Supporting Information

Watanabe et al. 10.1073/pnas.1320599111

Fig. S1. Molecular characterization of CpcL and CpcG variants. (*A*) Sequence alignment, (*B*) hydropathy plots, and (*C*) domain architecture are shown for the four proteins. The hydrophobic segment specific to CpcL is highlighted in magenta. Linker domains are highlighted in blue. The underlined sequences indicate synthetic peptides that were used to generate antibodies.

Fig. 52. Fractionation of *n*-dodecyl- β -*n*-maltoside (DM)-solubilized thylakoids by linear sucrose gradient centrifugation in the presence of a low-salt buffer. (*A*) Fractionation profile after centrifugation at 130,000 \times *g* for 18 h at 4 °C. The sucrose gradient contained 0.005–0.05% DM. (*B*) Blue-native PAGE of the fractions. Fraction numbers correspond to those of 0.01% DM in *A*. Thylakoid (thy) was used as a marker.

Fig. S3. Representative examples of EM projections of negatively stained phycobilisome (PBS)–CpcL–photosystem I (PSI) supercomplex and fragments of these complexes. (*A–D*) Projection maps showing PSI tetramers in an almost nontilted situation with one to two vertically positioned phycocyanin (PC) rods attached at the periphery. Models at 70% scaling illustrate positions of the PC hexamers of the CpcL–PBS rods (blue) on the tetramers (green). (*E* and F) Projection maps of tetramers with two rods, each composed of two PC hexamers, which have fallen over. (*G* and *H*) Projection maps of tetramers in the top-view position with disintegrated rods made of three PC/PEC hexamers. The first two hexamers are in a side-on position, the last (*Upper*) hexamer lays in a face-on position. (*I* and *J*) Projection with a PBS rod consisting of four PC/PEC hexamers attached. (*L*) Rare case of a projection of a tetramer with three PBS rods attached. (Scale bar = 200 Å.)

Anabaena 7120 Anabaena variabilis Fischerella JSC11	****: ********************************	100 100 100
Anabaena 7120 Anabaena variabilis Fischerella JSC11	.*******:.****************************	198 198 200
Anabaena 7120 Anabaena variabilis Fischerella JSC11	:: * :* .*::: * :: **:: **: **: **: NNSANQNYDG <mark>VAILGVLLAISAGMTPEFVLNWL</mark> GISSSF 237 NNSANQNYDG <mark>MAILGVLLAISTGLTPEFVLNWL</mark> GISSSF 237 YGFLAPSPYPKQVDW <mark>RTISAVIIGLSGIIAFLLINWF</mark> VNSSAF 244	

Fig. 54. Sequence alignment of CpcL species. The hydrophobic segment is highlighted in magenta. Linker domains are highlighted in blue. Anabaena variabilis, CP000117.1; Fischerella sp. JSC-11, AGIZ00000000. *, identical residues; :, conserved residues; ., similar residues.

Fig. 55. Phylogenetic tree of linker domains of members of the CpcG/CpcL superfamily. The tree was inferred using the neighbor-joining method with ClustalX (http://www.clustal.org/). Tree stability was evaluated by bootstrap analysis with 1,000 replicates. CpcL and CpcG are highlighted in yellow and green, respectively.

Table S1. N-terminal amino acid sequencing showing the determined sequences

Subunit	Amino acid sequence
PsaC	MSHTVKIYDTCIGCTQCVRACPTDVLEMVPWDGCKAAQVASSPRTEDCVGCKRCETACPTDFLSIRVYLGAETTRSMGLAY
PsaD	M AETLSGKTPL FAGSTGGLLTKAVEEEKYAITWTSPKAQVFELPTGGAATMHEGENLLYIARKEYGIALGGQLRKFKITNYKIYRILPSGETTFIHPAD
	GVFPEKVNAGREKVRFNARSIGENPNPSQVKFSGKATYDA
PsaE	M VQRGSKVRIL RPESYWFQDVGTVASVDQSGIKYPVIVRFDKVNYAGINTNNFAVDELIEVEAPKAKAKK
PsaF	MRRLFALILVICLSFSFAPPAKA LGADLTPCAENPAFQALA KNARNTTADPQSGQKRFERYSQALCGPEGYPHLIVDGRLDRAGDFLIPSILFLYI
	AGWIGWVGRAYLQAIKKDSDTEQKEIQLDLGIALPIIATGFAWPAAAVKELLSGELTAKDSEITVSPR
Psal	MATAFLPSILA DASFLSSIFV PVIGWVVPIATFSFLFLYIEREDVA
PsaJ	MADKADQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFPDLLFHPLP
PsaK	MLTSTLLA AATTPLEWS PTVGIIMVIANVIAITFGRQTIKYPSAEPALPSAKFFGGFGAPALLATTAFGHILGVGLVLGLHNLGRI
PsaL*	M <u>AQAVDASKNLPSDPRNREVVFPAGRDP</u> QWGNLETPVNASPLVKWFINNLPAYRPGLTPFRRGLEVGMAHGYFLFGPFAKLGPLRDAANANLAGLL
	GAIGLVVLFTLALSLYANSNPPTALASVTVPNPPDAFQSKEGWNNFASAFLIGGIGGAVVAYFLTSNLALIQGLVG
PsaX	MAKAKISPVANTGAKPPYTFRTGWALLLLAVNFLVAAYYFHIIQ
PecC	M SSSVAERLAIRDAIG NKVELRQNWSEDDLQKVFRAAYEQIFGRQGIYASQKFTSAEALLRNGKISVRQFVEILAKSEFYKECFFYKNSQVRLIELNY
	KHLLGRAPYDQSEIADHVDIYAARGYDADIDAYIYSSEYENAFGNSIVPYYRGFQSIPGMKTVGFNRICELYRGRGNSDNAQMGRTNSRLR
	TKVSLNLPNGILPPTSAGTNFVSAAPTLISSATKGDNRMFVIEAIAGGLNTNVAVRRSRQVYTVSYERLSATYQEIHKRGGKIVKISQV
CpcA	M VKTPITEAIA AADTQGRFLGNTELQSARGRYERAAASLEAARGLTSNAQRLIDGATQAVYQKFPYTTQTPGPQFAADSRGKSKCARDVGH
	YLRIITYSLVAGGTGPLDEYLIAGLAEINSTFDLSPSWYVEALKHIKANHGLSGQAANEANTYIDYAINALS
СрсВ	M TLDVFTKVVSQADSRGEFLS NEQLDALANVVKEGNKRLDVVNRITSNASAIVTNAARALFEEQPQLIAPGGNAYTNRRMAACLRDMEIILRYV
	TYAILAGDASVLDDRCLNGLRETYQALGTPGSSVAVGVQKMKDAAVGIANDPNGITKGDCSQLISEVASYFDRAAAAVG
CpcC	M AITTAASRLGTEPF SDAPKVELRPKASREEVESVIRAVYRHVLGNDYILASERLVSAESLLRDGNLTVREFVRSVAKSELYKKKFFY
	NSFQTRLIELNYKHLLGRAPYDESEVVYHLDLYQNKGYDAEIDSYIDSWEYQSNFGDNVVPYYRGFETQVGQKTAGFNRIFRLYRGYANSD
	RAQVEGTKSRLARELASNKASTIVGPSGTNDSWGFRASADVAPKKNLGNAVGEGDRVYRLEVTGIRSPGYPSVRR
	SSTVFIVPYERLSDKIQQVHKQGGKIVSVTSA
CpcD	M FGQTTLGAGSVSSS ASRVFRYEVVGLRQSSETDKNKYNIRNSGSVFITVPYSRMNEEYQRITRLGGKIVKIEQLVSAEA
CpcG1	M SIPLLEYAPSSQN QRVEGYEVPNEDTPTIYRLAAAIDDADVDAIIWAGYRQIFSEHLIIKSNRQSFLESQLRNRAINVRDFIRGLG
	KSEVYRTQVADLNSNYRLVDITLKRFLGRAAYNQDEEIAWSIVIGSQGLHGFIDALLDSDEYRENFGDDIVPYQRRRYKDRPFNLVNPRYNAY
	WRDRQTLNALGGRSFYSARTSGTLTKDDIRRAIPANFMALAGKILTPERNYQRTIASVTSQIKDIKIPDTSREVTTPEVTVKPVAVALPYRYIPGNKTT
CpcG2	M SIPLLEYKPSSQNQ RVPGYEVPNEDTPRIYRIEDAAYDSELKELIWATYRQVFSEHVILKFFRQGNLESQLKNRAISVRDFVRGLAK
	SEAFKTLVIKSNSNYRLVELALKRLLGRAPYNKDEEIAWSIKIATNGWDGFVDALLDSEEYQSNFGENIVPYQRRRYKDRPFNLVTPRYGNYW
	RDKLESERYIEGDIKNFLELAKSIEIKTVTFTPVSTANIKIPDTTRNTTPTGIPISVNPSANFPVR
CpcG4	MALPLLQYKPSSQNHRVTSFGAADQNEDTPYIYRIEDVSSYTDIQNIIWASYRQVFSEHEILKFNRQKTLESQVKNGSISVRDFIRGLAKSEAF
	YRLVVSVNNNYRLVDITLKRLLGRSSYNKDEQIAWSIVIGTKGFSGFVDALIDSEEYTKNFGENIVPYQRKRMEGRPHNLVTPRY
	GEDFQEKAGTVQTDWRFTLDKFYSRKSQEKQLREGDPRKFADLAASVGNQGNYAQRISAFDIDYLNAVPNRSRR
CpcL	M ALPLLEYKPTTQNQR VQSFGTADVNEDTPYIYRLENANSPSEIEELIWAAYRQVFNEQEILKFNRQIGLETQLKNRSITVKDFIRGLAKSERFYQLVV
	GRMSNWNNSANQNYDGVAILGVLLAISAGMTFLFVLNWLGISSSF
ApcC	MSRLFKITALVPSLSRTRTQRELQNTYFTKLVPYENWFREQQRIQKAGGKIIKVELATGKQGTNAGLQ

Determined sequences are in boldface.

PNAS PNAS

*Three distinct N-terminal sequences are underlined.