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Supporting Appendix 

 

Supplementary notes 

 

Note 1: The Turing Model of pattern formation. 

Diffusion-driven instability is a canonical mechanism invoked to explain the emergence of 

space-filling patterns from an initially homogeneous condition (1-3). In the simplest case, the 

system is constituted of two diffusible and reactive substances (the morphogens). One of them is 

an activator; it stimulates the production of itself as well as its antagonist, the inhibitor. The 

inhibitor represses the production of the activator. Both the activator and the inhibitor have finite 

life times. It was pointed out by Turing (2) that a homogeneous state of this system is unstable, in 

the sense that any random fluctuation will get amplified and develop into spatially structured 

patterns, if certain criteria of the kinetic properties of the morphogens are satisfied. These criteria 

are commonly known as “short-range activation and long-range inhibition”. Typically, they are 

realized by having activators that are either short lived and/or slow diffusing (or inhibitors that 

are long lived and/or fast diffusing), such that the synthesis of activators and inhibitors only 

occur in localized neighborhoods (e.g., spots or stripes). The exact location of spots or stripes 

depends on small fluctuations in the activator and inhibitor concentrations in the initial condition, 

and is typically not predictable in advance. 

 

Note 2: The Expansion-Induction Model.  

The simplest formulation of the EI model is for a single diffusing inhibitor and basal activation 

(Fig. 2B). We give a continuum formulation here for the sake of compactness. The discrete 

numerical implementation is given in the Supplementary Methods section (below).  

Let the concentration of the inhibitor in the two-dimensional space 

r (x, y) be ( , )R r t


, 

with diffusion coefficient D
R

, turnover rate 
R
. Then, the temporal evolution of the inhibitor 

field is described by the following equation 
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where  ,R r t 
 is the inhibitor synthesis rate. We assume inhibitor synthesis is localized to the 

positions of the existing follicles. Let the position of the nth follicle be nr


 and its birth time be t
n
, 

then the inhibitor synthesis function is given by  
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,0

1

, ( ( ) ( ))
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r t a r t r t  
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where   is the Dirac delta function, N (t) is the total number of follicles at time t, a is a 

microscopic cutoff length (spatial resolution), and 
R0

 is the rate of inhibitor synthesis by one 

follicle, assumed to be the same for all follicles regardless of their birth time.  

Tissue dilation is included in the changing locations of the follicles, and in the final term in 

Eq. (2), which gives dilution and convection due to expansion. Dilation is easier to understand if 

Eq. (2) is made dimensionless. The range of the diffusible inhibitor sets the length scale of the 

problem: 

 X
R
 D

R
/ 

R
. (3) 

The relevant time scale is 

 T
0
1/  , (4) 

where   is the tissue expansion rate; and the concentration scale is 

 R
0
 

R,0
a2 / D

R . (5) 

This is the peak inhibitor concentration at the follicle, set by the balance of the local synthesis 

rate and diffusion of the inhibitors. The dimensionless equation is then 
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where R r , t   R

r ,t  / R

0
, 
r  r / X

R
,
 
t t , 

v  v / X
R
 . In the following equations, the tilde 

has been dropped for clarity. If we make the reasonable assumption that R  , i.e., the 

diffusion of the morphogens occur at a much faster time scale than tissue expansion, then we 

need only to solve 
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to find R(

r ,t) at each time point. In cases where the expansion rate and turnover rate are more 

similar, the full reaction diffusion equation may be solved using standard numerical approaches. 

This form of the equation permits a simple solution in the form of a sum over  nG r r
 

 for each 

follicle position, ( )nr t

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where  nG r r
 

, the Green’s function of Eq. (7), is the second modified Bessel function, indicated 

by K0 above.  

The tissue expansion manifests in Eq. (7) through the changing follicle positions ( )nr t


; 

however, it is actually most easily implemented numerically by having fixed follicle locations, 

changing instead the extinction length lR of the Green’s function with growth. In this case: 
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Expansion causes the inhibitor concentration to decrease everywhere. To generate new follicles, 

we impose the rule that if the inhibitor concentration at some point *r


 drops to a threshold level 

R*at time t* , then, a new follicle is created at position *r


 with birth time being t* , i.e., 

 
N (t* )  N (t*  t) 1

with 

r

N (t*)


r * , t

N (t*)
 t*

if   R(

r * ,t* )  R*  (10) 

The newly created follicles immediately contribute to the synthesis of inhibitors according to 

Eq. (2), such that no more follicles are created in the immediate vicinity of *r


. This rule 

simulates the action of a basal level of activator for follicle induction, which is suppressed by the 

inhibitor until it falls below the threshold. Within our model, this threshold (in dimensionless 

units) represents the only chemical parameter that can affect the pattern secondary follicles 

formed relative to the primary follicles. The reaction-diffusion and growth parameters are 
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necessary only if the absolute spatial and temporal dimensions are desired, in which case they 

can be constrained through fits to the data. 

 In the discrete simulation of the above system (described in Supplementary Methods), a 

finite  t  means that there is often an extended region in space where the condition 

 * * *,R r t R
 is satisfied. To choose new follicle locations without taking too small a time step, 

we first place a follicle at the global minimum of   *,R r t R
. The inhibitor concentration is 

recalculated with the new follicle, and the procedure is repeated until R is everywhere above the 

threshold. At this point, time is advanced again.   

Finally, the EI model does not require there be only a diffusible inhibitor with a constant 

level of (basal) activation. It can also accommodate the case where the activator is diffusible and 

synthesized by the existing follicles. The activator concentration ( , )A r t


 can be determined in the 

same way as the repressor above. There is a new characteristic length scale /A A AX D   and 

production rate 2
0 ,0 /A AA a D , which appear in the Green’s function for the activator 
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. (11) 

With a diffusible activator, the rule for new follicle formation may be generalized to, e.g.,  

 
N (t* )  N (t* t) 1

with 

r

N (t*)


r *, t

N (t*)
 t*

if   
R(

r * ,t* )

A(

r * ,t* )

  (12) 

where   is the threshold level of the inhibitor-activator ratio. The key criterion for pattern 

formation in the case of the diffusible activator is that the activator should act over longer range 

than the inhibitor, i.e.,  

 / /A A A R R RX D X D    . (13) 

In the discrete simulation, the new follicle is created at the local minimum of    , / ,R r t A r t
 

. 
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Note 3: The effect of noggin treatment in explant culture.  

Noggin is a homodimeric glycoprotein withe high affinity for Bmp2 and Bmp4 and with varying 

affinities for Bmp5, Bmp6, Bmp7, GDF5 and GDF6, but apparently not other members of the 

TGF- family of peptides (4-6).  Noggin acts by binding these Bmps directly and prevents their 

interaction with  cell surface receptors (6).  

We model the inhibitory effect of Noggin on the inhibitor BMP as a reaction 

 BMP + Noggin , 

where   means an inert product. Denote the rate of the reaction by (Noggin); its effect on 

follicle pattern formation can be modeled as an effective rate removing the active BMP, with the 

turnover rate R in  Eq. (1) replaced by R + (Noggin). This amounts to reducing the range of 

the diffusible inhibitor, XR, via Eq. (3). To simulate the effect of Noggin treatment (Fig. 4J), we 

simply decreased XR to some smaller values and observed the emergence of the follicles. As 

discussed previously, we expect this to be functionally equivalent to actually expanding the size 

of the grid. 

 

SI Materials and Methods 

 

Histology and Immunostaining.  

Back skin from murine embryo was fixed in 4% paraformaldehyde, cryo-protected, embedded 

and sectioned at 14 m. Primary antibodies and dilution were: rabbit anti-Atoh1(7) (1:200), goat 

anti-SOX2 (Neuromics, 1:600) and rabbit anti--galactosidase (Cappel, 1:2000). 

 

Whole-mount X-gal staining.  

Whole-mount X-gal staining for detection of -galactosidase activity was performed as 

previously described(8) and the X-gal stained embryo was post-fixed in 4% paraformaldehyde. 

The dorsal skin was dissected out and flat-mounted for imaging by Leica MZFLIII stereo-

microscope. 
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Skin organ culture and treatment. 

E15.25 embryonic back skin explants were dissected and cultured for 24 hr on Millicell filters 

(Millipore) at 37oC in DMEM with 5% FCS, and 100 units/mL penicillin/ streptomycin. For 

experiments involving treatment of with noggin, 500 ng/mL of noggin (R&D system) was added 

to the culture medium. 

 

Computational analysis 

Identification of follicles and their intensities (ages). 

To identify the follicles, we first transformed the 960  960 sample images in RGB color code to 

the single channeled Grayscale format with pixel values of intensity ranging from 0 to 255. We 

then performed the binarization transform through Otsu’s method (9-12) to convert the Grayscale 

images to 0-1 matrices in which 1s represent the pixel elements that are positive of X-gal 

staining signals while 0s represent the non-follicle regions. To locate each individual follicle, we 

applied local Greedy Searching and Clustering algorithm (13) to determine the linear consecutive 

regions that contain follicle pixels only (locality cutoff = 4 pixels). The center of the follicle in 

the sample image matrix can thus be determined by calculating the average of the indices for the 

member pixel elements in each cluster.  

Primary follicles at E15.5 day have developed the bipartite structure characterized by the 

expression of Sox2 in Merkel cells and the dermal papilla.  We used this characteristic 

association with Merkel cells to identify the epithelial location of the primary hair follicles and 

developed a computer program tool that allows interactive manual detection and localization of 

primary follicles. The centers of primary follicles were labeled and recorded with respect to the 

Merkel cells in the sample images.  

To quantify the birth time/ age of each individual follicle that has been identified, we made 

use of its intensity profile by staining and performed parametric fitting to a 2-dimensional 

Gaussian shape characterized by the Gaussian widths  x
 and 

y
 and an amplitude. We 

performed the optimization by employing the Steepest Gradient Descent method (14) to 

minimize the error function of residue differences between the model and the intensity profile of 
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the follicle. The optimal parameters of the Gaussian model were obtained after the optimization 

procedure converged to the global minimum of the error function with the best fitting. The size 

of the follicle reflecting its observed age can thus be estimated as 
x
2  

y
2 .  

 

Voronoi Analysis.  

We employed the incremental method (15) to generate the Voronoi diagrams based on the 

locations of the hair follicles in Sox2Ysb/+ and Sox2Ysb/Ysb samples. For instance, in order to 

generate the Voronoi diagram for primary follicles, we performed triangulation first on the 

primary anchor points following the rule of ‘empty circumvent circles’ (16). Therefore, the 

triangles with the primary follicles on the vertex nodes were optimized to have uniform and 

regular shapes and sizes. The bisecting lines perpendicular to the edges of these triangles were 

then drawn and connected to generate the dual map of the triangulation, i.e. the Voronoi diagram 

with the primary follicles set at the center. 

 

Classification of secondary hair follicles. 

The hair follicles that are located on the boundaries of the Voronoi diagrams of the primary 

follicles were classified as IIA follicles (distance to boundary less than twice of the average of 

diameters of non-primary follicles i.e. ~70 m). The remaining secondary follicles were 

classified as IIB follicles.  

The IIA hair follicles were further classified into 2 groups i.e. the vertex and the edge 

follicles. The criterion to make this classification is determined by the ratio of distances between 

the projected point of the hair follicle and the middle point of its closest edge. If the projected 

point is more than 1.5-fold closer to the vertex than to the middle point then it is classified as 

being a vertex follicle, otherwise an edge follicle, as illustrated in SI Appendix; Fig. S14. 

 

Simulation of the EI model. 

We performed the simulation of the diffusible inhibitor model defined by Eqs. (8)-(10) on a 

discreet lattice. Two different methods of expansion were explored. In the first, the decay length 

of the Green’s function is decreased with time using Eq. (9). In the second, the size of the grid is 

gradually expanded from an initial size of 120 120 until a final size of 480  480  using  
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L(t)  Li  1
t  Lf  Li 

Li T













, (14) 

where L
i
 120 is the initial grid size, L

f
 480 is the final grid size, L(t)  is the grid size at the 

current time t , and T  300  is the total time of simulation. The two methods give statistically 

identical results (SI Appendix; Fig. S11).  

At each time step, we evaluated the inhibitor concentration field ( , )R r t


 by simply 

summing the Green’s functions (Eq. 9) for each of the current follicle locations. The initial value 

of lR was chosen such that ( , )R r t


 is nowhere below the threshold, and then decreased linearly in 

time. At the boundaries, we have incomplete information about the inhibitor concentration, 

therefore we only expect accurate follicle prediction inside of a buffer region of twice lR
*, which 

is the extinction length where new follicle locations are first identified. A hair follicle is 

generated at the global minimum of ( , )R r t


 if R R  with R  0.1 being a pre-specified 

threshold. This event is then added to the list of follicle position 

r

n
 and birth time t

n
. 

In case of a diffusible activator, we calculate the activator concentration as well. We used 

0 0/ 0.4A R   and / 1.5A RX X   so that the inhibitor is dominant at short scale, but the activator 

is longer ranged. After each step of expansion and evaluation, we searched in the grid for the 

positions where the R / A ratios are minimum.  We generated a hair follicle at each local 

minimum position where R / A  0.1.  

To simulate the noggin treatment, we used the hair follicles present in T0 as input (Fig. 4E). 

First, we employed the EI model with the expanding mesh to generate the same number of hair 

follicles as those detected in controls, i.e., 40% addition of the starting number of follicles at T0 

(Fig. 4I). We then stopped expansion and reduced the inhibitor diffusion range, to simulate the 

effect of noggin on BMP (see Supp Note 3). As noted above, grid expansion and inhibitor range 

compression are functionally identical in the EI model, thus we see that the noggin treatment 

leads to qualitatively similar patterns to those produced by growth alone. 

 

Evaluation of spatial and temporal predictions by the EI model. 

We selected a portion of the central area of the sample images for evaluation as follicles may be 

wrongly generated in the regions near the boundary of the simulation domain. We dropped a 
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boundary region of 50 pixels in width from the full sized area of 480x480. The boundary region 

is just larger than the minimum distance between primary follicles, which is 40 pixels. Thus, the 

domain being evaluated is 380x380 in pixel units. 

The predicted follicles are paired with their nearest neighbor. Note that observed follicles 

can be paired with more than one predicted follicle, and this becomes more and more likely as 

the number of predicted follicles increases. The mean squared distance between the predicted 

and observed follicles, normalized by the same measurement for the null model where follicles 

are placed at random, is used to evaluate the strength of the EI model predictions: 

 
 
 

2
2

2 2

pred obs EI

rand
pred obs rand

r r

r r









 

  . (15) 

We also use this measure to determine the robustness of the EI simulations (below). 

 

Robustness of the results. 

The relevant parameters for the EI model are the threshold value of R* (or  ), the time step, and 

the grid size. We can also explore the effect of different functional forms for *( )G r r
 

, which can 

arise from possible deviation of morphogen dynamics from the ideal diffusive behavior assumed 

in Eq. (9). SI Appendix; Fig. S12 shows that the EI model is remarkably robust to the choice of 

all these parameters and functions. This reflects the essentially geometric nature of the EI model. 

 

We also explore the effect of initial conditions on the model predictions. The only initial 

condition in the model is the location of primary follicles. Occasionally, smaller primary follicles 

are misidentified as secondary follicles. To investigate the effect of such an error, we randomly 

change some identified primary follicles to secondary follicles in one pattern. SI Appendix; Fig. 

S13A shows the positional error in the predicted follicles given different numbers of primary 

follicles (legend). The error in the predictions increases very gradually at first, but becomes more 

severe when 20% of the primary follicles are misidentified. SI Appendix; Fig. S13B shows that 

the errors in the predicted follicle locations are localized to a region directly surrounding the 

missing follicle. Additionally, in many cases, the EI model correctly places a secondary follicle 

very near the missing primary follicle. We conclude that the EI model predictions are remarkably 
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robust to error in the initial conditions as well. 
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Fig. S1: Voronoi analysis. Voronoi tessellation is mathematical method widely used in the 

analysis of spatial structures (13). Given a set of N anchor points in 2-dimensional space, a 

Voronoi diagram is generated by subdividing the space into N non-overlapping polygons (called 

the “Voronoi cells”) such that all points inside a cell have the shortest distances to the anchor 

point of that cell than any other anchor points.  In the above figure, the anchor points are the 

colored circles, and the Voronoi cells are the colored regions bordered by the black lines (called 

the “Voronoi edges”). All points inside a colored region are closer to the circle of the same color 

than to any other circles. A property of the Voronoi cells important for the present study is that a 

Voronoi vertex, defined by the intersection of typically 3 Voronoi edges and illustrated by a white 

open circle, is at an equal distance from the three surrounding anchor points (white dash lines), 

and any points in the vicinity of the vertex will be closer to at least one of the anchor points.  
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Fig. S2: Follicles located in the interior of Voronoi cells have younger ages than follicles 

at the boundary. We assume the size of the follicles reflect their ages and analyzed the follicle 

sizes. The spatial distribution of X-gal stain intensity of each identified secondary follicle is fitted 

to a 2-dimensional Gaussian function parameterized by two widths,  x
 and 

y
, and the “size” 

of the follicle is defined as 
x
2  

y
2 ; see SI Materials and Methods Computational analysis for 

details. Data were collected for the secondary follicles on the E15.5 skins and sorted into two 

groups, according to whether they are located on the boundaries (IIA) or in the interior space 

(IIB) of the Voronoi cells generated from the primary follicles; see Fig. 1G. Size distribution of 

the IIA (blue) and IIB (orange) follicles show that the average size of the IIA follicles is 18.3 µm 

and the IIB follicles is 15.6 µm (n=3). Thus, we expect the IIA follicles to form somewhat than 

the IIB follicles. However, this temporal order is not expected to be very sharp according to the 

simulation result of SI Appendix; Fig. S4, thus explaining the substantial overlap of the two 

distributions.  
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Fig. S3: Voronoi analysis of the computational result of Sick et al (17). In Ref(17), two 

waves of hair follicles were generated by first using a Turing RD model to generate the primary 

follicles, followed by a spatial expansion, and another round of RD model to generate the 

secondary follicles in the interstitial space of the primary follicles (which are held fixed in the 

study once generated by the first RD run).  Clearly, the secondary follicles generated this way all 

appear around the same time instead of the sequential appearance predicted by the EI model. 

The spatial positions of the newly generated follicles are also different from those of the EI 

model. The figure above shows the predictions of Sick et al’s model, with the blue and red dots 

being the primary and secondary follicles respectively, superimposed with the Voronoi cells 

generated from the primary follicles. While many follicles fall on the Voronoi boundaries, there 

are also substantial numbers of follicles that do not adhere to the Voronoi boundaries. For 

example, in the regions indicated by the green arrows, the red follicles essentially fill up the 

open space with a preferred spacing without regard to the Voronoi boundaries. Moreover, the 

preferred spacing is highly parameter dependent, such that denser filling of the interstitual space 

can be easily arranged by, e.g., reducing the scale of the diffusion zone (). Thus, the patterns 

generated by the Turing RD model are sensitively dependent on the model parameters.  
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Fig. S4: Positions of the inserted secondary follicles. (A) Follicles generated by the EI 

model are classified into one of the three types according to their positions close to the vertices 

(solid blue), edges (open blue), and the interiors (orange) of the Voronoi cells generated 

according to the positions of the primary follicles (red). (B) The total number of each of these 

classes of new follicles is plotted against the total number of predicted follicles. Initially, the 

there is a preference for the follicles to occupy the vertices (solid blue), with also a substantial 

number of edge positions (open blue). After around 30 predicted follicles, the vertex positions 

become mostly occupied and follicles formed after that started to take on interior positions 

(orange.) 
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Fig. S5: The EI model reproduces the regularity of neighboring follicle distances in the 

skin.  The locations of observed primary follicles plus observed secondary follicles (left), EI 

predicted secondary follicles (middle), or random secondary follicles (right), are used to 

construct Delaunay triangulations, where lines connect all neighboring follicles. Primary follicles 

in each case are indicated with red dots. The distribution of distances between all nearest 

neighbor pairs is computed from this pattern, and is observed to be sharply peaked in the 

observed and predicted patterns (Fig. 3C). The Delaunay triangulation also reveals the 

regularity in the observed and predicted follicle patterns that is not evident in the random 

pattern. 
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Fig. S6: Calculating the density from the rank plot of the observed age vs. the EI 

predicted age. (A) The intensity age of secondary follicles is plotted versus the EI predicted 

age for a representative sample of Sox2Ysb/+ skin. The observed and predicted ages are clearly 

correlated for the oldest follicle; however, the correlation weakens for the younger (more lightly 

stained) follicles, due presumably to the staining characteristics (SI Appendix; Fig. S7), and 

differs from one image to another.  (B) The rank plot for the same data in (A) shows that there is 

still significant noise, but the distribution is centered along the diagonal. The rank is normalized 

by the number of follicles observed, permitting all samples to be plotted together (as in Fig. 3D) 

and improving the statistics of the timing correlation. The density heat plot from Fig. 3D is 

calculated by 2D binning of the combined rank plot for all skin samples: we count the points in 

each of 10x10 bins in both directions. 
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Fig. S7: The noise in the follicle age is due to heterogeneity in follicle staining. 

(A) A representative image from the Sox2Ysb/Ysb E15.5 skins shows that there is significant 

variation in the follicle staining intensities, which could be due to staining or image efficiency, or 

other effects not accounted for in our model. (B) This variation can be seen even in the intensity 

of the primary follicles. We plot the Voronoi diagram for the primary follicles in (A), with the color 

representing the integrated intensity of each central primary follicle. The ~50% variation in the 

primary follicle intensity is similar to that of the secondary follicles and the two are not correlated 

(not shown). 
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Fig. S8: The EI models with diffusible activator (red square) and basal activator (black 

circle) showed similar performances in predicting the process of spatial-temporal 

patterning of secondary hair follicles in Sox2Ysb/+ samples (n=10). The Expansion-Induction 

model can explain the spatial patterns (A) and timing (B) of the secondary follicles using either a 

constant basal activation (black circles as in Fig. 3B) or a diffusible activator synthesized from 

the follicles (red squares). This rule holds as long as i) the activators diffuses to a longer range 

than the inhibitors and ii) the new hair follicles produce morphogens (activators and inhibitors) at 

the same rate as the existing follicles. See SI Materials and Methods for the details of the 

simulation. 
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Fig. S9: Increase in vertical length of the primary hair follicle in explant culture. In explant 

culture experiments, the length of the hair follicles is increased after 24 hours culture, indicating 

the viability of the explant. 

 

 

 

Fig. S10: No significant lateral growth of the explant during culture. The average area of 

the Voronoi cells generated by the primary hair follicles at the beginning of culture (T0) and after 

24 hours incubation (T24). There is no significant difference between the area at T0 and T24 in 

both control and noggin treated samples, and suggests that is no significant lateral growth of the 

explant culture. 
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Fig. S11: Reducing the extinction coefficient of the Green’s function with time is 

functionally equivalent to expanding the grid.  The positional error of the EI predictions are 

plotted for a simulation using grid expansion to induce follicle formation (red), and a simulation 

where the follicle induction is produced by decreasing the extinction length of the Green’s 

function with time (blue). The same primary follicle pattern is used for both simulations, and the 

methods produce the same accuracy of predictions. This explains why qualitatively identical 

follicle patterns are produced for the Sox2Ysb/+ and the Sox2Ysb/Ysb skins, where follicles are 

induced through growth and expansion, and with noggin treated skins, where induction is 

assumed to result from reducing the length scale of inhibitors. 
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Fig. S12: The EI model predictions are robust to parameter changes. In each panel, the 

positional error in the predicted follicles is plotted vs. the number of predicted follicles for a 

representative Sox2Ysb/+ E15.5 skin. The predictions are remarkably robust to changes in all of 

the relevant simulation parameters. In these simulations, expansion is accomplished through 

gradual reduction of the extinction length in the Green’s function rather than expansion of the 

grid. In (A) we vary the expansion rate. The expansion rate determines the time scale (see SI 

Materials and Methods); therefore, this is equivalent to changing the time step. (B) The 

resolution of the image is changed two-fold. This changes the minimum length scale in the 

simulation. In (C) we vary the threshold level (dimensionless units), and in (D) we use different 

functional forms of the Green’s function.  
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Fig. S13: Errors in initial conditions decrease the accuracy of predictions in a smooth 

manner. (A) The primary follicle locations are the only initial condition to the EI model. The most 

common problem with determining the initial condition is the misidentification of smaller primary 

follicles as secondary follicles. We investigate the effect of this misidentification by randomly 

identifying some primary follicles as secondary follicles. The positional error in the predictions is 

plotted versus the number of follicles predicted for different numbers of primary follicles in the 

initial condition (legend). The error changes smoothly with primary follicle number until 20% of 

the follicles are removed. (B) The positional error in the predicted pattern is localized to the 

region where the initial condition is missing. In this plot, the positions of the primary follicles are 

depicted by large black circles. Predicted secondary follicles using the complete set of primary 

follicles are plotted as smaller black dots. The green circles indicate primary follicles that have 

been removed from the initial condition in the second simulation, and red dots show the new 

predicted follicle locations.  
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Fig. S14: Identifying the position classes of the secondary follicles. The black lines are the 

edges of the Voronoi diagram generated based on the positions of the primary follicles (red 

circles). HF1
and HF2

(blue circles) are two secondary follicles. p1
 and p2

 are their projections 

onto the closest edge v1v2
.  m  is the middle point of this edge. Since the ratio of distances 

d(p1,m) d(p1,v1)  is less than 1.5-fold, HF1
 is classified as a hair follicle on the edge while HF2

 

is classified as a vertex HF because d(p2 ,m) d(p2 ,v2 ) is greater than 1.5-fold.   

 

 

 


