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ABSTRACT The concepts of entropy and reproductive po-
tential of a genotype were introduced in a previous paper
[Demetrius, L. (1974) Proc. NatL Acad. Sci. USA 71,4645-46471
and an analogue of the fundamental theorem of natural selec-
tion was derived. This paper relates the entropy of a population
with the rate of convergence of the population to the stable age
distribution. I show that (i) at maximal entropy, no oscillatory
components exist and the birth sequence is unaffected by per-
turbations in the stable age distribution; and (ii) at zero entropy,
oscillatory components occur and-increase as rapidly as the real
exponential component in the birth sequence.
These results have inmplicatfons towards (i) the relation be-

tween population fitness and adaptedness, (ii) modes of selec-
tion and the evolution of reproductive strategies, and (iii) the
evolution of senescence.

One measure of the stability of a population is its resistance to
environmental perturbations, that is, its rate of return to the
equilibrium state when disturbed. This property is of crucial
importance in understanding the evolution of reproductive
strategies under natural selection.

In an earlier paper (2) 1 analyzed the adaptive properties of
iteroparity in terms of an entropy concept introduced in ref 1.
Furthermore, I indicated a relation between the entropy of a
population and its resistance to environmental changes.

-This paper-gives a precise formulation of this idea. I use the
rate of convergence to the stable age distribution as a measure
of demographic stability and show that (i) at maximal entropy,
no oscillatory components exist and the population is maximally
stable; and (ii) at zero entropy, oscillatory components occur
and the period of oscillation is precisely the generation time.

For a more complete account of the demographic facts I cite
in Section I, see books by Coale (3) and Keyfitz (4). The results
in Section II are based on some deep connections between er-
godic theory, statistical mechanics, and population biology. For
the mathematical basis of this connection, see refs. 1, 5, and
6.

I. Let u(x,t) denote the age distribution of the population at
time t, and let ,u(x,t) be the age-specific death rate. The dy- -

namics of the population is given by the von Foerster equa-
tion

au da
- + = -u(x,t)uAx at

[1.1]

with boundary conditions
C.

u(Ot) = fm(x,t)u(xt)dx

u(aO) = uO(a)

m(x,t) represents the age-specific fecundity and uo(a) denotes
the initial age distribution. Eq. [1.1 ] can be reduced to the re-
newal equation

B(t) = f(t) + f V(xt)B(t - x)dx

where B(t) = u(O,t) and f(t) = S t -h(x,t)m(x,t)uo(x - t)dx.
Also,

V(xt) = l(xt)m(xt)

and h(x,t) = exp[-Sot,.t(x - t + y,y)dy] and 1(x,t) =
exp[-Soxt(y,t - x + y)dy].
Asuming that 1(xt) and m(x,t) are independent of t, we have

that the growth rate r is the unique positive root of the Lotka
integral equation

[1.2]J e-rx V(x)dx = 1.
0

Let (rj) denote the roots of [1.2]. If these roots are all distinct,
then

B(t)= E Qerit
i .0

where
ow

f(t)e-r -t dt
Qj=°-c

fter V(t)dt

II. We now consider Lotka's equation

f erxl(x)m(x)dx = 1.
0o

[2.1]

The net reproductive rate is Ro = foI1(x)m(x)dx. The proba-
bility density function for the ages at which offspring will be
produced is given by

q(X) =I(X)m(r)
l

o

The entropy of the population is defined as

fq(x) log q(x)dx

fxq(x)dx

This expression for the entropy can be derived by using a
variational principle argument (1). The expectation of q(x) is
T = fO&xq(x)dx. This is the cohort generation time.
The entropy, h, measures the variability of the contribution

of the different age classes to Ro. In ref. 1 I used a measure of
entropy based on p(x) = e-rxl(x)m(x), the probability density
function for the age of reproducing individuals. See ref. 7 for
a discussion concerning the relation between these two measures
of entropy. From [2.1] we have

% = f; e-rx q(x)dx.
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Now, let /(-r) denote the cumulant generating function of
q(x). Then ^6(-r) = -logeRo + 2niri (n = 0, +1, +2 ...

And

loge Ro-2flnvr = ri-2 r2g2+ -j r3p3-... [2.2]

where An is the nth cumulant of the distribution.
The positive real root of [2.1] is given when n = 0. In this case,

we have

loge Ro = ryi -2 r2/12 + 1j - *. [2.3]

where ,un = pn(T). We call [2.3] the equation of state of a
population. This equation was known to Lotka (8).
We recall that the demographic parameters considered in

this paper all have analogues in statistical physics. In particular,
the generation time corresponds to the reciprocal of the tem-
perature. We use the term "equation of state" to describe [2.3]
since this equation is analogous to the classic equation of state
for gases. In this case, the cumulants n are functions of tem-
perature and are known as the virial coefficients. Particular
expressions for the virial coefficients will yield the van der
Waals equation.
We now examine the stability of a population under two

conditions.
Maximal entropy. There is a unique distribution that max-

imizes h for a given generation time T. We have

q(x) = e-x/TIT, x > 0.

The characteristic function for this distribution is given by

0(t) = 1/(1 - itT).
The cumulants of all orders exist and

n= coefficient of (it)'/(n!) in - log (1 - itT)

(n-1)! Tn.
The roots of the Lotka integral equations are given by

loge RO + 2niri = rT -2 r2T2 + Ir3T3-....
2 3

It is easy to show that this equation has no complex roots. The
unique real root ro is given by ro = (Ro- 1)/T. The birth se-

quence is

B(t) = Qoerot
Clearly the birth sequence is immediately stabilized when the
stable age distribution is perturbed.

Zero entropy. At zero entropy, reproduction occurs at a single
age, say x = a and q(x) = 6(x - a), where 6(x) is the Dirac-delta
function.

Consider the Gaussian distribution q*(x) with mean T and
variance u2.

q*(x)= exp [-(x - T)2/2a2l.

Let p* denote the nth cumulant of the distribution. Then ,Al*
= T, M2* = 0y2 and An* = 0, n >-2. Now 6(x - T) = limb-_o
1/aux/ exp[-(x - T)2/2ou2]. Hence, in the case of the
Dirac-delta function, the roots rn of [2.2] are given by

logeRo= rnT+2zz7ri

and

rn = (loge RO/T) - (2nri/T).

The birth sequence is
a0

B(t) = Ro'tT Z Q e2Trint/T.
n=O

The behavior is a purely oscillatory component and a constant
multiplied by the same real exponential factor. The period of
oscillation is precisely the generation time, T.

I should point out that Coale (3) and Keyfitz (9) have studied
some aspects of the effects of the maternity function V(x) on
the rate of convergence to the stable age distinction. These
authors, however, were unaware of the unifying force of the
entropy concept as a measure of population resonance.

DISCUSSION
Fitness and Adaptedness. Adaptedness of a population

describes the ability of a population to live and reproduce in
a wide variety of environments. The fitness of a genotype refers
to the average contribution that carriers of that genotype make
to the gene pool of successive generations. These are two of the
most fundamental concepts in population biology, and several
attempts have been made to give these notions a quantitative
basis. The pioneering work of Fisher (10) has revolved around
the Malthusian parameter as a measure of fitness. Attempts to
explain the evolution of reproductive strategies, as in the work
of MacArthur and Wilson (11) on r sand K selection and of
Medawar (12), Williams (13), and Hamilton (14) on the evo-
lution of senescence, have essentially been based on Fisher's
ideas.

Recently, however, theoretical and experimental studies (15,
16) on populations in random and fluctuating environments
have shown the imperfect correlation between the Malthusian
parameter and population adaptedness.

These results have stimulated the search for- measures of
fitness that predict population stability and persistence under
varying environmental regimes. The work of Lerner has been
influential in this regard. In ref. 17, the term genetic homeo-
stasis was used to describe the condition of population equi-
librium in which phenotypic composition was insensitive to
environmental changes. This stability is achieved by the su-
perior adaptedness of heterozygous genotypes. Genetic ho-
meostasis has a demographic correlate. We use the term "de-
mographic homeostasis" to describe the ability of the birth se-
quence to maintain its stable trajectory when subject to envi-
ronmental disturbances. This condition is characterized by the
variability of the contribution of the different age classes to the
stable age distribution. This is measured by the entropy pa-
rameter. The mathematical relation between entropy and
stability suggests that the demographic parameters, growth rate,
entropy, and generation time, give a complete description of
the adaptive properties of a population.
Modes of Selection. The theory of r and K selection pro-

posed by MacArthur and Wilson (11) claims that in variable and
fluctuating environments, genotypes with high r will be con-
stantly favored. K selection is described as selection favoring
competitive ability, which is considered crucial in stable envi-
ronments where populations are at their carrying capacity,
which is given by K. This theory, which ignores the complexity
of the life cycle of the population, implicitly assumes that the
parameters r and K completely describe the evolutionary dy-
namics of a population.

However, in a variable environment, a population can avoid
certain extinction if its mean growth rate r is larger than W2/2,
where W2 denotes the environmental variance (18). For popu-
lations without age structure, there will be an intense selection
for a high r, as there exist no internal mechanism to reduce the
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effects of environmental variance. For populations with com-
plex life cycles, the effects of environmental variance can be
reduced by selection favoring genes that confer a resistance to
environmental fluctuations. These genotypes have high en-

tropy. This mode of selection, whereby population stability is
increased through its effect on the homeostatic ability of gen-
otypes, is termed h selection (2).

Senescence. The term senescence describes an organism's
increasing likelihood of death with increasing age. This con-

dition, which appears to be the antithesis of adaptation, has been
studied from an evolutionary point of view by several workers
(12-14). These authors claim that senescence is due to the action
of pleiotropic genes, which have positive effects on adaptedness
at early ages and adverse effects at later stages in the life history.
These arguments all point to aging as evolving under the effect
of indirect selective pressures.

However, senescence can be considered as one of a large class
of life-history patterns that have evolved to maximize entropy,
with constraints on the generation time and the variance in
generation time. For a given generation time, T, the maximum
entropy is given by a maternity function which is negative
exponential. The following inferences may be drawn con-

cerning the life history of a population at maximum entro-
py.

(a) If the age-specific death rate is bounded by the reciprocal
of the generation time, then fecundity decreases with age.

(b) If the age-specific death rate is equal to the reciprocal of
the generation time, then fecundity is independent of age.

(c) If the age-specific death rate is greater than the reciprocal
of the generation time, then fecundity increases with age.
When the age-specific death rate is a constant, then its re-

ciprocal is precisely the prospective life time of an individual.
Hence (b) can be described as follows: (b)' if the prospective
life-time is equal to the mean generation time, then fecundity
is independent of age.
By imposing further constraints on the demographic pa-

rameters, we restrict the set of life-history patterns that are

compatible with the maximization of entropy. If we fix the
variance in generation time, then the net maternity function
that maximizes entropy is a Gaussian distribution. This yields
life-history patterns similar to (a) and (c).

Possibilities (a) and (c) are both compatible with an age-
specific death rate that increase with age. However, for (c) we
have senescence associated with a fecundity that increase with

age, whereas for (a) senescence is always associated with a fe-
cundity that decreases with age; (b) corresponds to nonsenescent
populations.

This point of view not only explains the nonuniversal nature
of senescence, but specifies the kdnd of demographic constraints
that may operate when senescence prevails.

I am indebted to Ansley Coale and James F. Crow for criticism of
preliminary drafts of the manuscript.
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