Supporting Information

Gonzalez et al. 10.1073/pnas.1307525111

SI Materials and Methods

Yeast Growth Media. Standard synthetic media were used: yeast extract-peptone-dextrose (YPD) contained 2% (wt/vol) glucose and complete synthetic media contained 0.6% casamino acids and/or individual amino acid supplements.

Ubiquitination Assays. In all experiments, cells were treated with 1% formaldehyde for 2 min to trap ubiquitinated intermediates. Cross-linking was quenched, and extracts were made in immunoprecipitation buffer (50 mM Tris·HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% Triton-X 100, 1 mM DTT, and protease inhibitor mixture II; Calbiochem). Extracts (100 µg) were precleared with protein G magnetic beads (Qiagen) for 1 h at room temperature. Anti-HA (10 µg; Santa Cruz Biotechnology) was added, and samples were incubated at 4 °C overnight. Fifty microliters of protein G magnetic beads was added, and samples were incubated on ice for 2 h. Immobilized proteins were washed three times in immunoprecipitation buffer and eluted, and cross-links were reversed in SDS sample buffer. Proteins were separated by SDS/ PAGE, transferred to membranes, and probed with rabbit antiubiquitin (donated by S. Reed, Cardiff University, Cardiff, UK) or anti-HA antibody.

LC and MS. Tap-purified proteins were reduced with 6.5 mM DTT in 50 mM ammonium bicarbonate, alkylated with 54 mM iodoacetamide in 50 mM ammonium bicarbonate, and digested with trypsin (Promega). Combined digests of ¹⁴N- and ¹⁵N-labeled samples were subjected to strong cation exchange (SCX) chromatography followed by automated on-line sandwich reverse phase (RP)-TiO₂-RP LC-MS/MS to enrich for phosphopeptides as described elsewhere (1). Briefly, collected fractions were analyzed by

1. Lemeer S, et al. (2008) Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. *Mol Cell Proteomics* 7(11):2176–2187.

nanoflow LC using an Agilent 1100 HPLC system (Agilent Technologies) coupled on-line to a LTQ-Orbitrap mass spectrometer (ThermoFisher Scientific). Phosphopeptides were trapped and enriched on three separate precolumns [two 3-cm \times 100- μ m inner diameter Aqua C_{18} (Phenomenex) and a 5-cm \times 100- μm inner diameter TiO₂ (GL Sciences), all packed in house] and separated on a 20-cm analytical column [ReproSil-Pur C₁₈-AQ 3-µm; (Dr. Maisch GmbH), 50-µm inner diameter, packed in house] at ~100 nL/min in a 60-min gradient from 10% to 40% solvent [0.1 M acetic and 0.13 M formic acid in 8:2 (vol/vol) acetonitrile/water]. The eluent was sprayed via standard coated emitter tips (New Objective) into an LTO-Orbitrap, which was operated in data-dependent mode, automatically switching between MS, MS/MS, and neutral loss driven MS³. Full-scan MS spectra (m/z 400–1,500) were acquired with a resolution of 60,000 (at m/z 400), and the two most intense ions were selected for MS/MS fragmentation in the linear ion trap. Raw data were converted to DTA files using Bioworks 3.2 and merged into Mascot Generic Format files, which were searched against the Saccharomyces Genome Database (SGD) using Mascot (version 2.2) as a search engine. Carbamidomethylation of cysteine was set as fixed modification; methionine oxidation and serine, threonine, and tyrosine phosphorylation were set as variable modifications, selecting ¹⁵N labeling as quantification mode. The mass tolerance of the precursor ion was 10 ppm and 0.9 Da for fragment ions. The false discovery rate was set at <1% (Mascot score threshold of 35) using the decoy database approach. MSQuant (2) was used for peptide quantification; localization of phosphorylation sites was determined in Mascot version 2.4.

 Gouw JW, Krijgsveld J (2012) MSQuant: A platform for stable isotope-based quantitative proteomics. *Methods Mol Biol* 893:511–522.

Fig. S1. NetPhos prediction and mass spectra for Med3phosphorylation sites. (*A*) Predicted Cdk8 phosphorylation sites in Med3. The predicted peptide sequence of Med3 Δ Sal1 (amino acids 1–234) was analyzed using Netphos 2 (1). All predicted serine and threonine phosphorylation sites with significant Netphos scores are shown (S/T, bold). The single Med3 phospho-peptide detected by tandem mass spectrometry (MS/MS) (underlined) contains one of the two predicted Cdk8 phosphorylation sites (T195P, italicized), and a second phosphorylation site (S191, italicized) detected by LC-MS/MS are shown. (*B*) MS/MS spectrum of SGSTMGT(phos)PTVHNSTAAAPIAAPK.

1. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294(5):1351–1362.

Fig. 52. In vitro phosphorylation of Med3 by purified Cdk8. (A) Med3 Δ Sal input protein detected using anti-histidine tag antibody. (B) myc-epitope tagged Cdk8 purified from yeast cells grown by immunoprecipitation using anti-myc antibody.

Fig. S3. Interaction of Med3 and Grr1 regulates *FLO11* expression. (*A*) Stability of ectopically expressed Med3 is decreased by Grr1 and Cdk8. HA-Med3 was immunoprecipitated from cells expressing MED3, GRR1, and nonfunctional Grr1 Δ L or Grr1 Δ F derivatives, together with CDK8 (GIG-2) or the kinase inactive variant (*cdk8*D290A, GIG-3). Following separation and blotting, membranes were probed with anti-HA antibody. (*B*) Cells were transformed with *MED3*, *CDK8*, or *cdk8* (D290A) and *GRR1* (where indicated). Total RNA was isolated and *FLO11* expression levels determined using quantitative RT-PCR analysis. Flo11 relative starting quantities were normalized to *ACT1* and values are given as percentage relative to WT.

Table S1. Wed3 Interacts with Cake in viv	Table S1.	Med3	interacts	with	Cdk8	in	viv
---	-----------	------	-----------	------	------	----	-----

F

	Med3	Med3∆Sal	Ssn6	pACT2
old activation	5.2	2.7	2.8	1

In vivo interaction between full-length and the N-terminal region of Med3 (Med3 Δ Sal) and Cdk8. Yeast was transformed with LexA-Cdk8 as bait, the indicated prey plasmids, and a LacZ reporter gene (JK103), and β -galactosidase levels were determined for at least five independent transformants. Ssn6 is a positive control. Fold increase in reporter gene activation over negative control (pACT2) is given.

Systematic name	Standard name	Name
Block I		
YBL078C	ATG8	Autophagy related
YBR072W	HSP26	Heat shock protein
YBR169C	SSE2	
YBR285W		
YER035W	EDC2	Enhancer of mRNA decapping
YER053C	PIC2	PI carrier
YHR138C		
YIL107C	PFK26	6-phosphofructo-2-kinase
YKL103C	APE1	Aminopeptidase
YKL133C		
YFR017C	IGD1	Inhibitor of glycogen debranching
YDL085W	NDE2	NADH dehydrogenase, external
YDL110C	TMA17	Translation machinery associated
YGL121C	GPG1	G protein gamma
YGL156W	AMS1	Alpha-mannosidase
YGR070W	ROM1	Rho1 multicopy suppressor
YJL141C	YAK1	However, another kinase
YJL142C	IRC9	Increased recombination centers
YJL163C		
YJL199C	MBB1	
YLL026W	HSP104	Heat shock protein
YLR178C	TFS1	cdc25 suppressor
YLR270W	DCS1	Decapping scavenger
YLR356W	ATG33	Autophagy related
YLR400W		1 37
YMR174C	PAI3	Proteinase A inhibitor
YMR175W	SIP18	Salt induced protein
YMR196W		
YNL115C		
YNL200C		
YOL083W	ATG34	Autophagy related
YOR289W		
YPL123C	RNY1	Ribonuclease from veast
YPL230W	USV1	Up in starvation
YPR151C	SUF1	-F
Block II	501.	
YAI 017W	PSK1	Pas domain-containing serine/threonine protein kinase
YAL061W	BDH2	
YBR001C	NTH2	Neutral trebalase
YBR026C	FTR1	2-enovl thioester reductase
YBR046C	7TA1	Zeta-crystallin
YBR067C	TIP1	Temperature shock-inducible protein
YBR105C	VID24	Vacuolar import and degradation
YBR132C	AGP2	High-affinity glutamine permease
YBR149\//	ARA1	D-Arabinose debydrogenase
YCI 042\N/		s Austrose denyarogenase
YCR004C	YCPA	
YCR011C		ATP-dependent permease
YCR091\A/	KINI82	nrotein kinase
YEL011\//	GLC3	Glycogen
	PRR1	Proteinase B
YER079\//	ושאו	
	LIRPO	Ubiquitin-specific protesso
YER1/11/	COV15	Cutochrome c oxidese
		Altored inheritance rate of mitechandria
		Superovide dismutase
	2002	superoxide distitutase
		Hevere transporter
		nexuse transporter
	ONALE	Outer membrane 15 states
	OIVI45	Outer memorane 45 protein
TILIDOC	GU12	Giverol utilization 2 protein

Table S2.	List of genes	that change at least	1.7-fold in any single	e deletion mutant grr1 Δ
-----------	---------------	----------------------	------------------------	---------------------------------

PNAS PNAS

Table S2. Cont.

PNAS PNAS

Systematic name	Standard name	Name
YIL160C	POT1	Peroxisomal oxoacyl thiolase
YIR019C	FLO11	Flocculation protein
YKL091C		
YKL093W	MBR1	Mitochondrial biogenesis regulation
YKL142W	MRP8	Mitochondrial ribosomal protein
YKL150W	MCR1	Mitochondrial NADH-cytochrome b5 reductase
YKL187C	FAT3	Fatty acid transporter 3
YKR039W	GAP1	General amino acid permease
YFL036W	RPO41	RNA polymerase
YDL049C	KNH1	Kre9 (nine) homolog
YDL169C	UGX2	Unidentified gene X2
YDL181W	INH1	Inhibitor ATPase
YDL199C	DCT0	
YDR032C	PS12	Protoplasts-secreted
YDR096W	GIST	Gig1-2 suppressor
YDRIUUW	IVP15	ligz-vesicle protein
		Alcohol dobudrogonoco rogulator
		Alcohol denydrogenase regulator
VDR23IC		
VDR504C	5063	Stationary phase gene
VDR505C	DCD1	Polymerase suppressor
YGL006W	PMC1	Plasma membrane calcium
YGL037C	PNC1	Pyrazinamidase and nicotinamidase
YGI 205W	POX1	
YGL227W	VID30	Vacuolar import and degradation
YGR008C	STF2	Stabilizing factor
YGR023W	MTL1	Mid-two like 1
YGR110W	CLD1	Cardiolipin-specific deacylase
YGR130C		
YGR174C	CBP4	Cytochrome B mRNA processing
YGR192C	TDH3	Triose-phosphate dehydrogenase
YGR249W	MGA1	
YGR279C	SCW4	Soluble cell wall protein
YJL048C	UBX6	Ubiquitin regulatory X
YJL066C	MPM1	Mitochondrial peculiar membrane protein
YJL079C	PRY1	Pathogen related in yeast
YJL088W	ARG3	Arginine requiring
YJL164C	TPK1	Takashi's protein kinase
YJL185C	ATG36	Autophagy related
YJR008W	MHO1	Memo homolog
YLL019C	KNS1	Kinase next to SPA2
YLL020C		
YLR042C		Vensia
YLRIZUC	TPST	rapsin
	C S V 2	Chicogon synthese
	0312	diycogen synthase
VI R375W	STD3	Protein with similarity to Stn1n
	CVB2	Cytochrome B
YMI 128C	MSC1	Mejotic sister-chromatid recombination
YMR031C	FIS1	Fisosome
YMR105C	PGM2	Phosphoglucomutase
YMR107W	SPG4	Stationary-phase gene
YMR136W	GAT2	
YMR145C	NDE1	NADH dehydrogenase, external
YMR173W	DDR48	DNA damage responsive
YMR199W	CLN1	Cyclin 1
YMR251W-A	HOR7	Hyperosmolarity-responsive
YMR297W	PRC1	Proteinase C
YNL015W	PBI2	Proteinase B inhibitor
YNL031C	HHT2	Histone H three

Table S2. Cont.		
Systematic name	Standard name	Name
YNL055C	POR1	Porin
YNL100W	AIM37	Altered inheritance rate of mitochondria
YNL180C	RHO5	Ras homolog
YNL194C		
YNL195C		
YNL237W	YTP1	Yeast putative transmembrane protein
YNL274C	GOR1	Glyoxylate reductase
YNL289W	PCL1	Pho85 cyclin
YNL305C	BXI1	Bax inhibitor
YOL011W	PLB3	Phospholipase B
YOL058W	ARG1	Arginine requiring
YOL081W	IRA2	Inhibitory regulator of the RAS-cAMP pathway
YOL084W	PHM7	Phosphate metabolism
YOR173W	DCS2	Decapping scavenger
YOR178C	GAC1	Glycogen accumulation
YOR215C	AIM41	Altered inheritance of mitochondria
YOR302W		
YOR317W	FAA1	Fatty acid activation
YOR348C	PUT4	Proline utilization
YOR374W	ALD4	Aldehyde dehydrogenase
YPL004C	LSP1	Long chain bases stimulate phosphorylation
YPL024W	RMI1	RecQ mediated genome instability
YPL026C	SKS1	Suppressor kinase of SNF3
YPL087W	YDC1	Yeast dihydroceramidase
YPL154C	PEP4	Carboxypeptidase Y-deficient
YPL186C	UIP4	Ulp1 interacting protein
YPL222W	FMP40	Found in mitochondrial proteome
YPR026W	ATH1	Acid trehalase
YPR065W	ROX1	Regulation by oxygen
YPR098C		
YPR149W	NCE102	Nonclassical export
YPR184W	GDB1	
YDL130W-A	STF1	Stabilizing factor
YGR161C-D		
YDR261W-B		
YBR085C-A		
YNR034W-A		

cdk8 Δ vs. WT, $P \leq 0.05$.

PNAS PNAS

Table S3. Yeast strains used in this study

AS PNAS

Strain	in Relevant genotype	
FT5	MATα; ura3-52; trp1Δ65; his3Δ200; leu2::PET56	(1)
L9FT5	MATα; ura3-52; trp1Δ65; his3Δ200; leu2::PET56; 4XLexA Operator-TATA-His3	(2)
Z718	MATα; ura3-52; his3Δ200; leu2-3	(3)
Cdk8∆	MATα; ura3-52; his3∆200; leu2-3	(3)
Cdk8∆ med3∆HIS3	MATα; ura3-52; leu2-3	This study
Cdk8∆ med2∆HIS3	MATα; ura3-52; leu2-3	This study
Cdk8∆ spt8∆KanR	MATα; ura3-52; his3Δ200; leu2-3; YLR055c::kanMX4	This study
Cdk8∆D290A	MATα; ura3-52; his3∆200; leu2-3	(3)
Cdk8∆D290A med3∆HIS3	MATα; ura3-52; leu2-3	This study
med3∆HIS3	MATα; ura3-52; leu2-3	This study
med2∆HIS3	MATα; ura3-52; leu2-3	This study
spt8∆ KanR	MATα; ura3-52; his3Δ200; leu2-3; YLR055c::kanMX4	This study
JN 284 (Ise1)	MAT α his7 leu2 ura3 ise1	(4)
BY4741	MAT α ; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0	EUROSCARF (5)
grr1∆	MATa; his3∆1; leu2∆0; met15∆0; ura3∆0; YJR090c::kanMX4	EUROSCARF (5)
Med3-TAP	MATα ade2 arg4 leu2-3,112 trp1-289 ura3-52	EUROSCARF (6)
Med3 -TAPgrr1∆	TAP-tagged strain <i>MED3 grr1</i> ∆	This study
Med15-TAP	YPH499, YDL005c:TAP-K.I.TRP1	This study
Med15-TAP cdk8∆	YPH499, YDL005c:TAP-K.I.TRP1	This study
YC7	MAT a his3∆200 leu2-3,112 ura3-52 srb10-3 ^{myc9} ::hisG	(7)
YC17	MAT a his3∆200 leu2-3,112 ura3-52 SRB10 ^{myc9}	(7)

1. Tzamarias D, Struhl K (1994) Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369(6483):758-761.

Z Tzamarias D, Struhl K (1995) Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. *Genes Dev* 9(7):821–831.
Liao SM, et al. (1995) A kinase-cyclin pair in the RNA polymerase II holoenzyme. *Nature* 374(6518):193–196.

4. Lee DH, Goldberg AL (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271(44): 27280–27284.

5. Brachmann CB, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14(2):115–132.

6. Gavin AC, et al. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631-636.

7. Chi Y, et al. (2001) Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev 15(9):1078-1092.

Table S4. Plasmids used in this study

Plasmid	Relevant characteristics	Source
e2p6-HRS1	2-µm plasmid, MED3 over-expressed, ADH1 promoter	(1)
e2p6-HRS1T195A	2-μm plasmid, MED3T195A over-expressed, ADH1 promoter	This study
e2p6-HRS1S191G	2-μm plasmid, MED3S191G over-expressed, ADH1 promoter	This study
e2p6-MED2	2-μm plasmid, MED2 over-expressed, ADH1 promoter	(1)
pGIG2	2-μm plasmid, CDK8 over-expressed, Own promoter intact	(2)
pGIG2-3	2-µm plasmid, CDK8D290A over-expression, Own promoter intact	This study
pRS403	Yeast Integrating plasmid, ampicillin resistance, HIS3 selection	(3)
pRS405	Yeast Integrating plasmid, ampicillin resistance, LEU2 selection	(3)
BM2961	2-μm plasmid, LexA-grr1	(4)
pRSTMED3	(6xHis) tagMED3, inducible T7 promoter	(1)
pRSTMED3∆Sal	(6xHis) tagMED3 ∆Sal, inducible T7 promoter	This study
pRW0123081	pAS2-GRR1	(5)
pRW040981	pAS2-GRR1∆L	(5)
pRW0411081	pAS2-GRR1∆F	(5)
BM3383	pT7-Grr1∆N	(4)

1. Papamichos-Chronakis M, Conlan RS, Gounalaki N, Copf T, Tzamarias D (2000) Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J Biol Chem 275(12): 8397–8403.

2. Balciunas D, Ronne H (1995) Three subunits of the RNA polymerase II mediator complex are involved in glucose repression. Nucleic Acids Res 23(21):4421–4425.

Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. *Genetics* 122(1):19–27.
Li FN, Johnston M (1997) Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: Coupling glucose sensing to gene expression and the cell

cycle. EMBO J 16(18):5629-5638.

5. Wang R, Solomon MJ (2012) Identification of She3 as an SCF(Grr1) substrate in budding yeast. PLoS ONE 7(10):e48020.

Table S5. Primers used in this study

PNAS PNAS

ACT1-ORF-f TCCCAGGTATTGCCGAAAGAATG	
ACT1-ORF-r AGCCAAGATAGAACCACCAATCC	
FLO11-ORF-f GTATGCTCTGCTAAGACTATCG	
FLO11-ORF-r GCCAGCGGAGTTAGTACC	
FLO11-HSL-f AAAGCAACTATTAGGGTACGATTG	
FLO11-HSL-r AAAAGAACGAAGTATATTGCGATG	
FLO11-TATA-f ACGGATAACTCATAGACTTACCAG	
FLO11-TATA-r CACAACATGACGAGGGATAATAAC	
GIG2mut-f CCATAGATGGATGTGTTAAAATTGGTGCT	ITTAGGTTTGGCCAG
GIG2mut-r CTGGCCAAACCTAAAGCACCAATTTTAAC	CACATCCATCTATGG
MED2HIS3-f CGGATCCTCCCAAATAAACTGCCCGTCTC	GAAAGTA GGAGTCACTGCCAGGTATCG
MED2HIS3-r TTTACAAGTCAATAGTTAACAATAGGAAC	GACCAAG CGCCTCGTTCAGAATGACAC
SRB10HIS3-f TTAAGGCCGCCTAGTTTTGACGGGAGGAG	GAGAGAAGGAGTCACTGCCAGGTATCG
SRB10HIS3-r CTATCTTCTGTTTTCCTTCGAGATGGCT	ICATCTGCGCCTCGTTCAGAATGACAC
GRR1LEU-f GCCGCCTAGT TTTGACGGGA GGAGAGAG	GAA CTGTGCGGTATTTCACACCG
GRR1LEU-r GCTGTGGAAT GAAAAATTCC AAATATAT	TAT AAAAATAGAA GCC AGATTGTACTGAGAGTGCAC
SPT8HIS3-f CGTAATGGACGAGGTTGACGATATTCTAA	ATTAACAGGAGTCACTGCCAGGTATCG
SPT8HIS3-r GTCTATATCGTAAATAAGGGTCGTGTCCC	GTAGAATCGCCTCGTTCAGAATGACAC

Dataset S1. Peak lists generated from raw MS data and subsequent database search results from peak lists input

Dataset S1