Supplemental Material to:

Tianjiao Lyu, Nan Jia, Jieyu Wang, Xiaohui Yan, Yinhua Yu, Zhen Lu, Robert C Bast Jr, Keqin Hua, and Weiwei Feng

Expression and epigenetic regulation of angiogenesisrelated factors during dormancy and recurrent growth of ovarian carcinoma

Epigenetics 2013; 8(12) http://dx.doi.org/10.4161/epi.26675

http://www.landesbioscience.com/journals/epigenetics/article/26675

Supplemental table 1.Primers for real-time PCR

Gene	Primer sequences	Product length(bp)
ANG1	S:AGCTACCACCAACAACAGTG	79
	A:CAAAGATTGACAAGGTTGTGG	
ANG2	S:TGCCACGGTGAATAATTCAG	124
	A:TTCTTCTTTAGCAACAGTGGG	
ANG4	S:AACAGCGCGCTCGAGAAG	85
	A:GCTTCGCCTTCTTGCTGA	
TSP1	S:CCTCAGGAACAAAGGCTGCTC	103
	A:GCCAATGTAGTTAGTGCGGATG	
IGFBP3	S:AACTGTGGCCATGACTGAGGA	100
	A:CTCCCTGAGCCTGACTTTGC	
ANGPTL2	S:CCACCCTGGACAGAGATCAT	168
	A:CTCGGAACTCAGCCCAGTAG	
RECK	S:CGCGTGGCAGTCGATTACTAT	107
	A:GCTGCCAAGAGCGAAGGA	
SPARC	S:GCGAGCTGGATGAGAACAACAC	136
	A:GTGGCAAAGAAGTGGCAGGAAG	
TIE1	S:GCCCAGATTGCGCTACAG	96
	A:ATCAATGCCCGCGTAAGT	
TIE2	S:TTGAAGTGGAGAGAAGGTCTG	128
	A:GTTGACTCTAGCTCGGACCAC	
TIMP3	S:TTCTCAGCGAGGATGGCACTT	200
	A:AAACACGGTTCAGGATGCTGG	
EFEMP1	S:CAGCTGACCCTCAGCGCATT	124
	A:CAGTTGTGCGTCCCTGCAGT	
SULF1	S:GGCATTTTGAATCAGCTACACGTA	152
	A:TCCCATCCATCCCATAACTGTC	
CDH13	S:TTCAGCAGAAAGTGTTCCATAT	204
	A:GTGCATGGACGAACAGAGT	

CDH1	S:CAAGCAGCAGTACATTCTA	148
	A:CACTTCCACTCTCTTTTC	
0		
p-actin	S:GAAGCIGIGCIAIGIIGCICIA	64
	A:GGAGGAAGAGGATGCGGCA	

Gene	Primer sequences	Product length(bp)	Annealing temperature(°C)
ANG1	S:TTAGAAAATAGTGGGAGAAGATA AAT A:CCAAATATTAAAATTTCTAAAAA. AA	T 184 A	56
ANG2	S:TATTTTGAGTTGTGATTTTGTTTTG A:TCTCCAACACTTACAACCTCTACA	233 AC	64
ANG4	S:TGTTATTAAGATTGAGGAAGGAGG A:ACAACCAACAATAACCAAACTTA C	GA 205 C	61
TSP1	S:GTGGGGTTAGTTTAGGATAGG A:CAAAAAACACCAAAAAAAACCATT	124	54
IGFBP3	S:GTGGGTTTTTTGGGGGATATAAATAG A:AATCACTCCTAACCAACTCAACA	Г 278 С	65
ANGPTL2	S:TTTAGAGATGAGAATGAGGTTTTT A:AACCTAACCAACTCTACTCCCTAA	TA 280 AC	64
RECK	S:TTTAGTGATGAATTTTTGTTAGGG A:AACTTCTCTCCTTCATATACCCTC A	G 142 A	62
SPARC ²²	S:ATTTAGTTTAGAGTTTTGAGTGG A:ACAAAACTTCCCTCCCTTAC	221	56.5
TIE1	S:TGTTGTTTATAAATGGTTAAGATG TAAA A:CTTACCTCAACCTCCCAAATAACT	GG 220 ГА	57.2
TIE2	S:TGGTTTTTTTGGGGTTATATTGAGT A:ACTAAAAATAACAAACCCTCCAC TATA	A 270 C	51.1
TIMP3 ²³	S:GCGGCCGCGTTAGAGATATTTAGT GTTTAG A:CCCTCAAACCAATAACAAAAC	G 263	50.3

Supplemental table 2. Primers for bisulfite sequencing PCR

EFEMP1	S:TATTTGGATTTTATAGGAGTTGGTT	223	59
	AGA		
	A:CTCTTTTTTTCTTATCAATCTAAATC		
	CC		
SULF1	S:GGTTATTTGATTGGGAGTTTTTAGAT	212	51.7
	A:AACAAAACAACCTTCCTTCTCTTAA		
	Т		
CDH13	F:TTGGAAAAGTGGAATTAGTTGGTAT	187	55
	R:ACCAAAACCAATAACTTTACAAAA		
	С		
CDH1	S:GTTGTTGTTGTTGTTGTAGGTATTT	197	54.9
	A:CCACTCCCATCACTAAAAAATC		

Supplemental table 3. Primers for ChIP-PCR

Gene	Primer sequences	Product length(bp)
CDH1	S: ACTCCAGGCTAGAGGGTCACC A: CCGCAAGCTCACAGGTGCTTTGC AGTTCC	219
TIMP3	S:GCAACTCCGACATCGGTAAG A:GCCCAAGGACATCGAGTTT	167

SKOv3-ARHI

Hey-ARHI

В

Control
Dormancy
Recurrence

Control Dormancy Recurrence

Supplemental Figure 1. Angiogenesis-related genes were differentially expressed in ovrain cancer cells treated with DOX or DOX withdrawal. Ang1, Ang2 Ang4 and TSP1 dynamically express during the dormancy-to-recurrence transition. (**A**) Expression of angiogenesis-related factors in three non-VEGF control groups of SKOv3-ARHI and Hey-ARHI cells. (**B**) Dynamic expression of Ang1, Ang2 Ang4 and TSP1 during the dormancy-to-recurrence transition during a time line of 0, 6, 10 and 14 days, as measured by real-time PCR in SKOv3-ARHI and Hey-ARHI cells. *Compared with the VEGF control group, P < 0.05, ** Compared with the VEGF control group, P < 0.01, #Compared with the dormancy group, P < 0.01.

Supplemental Figure 2. The TIMP3 and CDH1 protein levels were semi-quantified according to immunocytochemistry experiments. **Compared with the control group, P < 0.05. ^{##}Compared with the dormancy group, P < 0.05. ^{\$Compared with the recurrence group, P < 0.05; ^{\$S}Compared with the recurrence group, P < 0.05}

Supplemental Figure 3. H3K9Ac, H3K4me3, and H3K27me3 may regulate the expression of *TIMP3* and *CDH1*. (**A**) Design of primers for BSP and ChIP analysis across the promoter and exon 1 of *TIMP3* and *CDH1*. Seven pairs of ChIP primers for *TIMP3* and 6 pairs of ChIP primers for *CDH1* were tested. T1~T7 and C1~C6 mean the respective location of the PCR products. The results showed that the histone markers were modulated in the T7 (*TIMP3*) and C2 (*CDH1*) regions. The T7 and C2 primers were used in the subsequent ChIP experiments. (**B**) H3K4me3, H3K9me2, and H3K9Ac at the

TIMP3 and *CDH1* promoter were analyzed by ChIP analysis in the SKOv3-ARHI cells. (C) H3K27me3, H3K4me3, H3K9me2, and H3K9Ac at the *TIMP3* and *CDH1* promoter were analyzed by ChIP analysis in the Hey-ARHI cells. The acetylation and methylation levels were expressed as the ratio of the signal intensity of the immunoprecipitation product (IP) to the input (see Methods). **Compared with the control group, P < 0.01. ##Compared with the recurrence group, P < 0.01. Independent ChIP experiments were repeated at least twice to confirm the reproducibility of the results.

Supplemental Figure 4. PCNA, CD31, TIMP3 and CDH1 protein levels were semiquantified in the in-vivo dormancy-to-recurrence transition model. (**A**) Semi-quantitative PCNA and CD31 protein levels in the in-vivo dormancy-to-recurrence transition model. The scores were made according to immunohistochemistry experiments (**Fig. 7**) (**B**) Semi-quantitative TIMP3 and CDH1 protein levels in the in-vivo dormancy-torecurrence transition model. The sores were made according to immunohistochemistry experiments (**Fig. 8**). * Compared with the control group, P < 0.05.** Compared with the control group, P < 0.01. #Compared with the dormancy group, P < 0.05. ##Compared with the dormancy group, P < 0.01.

Supplemental Figure 5. No significant changes in the general histone modification were found during the transition from dormancy to recurrent growth in vivo.

Supplemental Table 1. Primers for real-time PCR.

Supplemental Table 2. Primers for bisulfite sequencing PCR.

Supplemental Table 3. Primers for ChIP-PCR.