Nucleotide sequence of the v-myc oncogene of avian retrovirus MC29

(leukemia/carcinoma/myelocytomatosis/tumor virus/DNA-binding protein)

KARI ALITALO^{*}, J. MICHAEL BISHOP^{*}, DOUGLAS H. SMITH[†], ELLSON Y. CHEN[†], WENDY W. COLBY[†], AND ARTHUR D. LEVINSON[†]

*Department of Microbiology, University of California Medical Center, San Francisco, California 94143; and †Department of Molecular Biology, Genentech, Incorporated, 460 Point San Bruno Boulevard, South San Francisco, California 94080

Contributed by J. Michael Bishop, October 6, 1982

ABSTRACT Avian myelocytomatosis viruses are retroviruses whose oncogene (v-myc) induces an unusually wide variety of tumors, including carcinomas, endotheliomas, sarcomas, and myelocytomatoses. The viral gene v-myc arose by transduction of an undetermined portion of a cellular gene known as c-myc. In order to facilitate further studies of the functions of v-myc and c-myc and to permit detailed comparisons between the two genes, we have determined the nucleotide sequence of v-myc in the genome of the MC29 strain of myelocytomatosis virus. The v-myc domain in MC29 virus encodes a hydrophilic polypeptide with a molecular weight of 47,000, fused to a portion of the polyprotein encoded by the viral structural gene gag. The carboxyl-terminal half of the vmyc polypeptide is rich in basic amino acid residues. This feature may account for the DNA-binding properties of the hybrid gagmyc-encoded protein which would have a molecular weight of approximately 100,000, in accord with results from previous studies of the protein encoded by v-myc. The junctions between v-myc and the genome of the transducing virus are apparent but reveal no clues to the mechanism by which transduction might occur.

The myelocytomatosis virus MC29 (MC29V) is the prototype for a group of avian retroviruses that induce an unusually broad range of neoplasms, including carcinomas, endotheliomas, mesotheliomas, sarcomas, and myelocytomatosis (1, 2). The versatile pathogenicity of these viruses has been attributed to a single viral oncogene (v-myc) which, in turn, is closely related to and probably derived from a cellular gene (c-myc) found in vertebrates (3, 4) and in less-advanced metazoan species (5). In addition to its apparent role as evolutionary progenitor for vmyc, c-myc has now been implicated in the genesis of at least one form of neoplasia—the B-cell lymphomas induced in chickens by infection with avian leukosis viruses (6, 7).

The topography of v-myc differs from one myelocytomatosis virus to another. In the prototypic MC29V, v-myc is fused to a portion of the viral gene gag which encodes the internal structural proteins of the virus (8). The hybrid gene gives rise to a polyprotein with a molecular weight of 110,000 (p110^{gag-myc}), translated from a mRNA that is either identical or very similar to the viral genome (9). The closely related virus CMII encodes a similar polyprotein (p90^{gag-myc}) (10). By contrast, the myelocytomatosis viruses OK-10 and MH-2 contain v-myc as an independent genetic unit that is expressed by means of a spliced subgenomic mRNA (11, 12). Tentative identifications of the proteins encoded by v-myc in these viruses are now emerging (12).

Several of the better-characterized retroviral oncogene products are plasma membrane proteins with kinase activities that phosphorylate tyrosine in protein substrates (13). Although the $p110^{gag-myc}$ protein of MC29V is phosphorylated on both serine and threonine, it has given no evidence of being a protein kinase (13). Instead, $p110^{gag-myc}$ binds with high affinity to double-stranded DNA (14) and is found in the nucleus of infected cells (14, 15), where it may be a component of chromatin (16).

In order to facilitate further dissection of the mechanisms by which the myelocytomatosis viruses induce neoplastic growth, we have determined the nucleotide sequence of v-myc and its environs in the genome of MC29V. Our results provide a deduced amino acid sequence for the myc domain of $p110^{gag-myc}$, offer clues to its mechanism of binding to DNA and guideposts for the search for viral and cellular myc proteins, reveal the junctions at which v-myc has been joined to the genome of the retrovirus that transduced the gene from the host cell, and should eventually assist in elucidation of the mechanism by which the transduction occurred.

MATERIALS AND METHODS

Molecular clones of MC29 DNA were obtained as described (17). Various restriction fragments of DNA were cloned into the M13 phage vectors mp7, -8, and -9 (18) and then subjected to sequence analysis by the chain-terminator technique (19). All portions of the reported sequences were obtained from at least two independent, overlapping clones or from both strands of DNA, or from both. Band compression in the sequencing gels in a G+C-rich region was resolved by the substitution of inosine for guanosine in the dideoxy reactions (20). Details of the sequence analysis strategy, complete restriction maps of the DNA analyzed, a summary of codon usage, and documentation of the sequencing gels are available upon request.

RESULTS AND DISCUSSION

The Nucleotide Sequence of v-myc. The nucleotide sequence of v-myc and adjacent proviral DNA is shown in Fig. 1. We defined the boundaries of v-myc in MC29V by comparison to the nucleotide sequence of the Prague-C strain (Pr-C) of Rous sarcoma virus (RSV) (Fig. 2). The leftward junction between v-myc and the transducing viral genome is located within the coding domain for the virion protein $p27^{gag}$, as expected from previous descriptions of $p110^{gag-myc}$ (8) and the genome of MC29V (21). The v-myc insert continues from the leftward recombinatory junction for 1,580 nucleotides, after which homology with the genome of Pr-C RSV resumes within the env

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

Abbreviations: kb, kilobase(s); kbp, kilobase pair(s); MC29V, avian myelocytomatosis virus 29; RSV, Rous sarcoma virus; Pr-C, Prague RSV of subgroup C; gag, gene encoding the major structural proteins of the retrovirus core; env, gene encoding viral envelope proteins; LTR, long terminal repeat.

-13 -38	Pro CCA	ASP A GAT) Ile ATC	Gln CAG	Gln GAG	Leu CTT	Ile ATA	CGG	Ala GCA	Ala GCA	Pro CCC	Ser TCC	Thr ACA	Val GTG	His CAC MY	G1y GGC C	Gln CAG	Ala GCA	Ala GCA	Ala GCC	Ala GCC	Ala GCG	Met ATG	Pro CCG	Leu CTC	Ser AGC	Ala GCC	Ser AGC	Leu CTC	Pro
18	Ser	Lys	Asn	Tyr	Asp	Tyr	Asp	Tyr	A SP	Ser	Val	Gln	Pro	Tyr	Phe	Tyr	Phe	Glu	Glu	Glu	Glu	Glu	Asn	Phe	Tyr	Leu	Ala	Ala	Gln	Gln
53	AGC	Aag	AAC	TAC	GAT	TAC	Gac	TAC	GAC	TCG	GTG	CAG	CCC	TAC	ፕፕር	TAC	TTC	GAG	GAG	GAG	GAG	GAG	AAC	TTC	TAC	CTG	GCG	GCG	CAG	CAG
48	Arg	Gly	Ser	Glu	Leu	Gln	Pro	Pro	Ala	Pro	Ser	Glu	Asp	Ile	Тгр	Lys	Lys	Phe	Glu	Leu	Leu	Pro	Met	Pro	Pro	Leu	Ser	Pro	Ser	Arg
143	CGG	GGC	AGC	GAG	CTG	CAG	CCT	CCC	GCC	CCG	TCC	GAG	GAC	ATC	TGG	Aag	AAG	TTT	GAG	CTC	CTG	CCC	ATG	CCG	CCC	CTC	TCG	CCC	AGC	CGC
78	Arg	Ser	Ser	Leu	Ala	Ala	Ala	Ser	Cys	Phe	Pro	Ser	Thr	Ala	Asp	Gln	Leu	Glu	Met	Val	Thr	Glu	Leu	Leu	Gly	Gly	Asp	Met	Val	Asn
233	CGC	TCC	AGC	CTG	GCC	GCC	GCC	TCC	TGC	TTC	CCT	TCC	ACC	GCC	GAC	CAG	CTG	GAG	ATG	GTG	ACG	GAG	CTG	CTC	GGG	GGG	GAC	ATG	GTC	AAC
108	Gln	Ser	Phe	Ile	Cys	Asp	Pro	A SP	Asp	Glu	Ser	Phe	Val	Lys	Ser	Ile	Ile	Ile	Gln	Asp	Cys	Met	Тгр	Ser	Gly	Phe	Ser	Ala	Ala	Ala
323	CAG	AGC	TTC	ATC	TGC	GAC	CCG	GAC	GAC	GAA	TCC	TTC	GTC	AAA	TCC	ATC	ATC	ATC	CAG	GAC	TGC	ATG	TGG	AGC	GGC	TTC	TCC	GCC	GCC	GCC
138	Lys	Leu	Glu	Lys	Val	Val	Ser	Glu	Lys	Leu	Ala	Thr	Tyr	Gln	Ala	Ser	Arg	Arg	Glu	Gly	Gly	Pro	Ala	Ala	Ala	Ser	Arg	Pro	Gly	Pro
413	AAG	CTG	GAG	AAG	GTG	GTG	TCG	GAG	AAG	CTC	GCC	ACC	TAC	CAA	GCC	TCC	CGC	CGG	GAG	GGG	GGC	CCC	GCC	GCC	GCC	TCC	CGA	CCC	GGC	CCG
168	Pro	Pro	Ser	Gly	Pro	Pro	Pro	Pro	Pro	Ala	Gly	Pro	Ala	Ala	Ser	Ala	Gly	Leu	Tyr	Leu	His	Asp	Leu	Gly	Ala	Ala	Ala	Ala	Asp	Cys
503	CCG	CCC	TCG	GGG	CCG	CCG	CCT	CCT	CCC	GCC	GGC	CCC	GCC	GCC	TCG	GCC	GGC	CTC	TAC	CTG	CAC	GAC	CTG	GGA	GCC	GCG	GCC	GCC	GAC	TGC
198	Ile	Asp	Pro	Ser	Val	Val	Phe	Pro	Tyr	Pro	Leu	Ser	Glu	Arg	Ala	Pro	Arg	Ala	Ala	Pro	Pro	Gly	Ala	Asn	Pro	Ala	Ala	Leu	Leu	Gly
593	ATC	Gac	CCC	TCG	GTG	GTC	TTC	CCC	TAC	CCG	CTC	AGC	GAG	CGC	GCC	CCG	CGG	GCC	GCC	CCG	CCC	GGC	GCC	AAC	CCC	GCG	GCT	CTG	CTG	GGG
228 683	Sa Val GTC	Asp GAC	Thr ACG	Pro CCG	Pro CCC	Thr ACG	Thr ACC	Ser AGC	Ser AGC	Asp GAC	Ser TCG	Glu Gaa	Glu GAA	Glu GAA	Gln CAA	Glu GAA	Glu GAA	Asp Gat	Glu GAG	Glu GAA	Cla Ile ATC	Asp. GAT	Val GTC	Val GTT	Thr ACA	Leu TTA	Ala GCT	Glu GAA	Ala GCG	Asn AAC
258 773	Glu GAG	Ser TCT	Glu GAA	Ser TCC	Ser AGC	Thr ACA	Glu GAG	Ser TCC	Ser AGC	Thr ACA	Glu GAA	Ala GCA	Ser TCA	Glu GAG	Glu GAG	His CAC	Cys TGT	Lys AAG	Pro CCC	26 His CAC	His CAC	Ser AGT	Pro CCG	Leu CTG	Val GTC	Leu CTC	Lys AAG	Arg CGG	Cys TGT	His CAC
288 863	Val GTC	Asn AAC	Ile ATC	His CAC	1 Gln CAA	His CAC	Asn AAC	Tyr TAC	Ala GCT	Ala GCT	Pro CCT	7b Pro CCC	Ser TCC	Thr ACC	Lys AAG	Val GTG	Glu GAA	Tyr TAC	Pro CCA	Ala GCC	Ala GCC	Lys Aag	Arg AGG	Leu CTA	I.ys Aag	Leu TTG	Asp GAC	Ser AGT	Gly GGC	Arg AGG
318	Val	Leu	Lys	Gln	Ile	Ser	Asn	Asn	Arg	Lvs	Cys	Ser	Ser	Pro	Arq	™hr	i,eu	Asp	Ser	Glu	Glu	Asn	Asp :	Lys	Arg	Arg	Thr	His	Asn	Val
953	GTC	CTC	AAA	CAG	ATC	AGC	AAC	AAC	CGA	Ana	TGC	TCC	AGT	CCC	CGC	ACG	TTA	GAC	TCA	GAG	GAG	AAC	GAC :	AAG	AGG	CGA	ACG	CAC	AAC	GTC
348	Leu	Glu	Arg	Gln	Arg	Arg	Asn	Glu	Leu	Lys	Leu	Arq	Phe	Phe	A]a	Leu	Arg	Asp	Gln	Ile	Pro	Glu	Val i	Ala	Asn	Asn	Glu	Lys	Ala	Pro
1043	TTG	GAG	CGC	CAG	CGA	AGG	AAT	GAG	CTG	AAG	CTG	CGT	TTC	TTT	GCC	CTG	CGT	GAC	CAG	ATA	CCC	GAG	GTG (GCC	AAC	AAC	GAG	NAG	GCG	CCC
378	Lys	Val	Val	Ile	Leu	Lys	Lys	Ala	Thr	Glu	Tyr	Val	Leu	Ser	Leu	Gln	Ser	ASD	Glu	His	Arg	Leu	Ile /	Ala (Glu	Lys	Glu (Gln	Leu	Arg
1133	AAG	GTT	GTC	ATC	CTG	AAA	Aaa	GCC	ACG	GAG	TAC	GTT	CTG	TCT	CTC	CAA	TCG	GAC	GAG	CAC	AGA	CTG	ATC (GCA (GAG	AAA	GAG (CAG	FTG	AGG
408 1223	Arg CGG	Arg AGG	Arg AGA	Glu GAA	Gln CAG	Leu TTG	Lys AAA	His CAC	Asn AAC	Leu CTT	Glu GAG	GIN I CAG (Leu CTA	Arq AGG	Asn AAC	Ser TCT	Arg CGT	Ala GCA	AM TAG	GAAC	тстт	GGAC	ATCAC	стта	GAAT	ACCC	Салас	CTAG	ACTG	AAA
1333	СТАТ	GATA	аалт	атта	GTGT	ттст	аата	TCAC	тсат	GAAC	TACA'	rcag	FCCA	TTGA	GTAT	GGAN	ርተላም	TGCA	ACTG	CATG	CTGT	GCGA	CTTA	CTT	GAGA	CTAC	ACAA	CTT	GCC	GAA
1442	rctc	CGAA	ссст V-	TTGG MY(ccagi C d i		tcaa. NV	ааст	GCCT	САТА	ATTG	ATACI	rttg	GGCA	FAAG	GGATI	SATG	GGAC	аттс	TTCA	гGCТ	tGGG	5ATG#	ACTO	CTTC	ААСт	רירידיו	°C'TT'	TAA	ААТ + 1

1561 TTTGTATTTAAGGCATTCCTGGTGGCCCTGACAACAGCACCACCCCCCCACTTATCGAAAGGTTTCATGCTGCTGTTAAAACTGAAAACTGAGTGGGGATGAGCCACCGGAACTGCAG

FIG. 1. Nucleotide sequence of v-myc and adjacent MC29V proviral DNA. The upper (-13 to 408) and lower (-38 to 1561) numbers at the left of each line refer to the adjacent amino acid and base sequence positions, respectively. The reading frame of v-myc continues uninterrupted from the gag-p27 reading frame at position +1 until terminated by an amber codon at positions 1277-1279. Recognition sites for cleavage by restriction endonucleases Pst I, Cla I, and Sal I are marked in the sequence. The underlined portions of the sequence with number designations (26, 1, 7b) refer to the v-myc specific oligonucleotides characterized by Duesberg et al. (21).

gene. The nucleotide sequence adds detail to previous descriptions of the deletion that accompanied insertion of v-myc into the genome of MC29V: the deletion extends from a position 87 nucleotides upstream of the termination codon for gag to a position 1,393 nucleotides upstream of the termination codon for env (assuming that the boundaries of gag and env in the transducing virus were identical to those in the genome of Pr-C RSV); the deleted regions include nucleotide sequences coding for the carboxyl terminus of p27gag, the entire reverse transcriptase gene, the splice acceptor site used in the genesis of mRNA for env, and the amino-terminal domain of the envelope glycoprotein gp85^{env} (22).

The nucleotide sequences in the vicinity of the junctions between v-myc and adjacent portions of gag and env reveal no clues to the mechanism by which the transduction of myc occurred. There is no notable homology between viral and cellular

domains that could have facilitated homologous recombination and no rearrangements of sequence (such as direct repeats) that might evoke the actions of a transposable genetic element (23).

Several convenient landmarks of the v-myc sequence are indicated in Fig. 1. The Pst I fragment (residues 158-1,676) represents the subclone widely distributed by our laboratory for use as a myc-specific probe. As noted previously (17), this fragment also contains a small portion of env (nucleotides 1,581-1,676). The left-hand end of the fragment lies 157 nucleotides within v-myc, in accord with previous estimates (17).

The recognition sites for several restriction endonucleases in c-myc appear to be conserved in v-myc. This is apparent from comparison of restriction maps of c-myc (7, 17) to the restriction sites in the v-myc sequence presented here. The single Cla I and Sal I sites at positions 744-749 and 683-688, respectively, are of particular interest. They bracket a 1.1-kilobase-pair (kbp) intron in c-myc (24, 25) and must lie within flanking exons because they are retained in v-myc and therefore survived the splicing that is an essential step in the transduction of cellular oncogenes into retroviruses (26–28). The splice junction at which the two exons of c-myc are fused to generate v-myc must lie between Cla I and Sal I sites, as suggested previously (24, 25). These conclusions conform to the recent demonstration that the exons of cellular oncogenes are joined precisely during transduction into retroviral genomes (29).

The v-myc sequence between residues 450 and 700 is exceptionally rich in guanosine and cytidine [(G+C)/(A+T+G+C) = 0.84]. Sequences of this sort may give anomalous reactions in molecular hybridizations. Investigators using v-myc as a "probe" in molecular hybridization should be alert to the possibility of spurious interactions with other nucleic acids.

The Reading Frame of v-myc. The reading frame of v-myc is defined by its continuity with the gag reading frame (Fig. 3A). The portion of the open reading frame within v-myc extends for 1,276 base pairs before terminating at an amber codon. Thereafter, the v-myc insert has a 304-base-pair sequence containing several termination codons and bounded at residue 1,581 by the resumption of homology with the Pr-C RSV genome. Since the v-myc terminator is within the inserted cellular sequence, it presumably represents the site at which translation from c-myc terminates. Other examples of transduced termination codons in viral oncogenes include the src (22, 30), ras (31, 32), and mos (33) genes; we also know of one exception—the myb gene of avian myeloblastosis virus which uses the termination codon of env (29).

The deduced amino acid sequence of the v-myc domain of $p110^{gag-myc}$ protein is shown above the nucleotide sequence in Fig. 1. The calculated molecular weight of the v-myc polypeptide is 46,936. The complete gag-myc polypeptide would have a deduced molecular weight of about 100,000. When allowance is made for modification of electrophoretic mobility due to phosphorylation, the size of the polypeptide corresponds well to the nominal molecular weight of 110,000 assigned on the basis of electrophoresis in polyacrylamide gels. The polypeptide encoded by v-myc would yield four tryptic peptides containing

5' JUNCTION:

methionine, precisely as predicted from previous studies of $p110^{gag-myc}$ (34). The size of the v-myc domain in $p110^{gag-myc}$ (M_r , 47,000) provides a lower limit for the molecular weight of the product of c-myc, but the cellular protein is probably larger: it is unlikely that the entire coding domain of c-myc has been transduced into MC29V (see below); and it appears that the v-myc domain in the related virus MH-2 may encode a protein with a molecular weight of at least 57,000 (12).

A hydropathic index was calculated for groups of six amino acid residues with overlaps of two residues along the length of the v-myc amino acid sequence (Fig. 3B). The results indicate that v-myc encodes a relatively hydrophilic protein. The predicted polypeptide is devoid of hydrophobic stretches of the sort that mediate insertion of proteins into cellular membranes. The amino acid sequence derived from the v-myc coding sequence to the right of the Cla I site (i.e., corresponding to the right-hand exon in c-myc) is enriched in basic amino acid residues. Moreover, arginine and lysine residues comprise 13% and 10%, respectively, of the carboxyl-terminal 150 amino acids; these numbers have provocative similarities to the amino acid compositions of certain histones. The basic portion of pl10gag-myc may account for its ability to bind to doublestranded DNA (14). Other notable features of the v-myc amino acid sequence are clusters of successive proline residues (between residues 164 and 180) derived from a portion of the G+Crich nucleotide sequence and scattered runs of two to five alanine and acidic amino acid residues.

Mapping of tryptic phosphopeptides of $p110^{gag-myc}$ has revealed that the *myc* domain of the protein is heavily phosphorylated on serine and threonine (36). The amino acid sequence of *v-myc* contains two serine residues (80 and 329) and two threonine residues (344 and 386) in sequences that are characteristically recognized by cyclic nucleotide-dependent protein kinases (X-Y-Z-Ser/Thr, where X and Y are basic residues) (37). There are also a number of serine residues (58, 235, 236, 238, 259, 270, 336, and 394) and some threonine residues (263 and 267) within acidic environments that favor phosphorylation by "casein" kinases or "nuclear acidic" kinases (38). We cannot specify which of these various residues is phosphorylated in $p110^{gag-myc}$, but two of the three major sites of phosphorylation

p27 ^{GAG} PR-C RSV GLN GLN LEU ILE ARG THR ALA PRO SER THR LEU THR THR PRO GLY GLU ILE ILE LYS TYR 1700 CAG GAG CTT ATA CGG ACA GCA CCC TCC ACG CTG ACC ACC CCA GGA GAG ATA ATT AAA TAT 1759 CAG CAG CTT ATA CGG GCA GCA CCC TCC AC MC-29 V-MYC GLN GLN LEU ILE ARG ALA ALA PRO SER THR P110 GAG-MYC A GTG CAC GGC CAG GCA GCA GCC GCC GCG ATG VAL HIS GLY GLN ALA ALA ALA ALA MET 3' JUNCTION: V-MYC CTT TTA AAA TTT TGT ATT TAA GGC ATT CCT MC-29 GGT GGC CCT GAC AAC AGC ACC ACC CTC ACT 5441 GAC CGG TTA GTC TTG TCA GCC AGC ATT ACC GGC GGC CCT GAC AAC AGC ACC ACC CTC ACT 5500 PR-C RSV ASP ARG LEU VAL LEU SER ALA SER ILE THR GLY GLY PRO ASP ASN SER THR THR LEU THR gp85 ENV

FIG. 2. Finding the junctions between v-myc and the genome of a transducing retrovirus. The left-hand (5') and right-hand (3') ends of the sequenced portion of the MC29V provirus were aligned with homologous sequences of Pr-C RSV. Interruption of the almost complete homology between Pr-C RSV and MC29V genomes is indicated by off-setting the MC29V sequence. The deduced amino acid sequences are shown where applicable. Numbers for the Pr-C RSV nucleotide sequence are given according to Schwartz *et al.* (22). For other symbols, see the text for details.

Biochemistry: Alitalo et al.

apparently reside within the region deleted in the partially defective mutants described above (36)—i.e., within a domain that includes the *Cla* I site and extends *ca*. 200 nucleotides in the 3' direction. Since this same domain is required for the binding of $p110^{gag-myc}$ to DNA (16), phosphorylation may regulate the binding in some way.

It is unlikely that the other two v-myc translational reading frames are used because they are frequently closed by termination codons (vertical bars in Fig. 3A). The few initiation codons (ATG) found in these frames (not shown) are followed shortly by stop codons. Cells infected with MC29V contain only a single myc-specific mRNA that is of the same length as the viral genome (4). It therefore seems unlikely that any portion of v-myc in MC29V is expressed by translation from a spliced subgenomic messenger.

Domains Within myc. Part or all of two exons of c-myc are apparently represented in v-myc (24, 25). The 3' boundary of the leftward exon and the 5' boundary of the rightward exon may be reproduced faithfully in v-myc. The continuity of reading frame across the junction between the domains of the two exons in v-myc suggests that the junction was formed by splicing between authentic donor and acceptor sites in c-myc. Neither exon may be represented fully in v-myc, however. The termination codon for the open reading frame in v-myc is apparently contained within the transduced cellular domain, so the 3' boundary of the rightward exon must lie further downstream.

<u>v-myc</u> amino acid residue number

FIG. 3. Topography of v-myc. (A) Structure of v-myc and its translational reading frames in the genome of MC29V. The portion subjected to sequence analysis is shaded. The recombination of myc with the genome of a transducing retrovirus has occurred at sites shown as black bars in the diagram of provirus. $\Delta p27$ and $\Delta gp85$ denote coding domains for the p27 protein of the gag gene and the glycoprotein gp85 of the env gene that have suffered deletions during the recombination events leading to capture of the v-myc insert. The recognition sites in the DNA for Sal I and Cla I enzymes are shown because they provide landmarks for dividing v-myc into portions corresponding to putative exons of c-myc. The 1.5-kbp Pst I fragment is also shown. The reading frame that engenders $p110^{grag-myc}$ and the two other reading frames in v-myc are shown below the provirus. Vertical bars denote stop codons. The open reading frame for env continues in midstream after the stop codons in the second (+1) reading frame. The scale is indicated on top of the figure in kilobases. LTR, left-hand long terminal repeat sequence of the provirus. (B) Diagram showing hy dropathy along the v-myc domain of the $p110^{grag-myc}$ polypeptide. The hydropathic index is calculated according to Kyte and Doolittle (35) for segments of six consecutive amino acid residues with overlaps of two residues in the v-myc sequence. The program was a moving segment approach that continuously determines the average hydropathy within the segment as it advances through the sequence from the amino to the carboxyl terminus. The mean overall relative hydropathy index of an average protein (-0.4) is shown by the continuous line. The mean hydropathy of the myc protein is -0.69.

We have searched the downstream region of v-muc without success for a splice donor consensus sequence (39). We therefore suggest that the 3' boundary of v-myc lies within an exon of cmyc, as predicted by the prevailing model for tranduction by retroviruses (27, 28). The 5' boundary of v-myc is apparently also within an exon of c-myc, since a continuous open reading frame spans the junction between gag and v-myc. This is in contrast to the findings-with c-myb (29) and c-src (unpublished data), in which the leftward boundaries of transduced cellular domains lie within introns, but the model for transduction allows for either possibility at the leftward recombinatory junction (27, 28)

Further evidence that c-myc is not completely represented in v-myc of MC29V has come from analysis of the RNA transcribed from c-myc. The cytoplasm of uninfected chicken cells contains a 2.5-kb RNA that is presumed to be the mRNA for c-myc (40, 41). This RNA is substantially longer than v-myc in MC29V (1.58 kbp) and must therefore be transcribed in part from portions of c-myc not contained in v-myc. We will know the full extent of c-myc only when we know where transcription from the gene starts and stops.

We used the Sal I and Cla I sites described above to achieve a conservative division of v-myc into domains representing the two exons from c-myc (i.e., we excluded the sequence between the restriction sites from analysis). Computer-assisted search of these domains disclosed no significant homologies, suggesting that the two exons did not evolve from a common ancestor by duplication. The hydrophilicity of the right-hand exon domain is somewhat more pronounced and, as noted above, the same domain is substantially more basic than the left-hand exon domain.

The region of v-myc immediately to the right of the Cla I site may be particularly important to the pathogenicity of the gene. When the Cla I site and 200-600 nucleotides to its right are deleted in natural variants of MC29V, the virus loses the ability to transform macrophages in culture and induce carcinomas or endotheliomas in birds, yet it retains the capacity to transform fibroblasts (42-44). The largest deletion has been repaired by propagation of the mutant virus in cell culture, apparently by recombination with c-myc (45, 46), but the repaired virus rapidly induces B-cell lymphomas rather than carcinomas, findings that are reminiscent of the role stipulated for c-muc in the induction of B-cell lymphomas by avian leukosis viruses (6, 7). The domain of v-myc involved in these variations should receive special attention in future studies of myc protein and its functions.

We thank J. Marinos for typing the manuscript, Karl-Heinz Klempnauer for expert advice on sequence determination, and Gary Ramsay for discussions. K.A. is the recipient of National Institutes of Health Fogarty International Fellowship TW 03138.

- Beard, J. W. (1980) in Viral Oncology, ed. Klein, G. (Raven, 1. New York), pp. 55-87.
- 2 Moscovici, C., Alexander, R. W., Moscovici, M. G. & Vogt, P. K. (1978) in Avian RNA Tumor Viruses, eds. Barlati, S. & Giuli-Morghen, C. (Piccin, Padua, Italy), pp. 45-56.
- Roussel, M., Saule, S., Lagrou, C., Rommens, C., Beug, H., Graf, T. & Stehelin, D. (1979) Nature (London) 281, 452-455. 3. Sheiness, D. & Bishop, J. M. (1979) J. Virol. 31, 514-521.
- Shilo, B.-Z. & Weinberg, R. A. (1981) Proc. Natl. Acad. Sci. USA 78, 6789-6792. 5.
- 6. Hayward, W. S., Neel, B. G. & Astrin, S. M. (1981) Nature (London) 290, 475-480.
- 7. Payne, G. S., Bishop, J. M. & Varmus, H. E. (1982) Nature (London) 295, 209-217.

- 8. Bister, K., Hayman, M. J. & Vogt, P. K. (1977) Virology 82, 441-448.
- 9. Sheiness, D., Vennstrom, B. & Bishop, J. M. (1981) Cell 23, 291-300.
- 10. Hayman, M. J., Kitchener, G. & Graf, T. (1979) Virology, 98, 191-199
- Chiswell, D. J., Ramsay, G. & Hayman, M. J. (1981) J. Virol. 40, 11. 301-304.
- 12. Pachl, C., Biegalke, B. & Linial, M. (1982) J. Virol., in press.
- Hunter, T., Sefton, B. M. & Cooper, J. A. (1981) in Protein Phos-13. phorylation, Cold Spring Harbor Conferences on Cell Proliferation, eds. Rosen, O.M. & Krebs, E. G. (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), Vol. 8, pp. 1189-1202.
- 14. Donner, P., Greiser-Wilke, I. & Moelling, K. (1982) Nature (London) 296, 262-266.
- 15. Abrams, H. D., Rohrschneider, L. R. & Eisenman, R. N. (1982) Cell 29, 427-439.
- Bunte, T., Greiser-Wilke, I., Donner, P. & Moelling, K. (1982) EMBO J. 1, 919-926. 16.
- Vennstrom, B., Moscovici, C., Goodman, H. M. & Bishop, J. M. 17. (1981) J. Virol. 39, 625-631
- Messing, J., Crea, R. & Seeburg, P. H. (1981) Nucleic Acids Res. 18. 9, 309-322
- Sanger, F., Nicklen, S. & Coulson, A. R. (1977) Proc. Natl. Acad. 19. Sci. USA 74, 5463-5467.
- 20. Mills, D. R. & Kramer, F. R. (1979) Proc. Natl. Acad. Sci. USA 76, 2232-2235
- 21. Duesberg, P. H. & Vogt, P. K. (1979) Proc. Natl. Acad. Sci. USA 76, 1633-1637.
- 22. Schwartz, D., Tizard, R. & Gilbert, W. (1982) Cell, in press.
- Calos, M. P. & Miller, J. H. (1980) Cell 20, 579-595. 23.
- 24. Vennstrom, B., Sheiness, D., Zabielski, J. & Bishop, J. M. (1982) J. Virol. **42,** 773–779.
- Robins, T., Bister, K., Gaaron, C., Papas, T. & Duesberg, P. (1982) J. Virol. 41, 635–642. 25.
- 26. Goff, S. P., Gilboa, E., Witte, O. N. & Baltimore, D. (1980) Cell 22, 777-786.
- 27. Varmus, H. E. (1982) Science 216, 812-820.
- 28. Bishop, J. M. (1982) Adv. Cancer Res. 37, in press.
- 29. Klempnauer, K.-H., Gonda, T. J. & Bishop, J. M. (1982) Cell, in press.
- Czernilofsky, A. P., Levinson, A. D., Varmus, H. E., Bishop, J 30. M., Tischler, E. & Goodman, H. M. (1980) Nature (London) 287, 198-203.
- 31. Dhar, R., Ellis, R. W., Shih, T. Y., Oroszlan, S., Shapiro, B., Maizel, J., Lowy, D. & Scolnick, E. (1982) Science 217, 934-937.
- 32 Tsuchida, N., Ryder, T. & Ohtsubo, E. (1982) Science 217, 937-938.
- Van Beveren, C., Galleshaw, J. A., Jonas, V., Berns, A. J. M., Doolittle, R. F., Donoghue, D. J. & Verma, J. M. (1981) Nature 33. (London) 289, 258-262.
- 34. Kitchener, G. & Hayman, M. J. (1980) Proc. Natl. Acad. Sci. USA 77, 1637-1641.
- Kyte, J. & Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132. 35.
- 36. Ramsay, G., Hayman, M. J. & Bister, K. (1982) EMBO J. 1, 1111-1116.
- 37. Krebs, E. G. & Beavo, J. A. (1979) Annu. Rev. Biochem. 48, 923-959
- 38. Hathaway, G. M. & Traugh, J. A. (1982) Curr. Top. Cell. Regul. 21, 101-127.
- Mount, S. M. (1982) Nucleic Acids Res. 10, 459-472. 39. 40.
- Sheiness, D. K., Hughes, S. H., Varmus, H. E., Stubblefield, E. & Bishop, J. M. (1980) Virology 105, 415-424.
- Gonda, T. J., Sheiness, D. K. & Bishop, J. M. (1982) Mol. Cell. 41. Biol. 2, 617-624.
- Ramsay, G., Graf, T. & Hayman, M. J. (1980) Nature (London) 42. 288, 170-172
- 43. Ramsay, G. & Hayman, M. J. (1982) J. Virol. 41, 745-753.
- 44.
- Enrietto, P. J. & Hayman, M. J. (1982) J. Virol. 44, 711-715. Ramsay, G. M., Enrietto, P. J., Graf, T. & Hayman, M. J. (1982) 45. Proc. Natl. Acad. Sci. USA 79, 6885-6889.
- 46 Hayman, M. J., Enrietto, P., Ramsay, G. & Payne, L. N. (1982) Cetus-UCLA Symposium on Tumor Viruses and Differentiation (Liss, New York), in press.