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ABSTRACT As additivity is a very useful property for a
distance measure, a general additive distance is proposed
under the stationary time-reversible (SR) model of nucleotide
substitution or, more generally, under the stationary, time-
reversible, and rate variable (SRV) model, which allows rate
variation among nucleotide sites. A method for estimating the
mean distance and the sampling variance is developed. In
addition, a method is developed for estimating the variance-
covariance matrix of distances, which is useful for the statis-
tical test of phylogenies and molecular clocks. Computer
simulation shows (i) if the sequences are longer than, say, 1000
bp, the SR method is preferable to simpler methods; (ii) the
SR method is robust against deviations from time-
reversibility; (iii) when the rate varies among sites, the SRV
method is much better than the SR method because the
distance is seriously underestimated by the SR method; and
(iv) our method for estimating the sampling variance is
accurate for sequences longer than 500 bp. Finally, a test is
constructed for testing whether DNA evolution follows a
general Markovian model.

among sites. Extensive simulation will be conducted to study
the biasness and robustness of our SR and SRV methods and
to check the accuracy of our method for estimating the
sampling variance.

METHODS

General Additive Distance Under the SR Model. Suppose
that nucleotide substitution follows a stationary Markov pro-
cess. Denote A, G, T, and C as 1, 2, 3, and 4, respectively. Let
R be the rate matrix whose ijth element rij is the rate of change
from nucleotide i to nucleotide j if i # j (i, j = 1, 2, 3, 4); the
diagonal elements are given by r11 = - joi rij. Then the matrix
of transition probabilities P for t time units is given by P(t) =
eR1, where the ijth element of P(t) is Pi>(t)-i.e., the probability
of transition from nucleotide i to nucleotidej after t time units
(6).
The substitution process is reversible in time if and only if

ririj= 7rjrji, i,] = 1, 2, 3, 4, [1]
Additivity is a highly desirable property for evolutionary
distances. In fact, if additivity does not hold, all distance matrix
methods of tree reconstruction may become statistically in-
consistent, leading to an erroneous tree with a probability
approaching 1 as the sequence length increases to infinity (1).
A distance measure may be nonadditive if an oversimplified
model of nucleotide substitution is used (2). Therefore, a
general model of nucleotide substitution is desirable. We
consider the stationary time reversible (SR) model which
assumes only that the substitution process is stationary ahd
reversible in time; it includes many models as special cases-
e.g., the models of Jukes and Cantor (3), Hasegawa et al. (4),
and Tamura and Nei (5).
The SR model has been studied by several authors (6-11).

However, much remains to be investigated. First, the SR model
assumes that the substitution rate is the same for all sites. This
assumption is unrealistic for most genes because the functional
constraints are usually different at different sites (12). As a
distance measure may become nonadditive if the rate varies
among sites, it is important to extend the SR model to the SRV
model (stationary, time-reversible, and rate-variable). Second,
the sampling variance of distance has not been well developed.
Third, it is not clear how to estimate the variance-covariance
matrix of a distance matrix under the SR or SRV model,
though some simple cases have been studied (13-15). To solve
these problems, we first develop a general distance measure
under the SR model because the existing framework (6, 9) does
not seem suitable for our purpose. Our SR method gives
estimates similar to those of Lanave et al. (6) and Rodriguez
et al. (9), but our formulation is more convenient for gener-
alization, particularly for extension to include rate variation

where 7Ti is the equilibrium frequency of nucleotide i. Eq. 1
implies that the off-diagonal elements of rate matrix R can be
expressed as

A G T C
A Tr2s ii73V1 r4v2
G 7Ts iT3V3 ir4V4
T 71V 1 2V3 T4S2
C 71V2 1T2V4 1352

Thus, the SR model is a nine-parameter model (10, 11).
Now let us consider two sequencesX and Ythat have evolved

from 0, a common ancestor, t time units ago under the SR
model. Time-reversibility means that the substitution process
from the common ancestor 0 to sequences X and Y is
equivalent to the substitution process from X to Y (or from Y
to X), whose transition probability matrix (for 2t time units) is
given by

P(2t) = e2tR. [2]

Let Ak (k = 1, 2, 3, 4) be the ith eigenvalue of R; one of them
is zero, say A4 = 0. Let Zk be the kth eigenvalue of P(2t). Eq.
2 implies that Ak and Zk satisfy

zi = e2tAi or ln zi = 2Ait. [3]

Since A4 = 0 and Z4 = 1, there are only three nontrivial
equations in Eq. 3. So, under the SR model, a general additive
distance can be defined as

Abbreviations: SR, stationary time-reversible; SRV, stationary, time-
reversible, rate variable.
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d = ->Ecklnzk [4]

for some constants Ck (k = 1, 2, 3).
Keilson (16) showed that all eigenvalues Zk (or, equivalently,

Ak) are real under the SR model. A simple proof is given below.
Introduce matrix M whose ijth element is defined by m.. =
\uri1/\y, i, j = 1, . . ., 4. Using Eq. 1, one can show that

-1irij-rjrji
mij - mji = ,1 = 0.

pTi 7Tj
[5]

Let P(2t) = f(- e2Rt,(u)du be the matrix of average
transition probabilities, whose ijth element is Pij(2t) = f0
Pij(2t)4(u)du. Since e2R, = I + lo-=I (2tR)k/k!,

P(2t) = 1-I 2Rt+(aU = -+ E k!(2t (k-P(2t) = e Rt(u)du I + I Rko($u)duTI _~~~k=1 k!
-I~+ E (2t)k F(k + a)

k=l k! a F(a)

Therefore, the ith eigenvalue of P(2t), Zi, is given by

[10]

Thus, M is symmetric and all eigenvalues of M are real.
Let T = diag( ITl, 1T2, 1T3, 1T4) be the diagonal matrix
of the square roots of nucleotide frequencies. Then, one can
verify that

R = TMT-1. [6]

Therefore, R and M have the same eigenvalues because det(kI
- R) = det(kI - M).

Eq. 4 gives a general form that includes many distance
measures so that the sampling variance and the extension to
the SRV model can be treated generally. The appropriate
constants Ck in Eq. 4 for the number of nucleotide substitutions
per site (K), the number of transitional substitutions per site
(A), the number of transversional substitutions per site (B),
and the number of substitutions from nucleotides i toj (Dij) are
presented in Table 1, where uij and vij are the ijth elements of
eigenmatrix U and V = U-1, respectively. These results can be
derived from the spectral decomposition of R-i.e., the ijth
element of R can be expressed as

3 1 3

rij = E UikVkjAk = 2 uUikvkj lnzk
k=l 2tk=lk j

[7]

for i * j. For example, the constants Ck for K can be obtained
from the definition of K = 2t 1i4- Ti-ir*i rij.

General Additive Distance Under the SRV Model. We first
assume that the rate variation among sites follows a gamma
distribution-i.e., rij = aiju (i * j), where aij is a constant and
u varies according to the following gamma distribution

+(a) = ru() a e [8]

That is, R = uA where matrix A consists of aij. Let R = uA be
the expected rate matrix where ui = a/f3 is the mean of u. Then,
for any k = 1, 2, . . ., we have

rx ')c Fk(k + a)Rk4(u)du = A u +(u)du = RCkF(k )+ [9

Table 1. Constants Ck in the general additive distance under the
SR model (Eq. 4) or the SRV model (Eq. 12)

Distance Ck (k = 1, 2, 3)

K-
VK - =1 Y-j,i 7TiUikVk-j

A - ,=1 j#iETs 7TiUikVkj
B - 1=1 Ij*iETv lriUikVkj
Dij TiV-TUkVkj

K is the number of substitutions per site, A is the number of
transitional substitutions per site, B is the number of transversional
substitutions per site, and D1j is the number of substitutions from
nucleotides i to ] per site. The subscripts j 4 i E Ts and j * i E Tv
mean that the differences between nucleotides i and j are transitional
(Ts) and transversional (Tv), respectively.

i = I + E(2t)k _k F(k + a) _I
k=l k! a F(a)

- 2At [11]2 j
-a

where A, is the ith eigenvalue of R. From Eq. 11, we have - 2Ait
= a(±-1/a - 1), (i = 1, . . , 4). It follows that the general
additive distance under the SRV model is given by

3

d = a E Ck(Zk I/a - 1).
k=l

[12]

Obviously, d -> d of Eq. 4 as a -> ox-i.e., if the substitution
rate is uniform among sites. The constants Ck are determined
in the same manner as above (see Table 1).

Eq. 12 can be generalized to any distribution f(u) of rate
variation among sites. Let G(s) = f esuf(u)du be the moment-
generating function of f(u). Then, similar to the derivation of
Eq. 11, one can show that

[13]Zk= G(2Ak0, k = 1, 2, 3, 4.

Thus, the general additive distance is given by

3

d = - ECkG (Zk),
k=1

where G-l is the inverse function of the moment-generating
function G. For example, let us consider the case where the
substitution rate varies according to an invariant + gamma

distribution (17), which can be described as follows. For a given
site, the probability of being invariable (i.e., the substitution
rate at this site is 0) is 0, while the probability of being variable
is 1 - 0. Furthermore, among the sites that are variable, the
substitution rate follows a gamma distribution. By applying Eq.
13, one can show that

2xkkt -a

Zk = + (1 0{ ( )} k = 1, 2, 3, 4. [15]

Then, the general additive distance under the invariant +
gamma distribution is given by

d = (1- )a I Ck{ ( ) 1} [16]

Estimation of Distances and Sampling Variances. Since the
SR model is a special case of the SRV model, the two models
can be treated in the same way. At a particular site, let Jij be
the probability of having nucleotide i in sequence X and
nucleotide j in sequence Y. Then, Jij = 1klTkPki(t)PkI(t)
Since Eq. 1 (time-reversibility) implies wiPij(t) = ujPjj(t), Jq
can be simplified asJ11 = TrrjPj(2t). Thus, by taking expectation
over all sites, the expected frequency Jij is equal to

Jij = 7r.Pij(2t). [17]

From Eq. 17, the ijth element of P(2t) can be estimated by

[14]
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Pi. i,=j2= 1, ...4, [18]

where *i is the frequency of nucleotide i estimated by taking
(simple) average between sequencesX and Y, and Jij = (Nij +
Nji)/(2L); Nij is the number of sites at which the nucleotide is
i in sequence X and j in sequence Y, and L is the sequence
length. Note that, if the substitution process is stationary and
reversible, then Jij = Jji, so that E(N1j) = E(Nji) (E means
taking expectation). However, because of sampling effects,
this condition holds only approximately. For this reason, we
use (Nij + Nji)/(2L) to estimate J11, so that the condition Ji =
Jji always holds. This treatment makes our method approxi-
mately applicable even when the substitution process is not
time reversible.

Let matrix P consist of Pi>. Then, the eigenvalues 1i (i =
1, ... , 4) can be computed by a standard algorithm; the
corresponding eigenmatrix U and its inverse matrix V are also
obtained simultaneously (18). Thus, the SR distance can be
estimated rather quickly. Under the SRV model, however, the
parameters for the rate variation among sites (e.g., the gamma
distribution parameter a and/or the proportion of invariable
sites 0) should be estimated first. One may use either a
parsimony method (5, 12) or a maximum likelihood method
(17, 19).
Now we consider the sampling variance. Suppose Nij follows

a multinomial distribution. By the delta method, the approx-
imate sampling variance of d under the SR model (Eq. 4) is

3

Var(d) = 2 q?Var(zi) + 2 E qi qjCov(zi, z;), [19]
i=l i<j

where qi = ci/2i, and the approximate sampling variance of d
under the SRV model (Eq. 12) is

3

Var(d) = E q2Var(z1) + 2 qiqjCov(zi, zj) + q2Var(a), [20]
i=l i<j

where qi = cj/z' +i/ and q4, = =1 cj[(1 + ln 2i/a)2i-1/` -
1]. We use the likelihood function to compute Var(zi) and
Cov(zi, zj), which are approximate because we do not use the
maximum likelihood estimates of zis. Let e be the log-
likelihood function of the P11s between the two sequences. It is
easy to show that e = const. + EiL I,4-1 N1j ln Pi>. Since the
transition probability Pij can be decomposed as Pij = Ij + k=1
UikVkjZk, the klth element of the information matrix If can be
computed by

af N-
Ikl = -

p2
= U1iU VkjV, k,l = 1, 2, 3. [21]aZkaZl ij PiJ

The variance-covariance matrix of zis can be obtained by
inverting If.
Variance-Covariance Matrix of the Distance Matrix. Sta-

tistical testing of a phylogenetic hypothesis (13) or the molec-
ular clock (14) based on distance-matrix methods requires the
variance-covariance matrix of distances. We propose a simple
method to estimate the covariance between two distances (say,
d1 and d2). Using Eqs. 4 and 12, one can show that under the
SR model

3

Cov(dl, d2) = E qi qj ICv(z, 42)) [22]
i,j=l

and under the SRV model
3

Cov(dl, d2) = E I a2))+ 4(.4( Var(a), [23]
i,j=1

where the superscripts indicate distances 1 and 2, respectively.
To compute Cov(21), 42)) we note that the transition

probability matrix can be written as P(2t) = UZV, where Z =
diag(z1, Z2, Z3, Z4). Thus, Z = VP(2t)U. From the relation Jij =
'7T1Pij(2t), it follows that

Zk = E-J ; bijkJij, k =i1, 2, 3, [24]
j,] in i,i

where bijk = VkiUjk/liT
We distinguish two situations: (i) three sequences are in-

volved-e.g., d1 is for sequences 1 and 2 and d2 is for sequences
2 and 3; and (ii) four sequences are involved-e.g., d1 is for
sequences 1 and 2 and d2 is for sequences 3 and 4. Suppose Nij
follows a multinomial distribution. For the first situation,
Cov(z(¶,), z(2)) can be estimated by

Cov(zv 7, z( )) - bijV bjk,.Cov(J1'> J(k)) -
i,j,k

E bI bjk /ijk JijJjk [25]
,j,k L 2

where fijk is the frequency that the nucleotides in sequences 1,
2, and 3 are i,j, k, respectively. Similarly, for the second
situation, we have

Co(4) z(2) - j(2))=Cov(z(V ), zg))= bij, bk1jiC0V(J4j1, Jkl
i,j,k,l k

bbj bklJiikl - JijJ kl[26i
i,j,k,I L , [6

where fijkl is the frequency that the nucleotides in sequences 1,
2, 3, and 4 are i,j, k, and 1, respectively. Note that the variance
and covariance of zis in Eqs. 19 and 20 can also be computed
by

Cov(zV, zi,) = 2 bijv bkl,jC0v(]i, Jkl)
i,j,k,l

=Ebijvbi (l2L b

2 : 'bijv b JijJkL [27]
iy>kl klj. L [7

SIMULATION STUDY
By computer simulation, the SR method was compared with
Jukes and Cantor's method (3), Kimura's two-parameter
method (20), Tajima and Nei's method (21), and Tamura and
Nei's method (5). As expected, when the sequences were long,
the SR method performed well, while a simpler method gave
biased estimates ifsome of the assumptions of the method were
violated (results not shown); these are consistent with the
previous results (9, 10). Because the actual substitution pattern
ofDNA evolution may be complex, the SR method is preferred
in data analysis, if the sequences are long, say L . 1000 bp.
The performance of the SR method under various models

is shown in Table 2. We set the expected number of nucleotide
substitutions per site asK = 0.2, 0.5, or 1.0, and the sequence
length as L = 200, 500, or 2000. The first two models are time
reversible and the last two are not (see footnote of Table 2).
For each case, the observed standard, error and the mean of
standard errors estimated by the new method (in parentheses)
are presented. The results can be summarized as follows. First,
the SR method may give large biases when L ' 200. However,
it is asymnptotically unbiased-i.e., the estimation bias de-
creases to zero as L increases; this property was examined by
increasing L to 10,000 bp where no estimation bias was
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Table 2. Mean and standard error of the K value estimated by the SR method

Sequence length, L

Models 200 500 2000

K = 0.2
TmN 0.206 ± 0.038 (0.036) 0.203 ± 0.025 (0.025) 0.200 ± 0.012 (0.013)
SR 0.204 ± 0.038 (0.035) 0.202 ± 0.024 (0.023) 0.200 ± 0.012 (0.012)
NR1 0.203 ± 0.039 (0.035) 0.202 ± 0.023 (0.023) 0.200 ± 0.011 (0.012)
NR2 0.207 ± 0.039 (0.034) 0.202 ± 0.025 (0.023) 0.200 ± 0.012 (0.012)

K = 0.5
TmN 0.521 ± 0.083 (0.083) 0.510 ± 0.052 (0.051) 0.502 ± 0.025 (0.025)
SR 0.518 ± 0.078 (0.078) 0.503 ± 0.048 (0.047) 0.502 ± 0.024 (0.023)
NR1 0.519 ± 0.082 (0.082) 0.503 ± 0.052 (0.050) 0.502 ± 0.025 (0.025)
NR2 0.521 ± 0.088 (0.083) 0.504 ± 0.054 (0.053) 0.502 ± 0.026 (0.026)

K = 1.0
TmN 1.080 ± 0.262 (0.387) 1.043 ± 0.167 (0.184) 1.011 ± 0.072 (0.067)
SR 1.101 ± 0.253 (0.343) 1.039 ± 0.134 (0.129) 1.008 ± 0.057 (0.056)
NR1 1.093 ± 0.264 (0.366) 1.034 ± 0.139 (0.141) 1.008 ± 0.067 (0.063)
NR2 1.093 ± 0.300 (0.448) 1.042 ± 0.164 (0.165) 1.010 ± 0.074 (0.072)

TmN = Tamura and Nei's model (5); the equilibrium nucleotide frequencies are 71 = 0.1, X2 = 0.3,
1T3 = 0.2, and 114 = 0.4; and the two transition/transversion ratios are si/vi = 5 and s2/vI = 4. SR =
7ri are the same as those in TmN and sil/vi = s2/vl = 3, v2/vi = 2, V3/VI = 3, and V4/V1 = 5. NR1 =
Let RM4r and Rij be the substitution rates from nucleotides i to j under NR1 and SR, respectively. Let RMV
= Rij if ] = A or T but R'J = 2Rij if] = G or C so that NR1 is not time reversible. NR2 = Similar to
NR1 except that R`Jr = 4Rij ifj = G or C so that the irreversibility is more serious than NR1. The number
of replications is 1000. The percent of inapplicable cases was 10% in the case ofK = 1.0 and L = 200,
c1l% in the case ofK = 0.5 and L = 200, but was 0% for all other cases. Inapplicable cases were excluded
from computation. Note that the mean of estimated standard errors is given in parentheses.

observed. Second, under the NR1 and NR2 models, which are

not time reversible, the SR method gives accurate estimates
when L 2 .500, suggesting that the method is robust against
violations of time-reversibility. Therefore, the assumption of
time-reversibility, which simplifies the estimation problem
greatly, may not have serious effects on the distance estima-
tion. Third, the standard error estimated by the new method
(Eqs. 19 and 20) is quite close to the observed one in most
cases. The only cases with a poor performance are those with
a short sequence (L < 200) and a large distance (K 2 1.0);
the sampling variance may be overestimated in such a case. We
have examined many cases with L 2 200 and K s 1.0 and
found that the estimated sampling variances were accurate.

Table 3 compares the performances of the SR method (Eq.

4) and the SRV method (Eq. 12) when the substitution rate
varies among sites according to a gamma distribution. We set
the gamma distribution parameter a equal to 0.5, 1.0, or 2.0,
which may represent strong, intermediate, and weak rate
variation among sites, respectively. The sequence length L is
200, 500, or 2,000 and the expected number of substitutions per
site is K = 0.3 or 0.5. The SRV method appears to be
asymptotically unbiased, though it tends to overestimate the
distance when the sequence length is short. In all cases, the
distance is seriously underestimated by the SR method. When
K = 0.3, the SR method gives about 27%, 17%, and 10%
underestimation of the distance for a = 0.5, 1.0, and 2.0,
respectively. As K increases to 0.5, it gives about 38%, 26%,
and 15% underestimation of K for a = 0.5, 1.0, and 2.0,

Table 3. Means and standard errors of the K value estimated by the SR and SRV methods

L K SR method SRV method

a = 0.5
200 0.3 0.219 ± 0.039 (0.028) 0.320 ± 0.085 (0.063)

0.5 0.316 ± 0.050 (0.042) 0.545 ± 0.170 (0.136)
500 0.3 0.216 ± 0.024 (0.023) 0.307 ± 0.049 (0.047)

0.5 0.310 ± 0.031 (0.030) 0.513 ± 0.082 (0.081)
2000 0.3 0.215 ± 0.012 (0.012) 0.303 + 0.023 (0.023)

0.5 0.308 ± 0.015 (0.015) 0.506 ± 0.039 (0.039)
a = 1.0

200 0.3 0.254 ± 0.042 (0.033) 0.312 ± 0.064 (0.051)
0.5 0.383 ± 0.060 (0.052) 0.535 ± 0.117 (0.103)

500 0.3 0.250 ± 0.027 (0.026) 0.304 ± 0.041 (0.039)
0.5 0.377 ± 0.036 (0.035) 0.510 ± 0.066 (0.065)

2000 0.3 0.248 +0.014 (0.013) 0.301 +0.020 (0.019)
0.5 0.374 + 0.018 (0.018) 0.503 ± 0.031 (0.032)

a = 2.0
200 0.3 0.277 ± 0.046 (0.036) 0.310 + 0.058 (0.045)

0.5 0.434 ± 0.066 (0.061) 0.522 + 0.096 (0.089)
500 0.3 0.271 ± 0.028 (0.027) 0.302 ± 0.034 (0.034)

0.5 0.431 ± 0.040 (0.040) 0.503 ± 0.057 (0.056)
2000 0.3 0.271 ± 0.014 (0.014) 0.300 ± 0.017 (0.017)

0.5 0.425 ± 0.060 (0.021) 0.502 ± 0.029 (0.028)
Note: For all models, the number of replications is 1000. L is the sequence length. The simulation model

is the SR model in Table 2. Note that the mean of estimated standard errors is given in parentheses.
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respectively. Note that this bias is systematic and can not be
eliminated by increasing the sequence length. Interestingly,
even in the case of weak rate variation (say, a = 2.0), the
estimation bias of the SR method is much larger than any other
type of bias we have examined. Therefore, the SR method is
sensitive to rate variation among sites and the SRV method is
preferable.
To compare the relative performances of two methods, one

should consider the estimation bias and the sampling variance
simultaneously, because for a simpler model, the sampling
variance tends to be smaller but the bias tends to be larger. The
mean square error (MSE) ratio is suitable for this purpose. For
a given method, the MSE is defined by MSE = bias2 + Var(d).
To compare the SR method with, say, Jukes and Cantor's (JC)
method (3), the SR method is better than JC if the MSE ratio,
SR/JC, is less than 1, and vice versa. In Fig. 1, curves 1 and 2
are the MSE ratios SR/JC and SR/TmN, respectively, and the
simulation model is SR; curve 3 is the MSE ratio SRV/SR, and
the simulation model is SRV with a = 1 [TmN = Tamura and
Nei's model (5)]. SR is superior to JC when L > 500 (curve
1) and superior to TmN when L > 1200 (curve 2). The MSE
ratio SRV/SR (curve 3) shows that SRV is always superior to
SR if the rate varies among sites. Further simulation indicated
that the performance of SR relative to JC (or TmN) increases
as K increases. For example, ifK = 1.0, SR is superior to TmN
if L -800.

DISCUSSION
It is worth mentioning that, if ci = 1/4, Eq. 4 is the LogDet
distance (22-24). Let matrix J consist of Jij, and F = diag(7ri,
X2, 7T3, 1T4) be the diagonal matrix of the nucleotide frequen-
cies. Then, we have J = FP, or P = F-'J. Since Z1Z2Z3Z4 =
det(P) = det(F-1J) = det(J)/det(F), we have

11 det(J)
d = - ln(z1z2z3z4) = - 1ln det(F) [28]

2

0

cncc 1- ......... . ....................... .............

(3)

0 - , . * --

0 1 000 2000 3000 4000 5000

Sequence Length (L)

FIG. 1. Mean square error (MSE) ratios for SR/JC (curve 1),
SR/TmN (curve 2), and SRV/SR (curve 3), plotted against the
sequence length [JC, Jukes and Cantor's method (3); TmN, Tamura
and Nei's method (5)]. The simulation model is SR for curves 1 and
2, but SRV for curve 3. The SR model is the same as that in Table 2.
The SRV model is the same as the SR model except the rate varies
among sites according to a gamma distribution with a = 1. The
expected number of nucleotide substitutions is K = 0.5. The number
of replications is 1000.

The Logdet distance was recommended for phylogenetic
reconstruction because its additivity holds even when the
substitution model is neither stationary nor time-reversible.
So, it is based on the general (12-parameter) substitution
model. However, the LogDet distance is an unbiased estimate
of the number of substitutions per site (K), only if the
equilibrium frequencies of the four nucleotides are 1/4 and if
the substitution process is stationary (10, 24). More seriously,
additivity does not hold if the substitution rate varies among
sites. To our knowledge, the SRV method is to date the most
general method that includes the effect of rate variation among
sites. Since rate variation is a common phenomenon, the SRV
method may be preferable over the LogDet distance if the
nucleotide frequencies do not change with time very much.
The additivity of a distance can be nullified by a large

sampling variance. Therefore, the distance measure that min-
imizes the sampling effect may be useful in practice. Let ZM =
Max(zi, Z2, Z3). Then, the minimum distance, d, is defined by

1
dm =-lnzM.

The sampling variance of dm is given by

i \2

Var(d,) = ) Var(zm),
4zm/.

[29]

[30]

where Var(zM) can be computed as above. The minimum
distance is additive, less affected by saturation and easily
computed. Note that dm is more general than the transversion
distance. Indeed, under Tamura and Nei's model (5), which is
a special case of the SR model, the transversional distance is
the minimum distance dm if the rates of transversion are
smaller than those of transition.

Following Kelly (25), we can assess whether the substitution
process follows a general Markovian model by testing whether
the smallest eigenvalue of P is positive. We suggest the Z test
defined by

[31]FVar(zm)
wherezm = Min(zi, Z2, Z3). The procedure is the same as above
(see Eqs. 17-21) except that Jij is now estimated by Nij/L-i.e.,
the estimated matrix J is not symmetrized.
Note that in the case of Zm < 0, the SR and SRV methods

are inapplicable. IfZm is not significantly smaller than zero, the
inapplicability may be regarded as sampling effects and the
minimum distance (Eq. 29) or a simpler method may be used
instead. However, if Zm is significantly smaller than 0, the
substitution process may not be Markovian (25).
(A computer program for the SR and SRV methods is

available upon request from the authors. The program gives
the estimated distance matrix and the standard errors.)
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