level	
	Yamakawa et al.	rs2282143	34		No effect on imatinib	No

	(12)	(c.1022C>T, p.P341L)			clearance	
	Singh et al. (13)	Haplotype of rs3798168, rs628031 (c.1222A>G, p.M408V), rs80301372 (IVS7+850C>T)	38		Significant association with imatinib clearance	Yes
<i>OCT1/SLC22A1</i> mRNA level	Reference	Cell type	Number of patients	Effects on imatinib response		Significant association
	Crossman et al. (14)	BM MNC	15	8-fold higher pre-treatmen patients who achieved CC treatment than non-respor	nt OCT1 mRNA levels in CR by 12 months of imatinib aders	Yes
	Wang et al. (15)	PBC	70	High pre-treatment OCT1 with significantly better o survival rates than low OO Note: this association is lo do not cover OCT1 variar	mRNA levels associated verall and progression-free CT1 levels ost when primers are used that at rs35191146(8)	(Yes)/No
	Zhang et al. (16)	РВС	68	No difference in OCT1 m diagnosis between patient months of imatinib therap	RNA levels at time of s achieving CCR by 12 y or not achieving CCR	No
	Marin et al. (17)	PBC	60	High OCT1 mRNA at time of diagnosis in patients with CP-CML associated with better rates of MMR and CMR by 6 years of imatinib treatment		Yes
	White et al. (18)	PB MNC	56	No difference in achieving MMR between patients with high or low OCT1 mRNA levels at time of diagnosis		No
	White et al. (19)	PB MNC	46	No difference in achievin patients with high or low of diagnosis	g MMR or CMR between OCT1 mRNA levels at time	No
	Zhong et al. (20)	BM MNC	84	Higher OCT1 mRNA leve than in non-responders	els in patients achieving CCR	Yes
	Nardinelli et al. (21)	PBC	88	High OCT1 mRNA at tim CP-CML associated with and 18 months of imatinit	e of diagnosis in patients with higher rates of MMR by 12 treatment	Yes
	Gromicho et al. (3)	PB MNC, BM MNC	33	Higher OCT1 mRNA levels in patients sensitive to imatinib treatment		Yes
Cellular imatinib uptake	Reference	Cell type	Number of patients	Effects on imatinib resp	onse	Significant association
	White et al. (18)	PB MNC	56	Higher cellular imatinib u rates of achieving MMR a imatinib treatment	ptake associated with higher and CMR by 2 years of	Yes
	White et al. (19)	PB MNC	56	Higher cellular imatinib u rates of achieving MMR a imatinib treatment	ptake associated with higher and CMR by 5 years of	Yes

Engler et al. (22)	PB MNC	34	Higher cellular imatinib uptake associated with higher	Yes
			rates of achieving MMR by 12 months of imatinib	
			treatment	
Engler et al. (22)	CD34 ⁺	34	Cellular imatinib uptake not associated with MMR by	No
			12 months of imatinib treatment	
White et al. (23)	PB MNC	100	Higher cellular imatinib uptake associated with higher	Yes
			rates of achieving MMR by 2 years of imatinib	
			treatment	

BM MNC, bone marrow mononuclear cells

CCR, complete cytogenetic response

CMR, complete molecular response

CP, chronic phase

MMR, major molecular response

PBC, peripheral blood cells

PB MNC, peripheral blood mononuclear cells

Supplementary Table S2

Multiple reaction monitoring (MRM) transitions and MS parameters for determination of

imatinib, N-desmethy	l imatinib and	l their internal	standards	with LC-MS-MS
----------------------	----------------	------------------	-----------	---------------

Analyte	MRM transition	Dwell time	Fragmentor	Collision energy
	(m/z)	(ms)	(V)	(V)
Imatinib	494.3 > 394.1	50	162	22
Imatinib-d ₈	502.3 > 394.1	50	162	22
N-Desmethyl imatinib	480.3 > 394.1	50	165	22
<i>N</i> -Desmethyl imatinib-d ₈	488.3 > 394.1	50	165	22

Supplementary Table S3

Characteristics of SLC family members whose mRNA expression has been quantified by real-time PCR in the present study. SLC transporters (24) were selected based on the core and extended list of the PharmaADME Consortium (http://www.pharmaadme.org) and are considered as important for drug uptake

SLC family Investigated family members Selected drug substrates Family name SLC2 Facilitative GLUT transporter SLC2A4, SLC2A5 Sodium glucose transporter SLC5 SLC5A8, SLC5A12 Nicotinate Sodium- and chloride-dependent SLC6 SLC6A6 Paroxetine, fluoxetine neurotransmitter transporter SLC7 Cationic aminuteso acid SLC7A5 Gabapentin transporter/glycoprotein-associated SLC10 Sodium bile salt cotransport Bile acid-coupled cytostatic drugs, statins SLC10A1, SLC10A2 Proton oligopeptide cotransporter SLC15 β-lactam antibiotics SLC15A1, SLC15A2, SLC15A3, SLC15A4 SLC16 Monocarboxylate transporter SLC16A1, SLC16A3, SLC16A7 Salicylate, statins Folate/thiaminutese transporter SLC19 SLC19A1 Methotrexate Benzylpenicillin, methotrexate, paclitaxel, rifampicin, SLCO SLCO1A2, SLCO1B1, SLCO1B3, SLCO1C1, SLCO2A1, Organic anion transporter statins, troglitazone, valsartan SLCO2B1, SLCO3A1, SLCO4A1, SLCO4C1, SLCO5A1, SLCO6A1 Antiviral drugs, metformin, methotrexate, platinum SLC22 Organic cation/anion/zwitterion SLC22A1, SLC22A2, SLC22A3, SLC22A4, SLC22A5, compounds SLC22A6, SLC22A7, SLC22A8, SLC22A9, SLC22A11, transporter SLC22A12, SLC22A13, SLC22A14, SLC22A15, SLC22A16, SLC22A17, SLC22A18, SLC22A18AS SLC27 Fatty acid transporter SLC27A1

SLC28	Na+-coupled nucleoside transporter	SLC28A1, SLC28A2, SLC28A3	Antiviral drugs, gemcitabine
SLC29	Facilitative nucleoside transporter	SLC29A1, SLC29A2, SLC29A3, SLC29A4	Antiviral drugs, gemcitabine
SLC47	Multidrug and Toxin Extrusion (MATE)	SLC47A1, SLC47A2	Antiviral drugs, metformin, platinum compounds

References

- 1. Zach O, Krieger O, Foedermayr M, Zellhofer B, Lutz D. OCT1 (SLC22A1) R61C polymorphism and response to imatinib treatment in chronic myeloid leukemia patients. Leuk Lymphoma 2008;49:2222-3.
- 2. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 2009;15:4750-8.
- 3. Gromicho M, Magalhaes M, Torres F, Dinis J, Fernandes AR, Rendeiro P, et al. Instability of mRNA expression signatures of drug transporters in chronic myeloid leukemia patients resistant to imatinib. Oncol Rep 2012;29:741-50.
- 4. Bazeos A, Marin D, Reid AG, Gerrard G, Milojkovic D, May PC, et al. hOCT1 transcript levels and single nucleotide polymorphisms as predictive factors for response to imatinib in chronic myeloid leukemia. Leukemia 2010;24:1243-5.
- Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 2010;55:731-7.
- 6. White DL, Saunders VA, Dang P, Engler J, Hughes TP. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia 2010;24:1962-5.
- 7. Maffioli M, Camos M, Gaya A, Hernandez-Boluda JC, Alvarez-Larran A, Domingo A, et al. Correlation between genetic polymorphisms of the hOCT1 and MDR1 genes and the response to imatinib in patients newly diagnosed with chronic-phase chronic myeloid leukemia. Leuk Res 2011;35:1014-9.
- 8. Giannoudis A, Wang L, Jorgensen AL, Xinarianos G, Davies A, Pushpakom S, et al. The hOCT1 SNPs M420del and M408V alter imatinib uptake and M420del modifies clinical outcome in imatinib-treated chronic myeloid leukaemia. Blood 2013;121:628-37.
- 9. Angelini S, Soverini S, Ravegnini G, Barnett M, Turrini E, Thornquist M, et al. Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica 2013;98:193-200.
- 10. Seong SJ, Lim M, Sohn SK, Moon JH, Oh SJ, Kim BS, et al. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 2013;24:756-60.
- 11. Nambu T, Hamada A, Nakashima R, Yuki M, Kawaguchi T, Mitsuya H, et al. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biol Pharm Bull 2011;34:114-9.
- 12. Yamakawa Y, Hamada A, Nakashima R, Yuki M, Hirayama C, Kawaguchi T, et al. Association of Genetic Polymorphisms in the Influx Transporter SLCO1B3 and the Efflux Transporter

ABCB1 With Imatinib Pharmacokinetics in Patients With Chronic Myeloid Leukemia. Ther Drug Monit 2011;33:244-50.

- 13. Singh O, Chan JY, Lin K, Heng CC, Chowbay B. SLC22A1-ABCB1 Haplotype Profiles Predict Imatinib Pharmacokinetics in Asian Patients with Chronic Myeloid Leukemia. PLoS ONE 2012;7:e51771.
- 14. Crossman LC, Druker BJ, Deininger MW, Pirmohamed M, Wang L, Clark RE. hOCT 1 and resistance to imatinib. Blood 2005;106:1133-4.
- 15. Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 2008;83:258-64.
- 16. Zhang WW, Cortes JE, Yao H, Zhang L, Reddy NG, Jabbour E, et al. Predictors of primary imatinib resistance in chronic myelogenous leukemia are distinct from those in secondary imatinib resistance. J Clin Oncol 2009;27:3642-9.
- 17. Marin D, Bazeos A, Mahon FX, Eliasson L, Milojkovic D, Bua M, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol 2010;28:2381-8.
- 18. White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 2007;110:4064-72.
- 19. White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, et al. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol 2010;28:2761-7.
- 20. Zhong JS, Meng FY, Xu D, Zhou HS, Dai M. Correlation between imatinib trough concentration and efficacy in Chinese chronic myelocytic leukemia patients. Acta Haematol 2012;127:221-7.
- 21. Nardinelli L, Sanabani SS, Didone A, Ferreira PB, Serpa M, Novaes MM, et al. Pretherapeutic expression of the hOCT1 gene predicts a complete molecular response to imatinib mesylate in chronic-phase chronic myeloid leukemia. Acta Haematol 2012;127:228-34.
- 22. Engler JR, Frede A, Saunders V, Zannettino A, White DL, Hughes TP. The poor response to imatinib observed in CML patients with low OCT-1 activity is not attributable to lower uptake of imatinib into their CD34+ cells. Blood 2010;116:2776-8.
- 23. White DL, Radich J, Soverini S, Saunders VA, Frede AK, Dang P, et al. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica 2012;97:907-14.
- 24. Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol Aspects Med 2013;34:95-107.