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Statics: Methods
The Basic Operational Problem. The optimal channel network (OCN)
model was originally based on the ansatz that configurations oc-
curring in nature are those that minimize a functional describing
the dissipated energy and on the derivation of an explicit form for
such a functional (1–4). Spanning, loopless network configurations
characterized by minimum energy dissipation are obtained by se-
lecting the configuration s that minimizes the functional:

HγðsÞ=
XN
i=1

Aγ
i ðsÞ; [S1]

where i spans the lattice of N sites (Ai and γ are defined above).
Given that Ai =

P
jWj;i Aj + 1, where Wj;i =Wj;iðsÞ is the element

of the adjacency matrix spanning the connectivity of every node
j to i, the configuration s determines uniquely, on a spanning
tree, the values of Ai. It is crucial, as we shall see later, that
one has γ < 1 directly from the physics of the problem subsumed
by the slope–area relation.
The global minimum (i.e., the ground state) of the functional in

Eq. S1 is exactly characterized by known mean field exponents (5),
and one might expect to approach the mean field behavior by
reaching a stable local minima upon careful annealing of the sys-
tem. This is in fact the case. The proof of the above is not trivial:
any stationary solution of the landscape evolution equation must
locally satisfy the relationship j∇

→
zij∝ A−1=2

i between flux/area and
the topographic gradient at any point i and gradients are approxi-
mated by Δzi, the largest drop in elevation at i. One can thus
uniquely associate any landscapes with an oriented (spanning and
loopless) graph on a lattice. One thus can reconstruct the field of
cumulative areas fAig corresponding to a given oriented spanning
graph. Note also that we want to emphasize the dependence on the
configuration s= fA1;A2; . . . ;ANg that the system assumes on the
features of the oriented spanning graph associated with the land-
scape topography z through its gradients ∇z that uniquely defines
total contributing areas Ai; i= 1;N in a N-site lattice.
Optimal arrangements of network structures and branching

patterns result from the direct minimization of the functional in
Eq. S1. The basic operational problem to obtain OCNs for a
given domain is to find the connected path draining it that
minimizes HγðsÞ without postulating predefined features, e.g.,
the number of sources or the link lengths. One key problem is the
assessment of the robustness of OCN configurations selected by
any minimum procedure. This has been studied (4) with respect to
the following: the strategy for minimum search; the role of initial
conditions; the robustness of the functional dependence on γ; the
role of lattice anisotropies; the effects of “quenched” randomness
(3). The basic optimization strategies are similar to algorithms
developed in the context of nonnumerable (NP-complete) prob-
lems where the exponential growth of possible configurations pre-
vents complete enumeration. Iterated random searches work best
in that context (4).
The basic algorithm proceeds as follows. An initial network

configuration, s, is chosen as a spanning tree on the grid to drain
an overall area made up by N sites. This defines an orientation
and a connection for each pixel stating to which of the eight
neighboring pixels its area is draining, neighbors being assumed
at unit distance from the centroid. This in turn needed both
preliminary and a posteriori speculations on whether a triangular

lattice—with six neighboring nodes—or an anisotropic scheme
in which diagonal connections were weighted by a

ffiffiffi
2

p
factor would

be a better model of local interactions (4). A scalar state variable,
AiðtÞ, denotes the total area at a point i at stage t of the optimi-
zation process as follows:

AiðtÞ=
X
j

WijðtÞ AjðtÞ+ 1;

where Wij is the (now dynamic) functional operator that has the
connectivity matrix as its static counterpart by the following:

WijðtÞ=
�
1; if i; j are connected
0; otherwise

(that is WijðtÞ implies that j→ i is a drainage direction). Note that
j spans the eight neighboring pixels of the arbitrary ith site. The
unit mass added refers to the area representative of the actual
site as a proxy of the distributed injection term. From the initial
configuration (stage t= 0), the basic strategy consists of drawing
a site at random and perturbing the system by assigning a change
δWij, i.e., by modifying at random its connection to the former
receiving pixel. Hence,

Wijðt+ 1Þ=WijðtÞ+ δWij:

This corresponds to perturbing the configuration s ðs→ s′Þ. Ad-
justing to such a local modification, all aggregated areas Ai are
modified in the downstream region until the original and the
modified path reconvene. The change is accepted if the modified
value of Hγðs′Þ is lowered by the random change [Hγðs′Þ<HγðsÞ]
and no loops are formed. Loops are excluded on a rigorous basis,
as it was shown exactly that they lead to energetically unfavor-
able configurations [for the functional in Eq. 1 with γ < 1 every
tree is a local minimum of total energy expenditure (6); Thermo-
dynamics of River Networks]. As the new configuration is adopted
as a base configuration, the process is iterated. Otherwise, the
change is discarded [if Hγðs′Þ≥HγðsÞ], and the t-stage configura-
tion s is perturbed again.
The procedure leads to a configuration for which no improve-

ment on total energy expenditure appears after a fixed (and large)
number of iterations, i.e., an OCN. The whole process may or may
not be then reset and restarted from the same initial config-
uration. This is done several times at times to allow the random
process a fair chance to capture nonlocal minima—should they
be of interest (see main text). The configuration attaining the
lowest energy dissipation among the trials described before is
chosen as the OCN.
A visual scheme of the progress of the basic algorithm is illustrated

in refs. 4 (chapter 4) and 7.
This basic procedure, at times termed the Lin or the greedy

approach because of the similarities with the N-city traveling
salesman algorithm (4), respects the rules of a fair search for
approximate solutions but is apt to yield trapping in local min-
imum energy. Variants of the basic algorithm, implemented to
test the importance of choice of strategy for minimum search,
include Lin–Kernighan’s multiple simultaneous perturbations
and simulated annealing schemes to avoid trapping of the
configuration into unsuitable local minima. This is done by ac-
cepting perturbations of the current configuration ðs→ s′Þ even
if they yield Hγðs′Þ≥HγðsÞ with a probability depending on a
state parameter T. In practice, the probability of acceptance of
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the perturbation is given by the Metropolis rule, i.e., it is 1 if the
resulting change corresponds to Hγðs′Þ<HγðsÞ) or, if

ΔH =Hγ

�
s′
�
−HγðsÞ≥ 0

and e−ΔH=T >R, and 0 otherwise (R∈ ð0; 1Þ is a random number
R∈ ð0; 1Þ). To carry out proper annealing, one makes changes in
the parameter T from relatively high values at the start to low
values toward the end of the analysis. Clearly, for high values of
T, the likelihood of accepting unfavorable changes is high,
whereas for T→ 0 the rule is equal to that of the basic algorithm.
A “cooling” schedule for decreasing values of T as the procedure
evolves is thus required (4).

Exact Results. We elaborate further here on the analytical results
that complete our static view of dynamically accessible optimal
states (4, 5, 8–11). Exact properties for the global minimum of
the functional HγðsÞ in Eq. S1 are addressed first.
Let us consider two limit cases (γ = 0 and γ = 1). If we denote

with xi the along-stream length of the pathway connecting the ith
site to the outlet, it is straightforward to show that

P
i Ai =

P
i xi.

Thus, the minimization of energy dissipation for γ = 1 corre-
sponds to the minimization of the weighted path connecting
every site to the outlet, i.e., the mean distance from the outlet.
The case γ = 1 thus admits as global minimum the most direct
network. The γ = 0 case, instead, implies the minimization of the
total weighted length of the spanning tree where every configu-
ration has the same energy because every spanning tree has the
same number of links (L2 − 1 for a L×L square lattice). For the
values of γ ∈ ð0; 1Þ the search for the features of the global
minima proves interesting.
For γ = 1, the configurations yielding a minimum of the energy

is realized on a large subclass of the set of spanning trees. These
are all of the directed ones, where every link has positive pro-
jection along the diagonal, oriented toward the outlet. The γ = 1
case gives a minimum energy scaling E∼L3 (where L is, as usual,
the characteristic linear size of the lattice) for each directed
network. This follows from the observation that any directed
network corresponds to the Scheidegger model of river networks
(12), where all directed trees are equally probable by construc-
tion. Such model can be mapped into a model of mass aggre-
gation with injection exactly solved (13–15), later shown (16) to
be map exactly the time activity of the celebrated sandpile model
of self-organized criticality (17). The corresponding scaling ex-
ponents, as stated in the main text, are

β= 1=3;ψ = 3=2; h= 2=3:

Because all directed trees are equally probable, having the same
mean distance to the outlet, each stream behaves like a single ran-
dom walk in the direction perpendicular to the diagonal through
the outlet.
The γ = 0 case gives the same energy E∼L2 for every tree, in

analogy to the problem of random 2D spanning trees, whose geo-
metrical properties have been computed in the case of a square
lattice to give the following (8):

β= 3=8;ψ = 3=5;ϕ= 2; h= 5=8:

In the thermodynamic limit ðL→∞Þ, the global minimum in the
space, S, of all spanning trees of the functional

E
�
γ;S′

�
=
X
i

Ai
�
S′
�γ

scales as follows:

min
S′∈S

E
�
γ;S′

�
∼max

�
L2;L1+2γ�

(where S′ denotes the subset of optimal trees) for all γ ∈ ½0; 1�.
Because Eðγ;S′Þ is an increasing function of γ and it is equal to
L2 for γ = 0, then for γ ≥ 0 it is obvious that Eðγ;S′Þ≥L2. The
sum over all of the sites can be performed in two steps:

E
�
γ;S′

�
=
X2L−1
n=1

X
i∈Dn

Ai
�
S′
�γ
;

where Dn are the diagonals orthogonal to the one passing through
the outlet. For directed spanning trees (DSTs), one notes that the
sum of the areas in a given diagonal Dn is independent of the
particular tree. It is thus obtained:

SdðkÞ=
X
i∈Dk

Ai =
�
kðk+ 1Þ=2 k≤L
L2 − Sdð2L− 1− kÞ L+ 1≤ k≤ 2L− 1;

[S2]

where we defined Sdð0Þ= 0. Such quantities can be only increased
considering generic undirected trees; thus, we can write for every
spanning tree the following:

Sðk; T Þ=
X
i∈Dk

AiðT Þ≥ SdðkÞ: [S3]

Let us observe that for k= 0; . . . ; ðL− 1Þ:

Sðk; T Þ+ Sð2L− 1− k; T Þ≥ SdðkÞ+ Sdð2L− 1− kÞ=L2; [S4]

making convenient to perform the summation over couples of
diagonals. To get a lower bound for E, we need to assess that,
for every set Γ:

X
i∈Γ

Aγ
i ≥

 X
i∈Γ

Ai

!γ

;

that follows from Schwartz inequality, being Ai ≥ 1 and 0≤ γ ≤ 1.
The result is Now, using Eq. S4, and we can write the following:

Eðγ; T Þ=
X2L−1
n=1

X
i∈Dn

AiðT Þγ =
XL−1
n=0

X
i∈
�
Dn[~Dn

�Aγ
i

≥
XL−1
n=0

0
B@ X

i∈
�
Dn[~Dn

�AiðT Þ

1
CA

γ

=
XL−1
n=0

½Sðn; T Þ+ Sð2L− 1− n; T Þ�γ

≥
XL−1
n=0

L2γ = L1+2γ ;

where ~Dn =Dð2L−1−nÞ. Equality in the last inequality holds for
directed networks. We can thus write the following:

E
�
γ;S′

�
≥L1+2γ : [S5]

Eq. S5 yields the lower bound,

E
�
γ;S′

�
≥max

�
L2;L1+2γ�; [S6]

holding for every tree S′∈S, and thus also for the minimum
over S′ (8).
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From the above results, the relevant scaling exponents can be
computed. For undirected networks, one has the following:

hAi∼Lφ; [S7]

where φ≥ 1 implies a value slightly bigger than 1 if one assumes
a quasidirect behavior. Note that for a directed path one obtains
instead the following:

hAi∼L:

Recalling that β is the scaling exponent for total contributing area,
and the above result on the scaling of energy [E=L2haγi∼L1+2γ],
one gets 2γ − 1  =   2ðγ − βÞ holding for γ > β (5). Moreover, one
may assume (5) that anisotropic scaling occurs in the basic planar
scales, such that A∝ L1+H , where H ≤ 1 is a scaling coefficient
that has had some use in geomorphology (see, e.g., ref. 4). The final
result (8) follows from the scaling relations derived above solv-
ing for β, giving, for γ ≥ 1=2,

8>>>>>><
>>>>>>:

β=
3ð1− γÞ+ ðφ− 1Þð1+ γÞ

2ð1− γÞ+φ− 1
− 1

H =
φ− γ

1− γ

[S8]

(the constraint γ > β become γ > 1=2, independently of the value
of φ). Thus, if H ≤ 1, for all γ < 1 must be φ= 1, yielding the
following:

β= 1=2;H = 1;ψ = 2;φ= 1; h= 1=2;

valid for γ ∈ ð1=2; 1Þ (8).
The exact exponents corresponding to the ground state are the

same as in mean-field theory and for the Peano basin (9, 18) re-
ferred to in the main text, and indeed significantly different from
the range of scaling exponents observed in nature (10). The most
striking result is that the exponent of the distribution of ag-
gregated areas is β= 1=2, quite different from the consistent
range 0:43± 0:02 for observational values regardless of climate,
vegetation, exposed lithology, and geologic constraints (4). One
could even make the prediction that river networks undergoing
frequent, intense perturbations (like, e.g., in strongly seismic
contexts) should perhaps approach mean-field conditions (and
thus aggregation should have β→ 0:50).

Minimum Energy and Loopless Structures
We shall now define precisely the selective advantages of trees in
the fluvial physics (19). Consider a square lattice. Fix an orien-
tation for all lattice bonds. On each bond b, a flux Jb is defined
(notice that, in the general context of networks, it is illegal to
identify the flux from node, say, i with Ji because it is generally
not unique, differently from the case of trees). We shall assume
that Jb > 0 if it is flowing along an assigned orientation. Uniform
(unit) injection is equivalent to the set of constraints ð∂JÞx = 1,
where ∂ is a discrete version of the divergence, and is a measure
of the net outflow from a site:

ð∂JÞx =
X
b∈x

Jb θðb; xÞ= 1; [S9]

where the unit value is the model injection, constant for every
node in the simplest case; b spans all bonds (links) concurring
on node x, and θðb; xÞ= 1 ð−1Þ if b is oriented outward (inward)
node x. Any local minimum of the following function:

E=
X
b

jJbjγ [S10]

when 0< γ < 1, corresponds to Jb ≠ 0 only on the bonds of a span-
ning tree. The main point (19) is in the proof that the networks
that correspond to local minima of the dissipated energy are
loopless and tree-like. The tree must be spanning due to the con-
straints [S9]: one cannot have Jb = 0 for all b’s connected to a site
so that there must be at least one outlet from each site x. Some
site (or sites) must also be declared to be the global outlet. We
shall show that loopless structures emerge as optimal solutions
of Eq. S10 with the constraint [S9], which is precisely the case
for river networks.
Fig. 7 of the main text illustrates an extremely simple example

with just four sites: the left panel shows the setup for the elementary
four-bond network. The dot is the outlet. Here, the current a is
taken as the parameter regulating the entire distribution of
fluxes owing to continuity. The center panel illustrates the only
loopless configurations of the system generated by integer values
of a. The right panel shows the plot of the function E vs. a from
the following Eq. S11 with γ = 0:5:

E= jajγ + ja+ 1jγ + j1− ajγ + j2− ajγ ; [S11]

which is derived from Eq. S10 after implementation of [S9]. In
particular, the center panel shows the plot EðaÞ, where one notices
that there are local minima in correspondence with one of the
four currents being zero (a = 2, 1, 0, −1), corresponding to the
four trees shown in Fig. 7, Right, of the main text. The explana-
tion is simple. Suppose that a∼ 0 (the other cases are equiva-
lent). All of the terms in [S11] but jajγ can be expanded in
Taylor series around a= 0. Thus, locally one has the following:

E= 2+ 2γ + jajγ +OðaÞ; [S12]

which has a cusp-like behavior because 0< γ < 1. Notice that
∂E=∂aja=0± = ±∞ and thus one cannot find the minima simply by
imposing the condition ∂E=∂a= 0. If a≠ 0;  ± 1; 2, ∂2E=∂a2 < 0
and there are no other minima of E (only maxima). The proof
for the general case dealing with arbitrary lattices is elsewhere (19).
Fig. 7, Right, of the main text also shows the function E vs.

a plotted for various values of γ (specifically, for γ = 0:25; 0:5; 1,
and 2). It is deemed quite instructive, also in view of the un-
expected twists in research mentioned in the introduction to the
main text, as the original assumption of accepting only tree-like
configurations to search for minima of Eq. S1 turned out to be
energetically favorable only when γ < 1—a condition clearly re-
quested by the physics of the problem (Eq. 2) and confirmed by
real-life data. In that sense, we may call it a fluke. Also, note that
for γ = 1 all directed configurations, loopless or not (with the
currents going in the positive directions), have the same energy.
The case γ = 2 corresponding to a linear Ohm-like current-energy

drop is akin to resistor networks for which there is just one mini-
mum for a network-like (not a tree) configurations obtained at
a= 1=2 [see for an account of the relevant literature (19)]. Because
there is one unknown current for each bond, and one continuity
equation for each site the number of independent variables is given
by the number of bonds minus the number of sites (excluding the
outlet), which for the simple topologies considered is equal to the
number of elementary loops (this is a particular case of the Euler
theorem) (see also ref. 4, chapter 4).
Because we have shown that local minima occur in singular

configurations where some currents are zero, we cannot introduce
the standard technique of Lagrangemultipliers to find theminima
of E with the constraint [S9]. To be able to do that, E must be
regularized as
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E=
X
b

�
J2b + «2

�γ=2

in the limit «→ 0. The general proof is beyond the scope of this
paper and given elsewhere for an arbitrary graph where the
number l of independent loops is given by the number of bonds
minus the number of sites plus the number of connected com-
ponents (19). Note that, for the particular case where the graph
must be a spanning structure, the number of connected compo-
nents is unit (for example, in the case of an n×m rectangular
lattice, one has l= nm− n−m+ 1).
Obviously, for the set of dynamical rules postulated above, the

energy landscape is riddled with a large number of local minima
characterized by a range of similar values of E. In single real-
izations, boundary and initial conditions affect the feasible (i.e.,
dynamically accessible) optimal state to different degrees de-
pending on their constraining power. This fact matches the ob-
servation that scaling exponents are coherently linked in a range
of values (5, 10), narrow enough but significantly different from
the ground state (8).
The truly important implications are twofold: on one side, in

fact, all local optima are trees; on the other, imperfect optimal
search procedures are capable of obtaining suboptimal net-
works, which nevertheless prove statistically indistinguishable
from the forms observed in nature and quite different from the
absolute minima (4, 10). Indeed, we believe that the worse ener-
getic performance and yet the better representation of the patterns
of nature mimic general evolutionary and selection processes—
indeed, landscapes do not have a blueprint for evolution, but fall
on a selective advantage out of stability, however myopic and
aimless the evolutionary tinkering .

Thermodynamics of River Networks
Central tomodels postulating chance-dominated network selection
is the assumption of equal likelihood of any possible tree-like
configuration. However, the foundations of OCNs discussed above
postulate that some spanning, loopless network configurations are
more likely than others. Indeed, their overall likelihood is con-
trolled by the minima of the functional Eq. S1 defining total energy
expenditure of the network structure both as a whole and in its
parts. The set of possible configurations for the system is consti-
tuted by the ensemble of all rooted trees spanning a given lattice
of sites defined by a complete set of oriented links among con-
nected neighbor sites. In this section, we investigate, following
ref. 20, the thermodynamic rationale behind the scaling properties
of the energy and entropy of OCNs.
We start by assigning a probability PðsÞ to each particular

spanning tree configuration s. As usual, we take PðsÞ to be a
Boltzmann distribution as follows:

PðsÞ∝ e−HðsÞ=T ; [S13]

where T is a suitable parameter resembling Gibbs’ temperature
of ordinary thermodynamic systems and the functional HðsÞ is
the Hamiltonian of the system, i.e., a global property related to
energetic characters.
Network models where all spanning trees are equally likely is

the limit case of the model described by Eq. S13 for T →∞.
OCNs belong to the class of configurations described by Eq. S13
where the Hamiltonian HðsÞ reduces to HðsÞ=HγðsÞ=

P
i A

γ
i

(where i spans the L2 sites occupied by a L×L square lattice and
with usual notation), the total energy dissipation of the spanning
tree configuration. In fact, OCNs are obtained by selecting the
spanning network configurations, s, which maximize the proba-
bility in Eq. S13 by minimizing the Hamiltonian. OCNs thus
represent the other extreme of random networks, because they
constitute the maximum probability case for T → 0. Ordinary

thermodynamic settings characterized by a finite value of T are
thus of interest. We will show, following ref. 20, that OCN con-
cepts work at any finite temperature where energy minimization
always maximize the probability of a configuration provided that
the network is large enough (the so-called thermodynamic limit).
We can distinguish different behaviors depending on the

value of γ.
For γ < 0, one obtains Hamiltonian paths, i.e., spiral-like pat-

terns with tendency to penalize aggregation. For γ = 1, one min-
imizes H1ðsÞ, a measure of the directedness of the channels
constituting the channel tree—proportional to the mean distance
to the outlet, < ℓ> , of all sites of the lattice, such distance being
measured along the drainage directions. For a spanning tree s,
one may write < ℓ>∝

P
i∈s
P

j∈ xðiÞΔxij, where xðiÞ is the path along
the network from i to the outlet and Δxij is the spatial step or the
lattice size, taken as unit in unbiased lattices. Rearranging the
sum (Δxij is added Ai times for each site i, i.e., as many times as
the contributing sites upstream of i) yields < ℓ>∝

PN
j=1Aj for the

N sites and H1ðsÞ=
P

j∈s Aj for the configuration s, where Aj is the
total contributing area at the arbitrary site j within the tree s. For
γ > 1, the patterns maximizing Eq. S13 are such that the average
length of the path from each site to the outlet is the shortest. The
range 0< γ < 1 is more interesting and in this region the system
exhibits rich scaling structures and aggregation patterns. From
the physics of river erosion, to first order in the small gradient
approximation (see Dynamics in the main text), one must mini-
mize H1=2ðsÞ. Therein, for a given drainage basin overlain with
a lattice of L2 sites, let S be the set of spanning loopless trees
rooted in a given point, say 0. For any configurations s∈S, we
define the probability of the tree s as in Eq. S13, i.e.,

PðsÞ∝ e−Hγ ðsÞ=T ;

where, again, T −1 is Gibbs’ parameter mimicking the inverse of
temperature of classic thermodynamic systems. For a fixed γ, let
HγðSÞ denote the finite set of all possible values that may be
taken on by HγðsÞ for trees s∈S. Given an energy level, E, let
NðEÞ be the degeneracy, or the number of different spanning
trees s for which HγðsÞ=E. One has the following:

P
�
HγðsÞ=E

�
=

X
s:Hγ ðsÞ=E

PðsÞ∝ NðEÞe−E=T :

Defining formally the thermodynamic entropy as σðEÞ= log NðEÞ,
one obtains the following:

P
�
HγðsÞ=E

�
∝ e−FðEÞ=T ; [S14]

where a free energy FðEÞ=E− T σðEÞ has been introduced. In-
deed, the most probable states correspond to an energy level E
that minimizes FðEÞ.
Our definition of Hamiltonian is appropriate because the

governing functional has the meaning of total energy dissipation.
The central result (20) is that entropy, σ, scales subdominantly
with the system size, L, compared with the energy term such that
even for a nonzero value of Gibbs’ parameter. Thus, the most
probable spanning tree configurations determined by minimizing
the free energy can be equally well obtained by minimizing total
energy dissipation provided that L→∞—in practice, the lattice
should simply be large enough (20). As a result, in the thermo-
dynamic limit the system described by the probability [S13] al-
ways tends to operate like at zero temperature, i.e., when total
energy dissipation is minimized. The proof is sketched in what
follows. One exact result is that for the set s∈SE of OCNs, one
has E=mins HγðsÞ∝ L2+δ with δ> 0 for γ ≥ 1=2. The easiest case
to prove corresponds to γ = 1. For a given spanning tree s, we
have seen (Exact and Computational OCN Analyses in main text)
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that H1ðsÞ=L2 < ℓ> where < ℓ> is the average distance of the
L2 sites from the outlet measured along the links belonging to s.
Thus, the minimum of H1ðsÞ is attained by the set SD of all
DSTs, i.e., the trees whose links have positive projection on the
diagonal oriented in the outlet direction. DSTs have < ℓ>∝ L,
i.e., H1ðSDÞ=Mins H1ðsÞ∝ L3. Using this result and Schwarz’
inequality, it has been shown (20) that for γ ∈ ð1=2; 1� and any
s∈S, one has the following:

HγðsÞ≥ const  L1+2γ ;

where the constant depends on lattice properties. Thus, the above
inequality implies that

min HγðsÞ> const  L2+δðγÞ

with δ> 0 for γ > 1=2. For γ = 1=2, the global minimum has a dif-
ferent lower bound, i.e.,

E∝ L2log  L;

which is characterized by a logarithmic correction (20). This can
be proven by explicitly constructing classes of structures that
scale with the value of δ obtained by coarse graining the eleva-
tion field associated with the OCN structure (see main text).
Numerical and theoretical results for the γ = 1=2 case suggest that

MinH1=2ðSEÞ∝ L2+δð1=2Þ;

where SE denotes the set obtained by averaging over accessible
local minima, with δð1=2Þ= 0:1− 0:2. This result is consistent with
the findings shown in Fig. 6 of the main text. Recall that the prob-
ability of exceedence P½A≥ a� has a probability distribution
pða;LÞ= a1+βFða=LϕÞ, where β= 0:43± 0:02 and the finite-size ef-
fect is defined by a coefficient ϕ= 1+H ∼ 2. Then one has the
following:

min
s

 H1=2 ∝ L2+δð1=2Þ;

with δð1=2Þ= 1− 2β≈ 0:13> 0 with β= 0:43 [recall that
L2 < A1=2 > =

R∞
1 dx  x1=2−βFðx=L2Þ where F is the finite-size scal-

ing function as in Fig. 1 of the main text]. Note that a scaling of
energy with size in OCNs as E∝ L2:2 has also been experimentally
observed in multiple outlet OCNs (4) and is confirmed by the re-
sults of Fig. 6. The result that δ> 0 can be proved in general (4, 20).
For spanning loopless trees, the number NðEÞ of configurations

s with given energy E scales as follows (20):

NðEÞ∝ μL
2

such that

σðEÞ∝ L2;

where μ is a real number depending on lattice properties. For
example, in a four-neighbor lattice the number ND of DST is

ND = 2ðL− 1Þ2 . The total number N of spanning trees is greater
than ND but less then the number of possible ways of choosing
L2 − 1 links (number of links of a spanning tree) among all of
the 2LðL− 1Þ possible links. Thus,

2ðL−1Þ
2
=ND <N <

�
2LðL− 1Þ
L2 − 1

�
∼ 22L

2
:

Because the number NðEÞ of configurations with a given energy
is smaller than N, then

NðEÞ< 22L
2
;

and, in general, the above equation is satisfied with 2< μ< 4 in
the four-neighbor case. The general case follows directly from
the same type of reasoning (20).
We thus conclude that, for OCNs generated minimizing Eq. S1

with γ ≥ 1=2, entropy scales subdominantly to the energy with
system size. Thus, in the limit L→∞,

min  FðEÞ∝ L2+δ

because δ> 0 [in fact, one has rigorously

FðEÞ∝ L2+δ − const  TL2

and, for L→∞, FðEÞ∝ L2+δ when δ> 0]. Hence, the configura-
tion s that minimizes Hγ also minimizes FðEÞ whatever the value
Gibbs’ parameter T , provided that the system is large enough.
Hence OCNs, which correspond to the T = 0 limit case [i.e., the
configuration yielding min  FðEÞ is that endowed with minE only
for T → 0], reproduce natural conditions for any “temperature.”
Because fluvial networks usually develop migration of divides
and competition for drainage in the absence of geologic controls
over domains large with respect to the scale of channel initiation,
it is likely that natural networks evolve under conditions that well
approximate the thermodynamic limit L→∞. We suggest that
this is the reason for the outstanding ability of OCNs to repro-
duce observational evidence.
What are the implications of the above results? Every tree is

a local minimum of total energy dissipation in the fluvial land-
scape, and imperfect optimal search procedures yield suboptimal
networks, which nevertheless prove statistically indistinguishable
from the forms observed in nature (and quite different from their
ground states). Thus, OCNs have by construction a much con-
strained structure (loopless and spanning) and entail the mini-
mization of total energy dissipation. These structures develop
under generic conditions and do not exhibit a set of dynamically
recursive states but freeze into static scale-free structure, i.e., they
behave like a T = 0, “frozen” system by the subdominant scaling
of entropy with system size compared with the energy of the
system. Indeed, we believe that the worse energetic performance
and yet the better representation of fluvial patterns in nature is a
consequence of imperfect selection mimicking the myopic tin-
kering of evolutionary processes.
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