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Proportion of reads containing substitution errors, which cover 20 base sequences containing different 

lengths of homopolymers at the center. The sequence reads were from the Illumina 36 cycle single end 

sequencing for a Drosophila inbred line. The proportion of reads containing substitution errors rapidly increased 

when the length of a homopolymer is longer than 9 bases. 
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B.suis  GGCGCATTTTGCAACTGATTCTATGCC---GGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read1   GGCGCATTTTGCAACTGATTCTATGCCGGGGGGGGGGGGGAAGCGCATACGT-------- 

read2   GGCGCATTTTGCAACTGATTCTATGCCGGGGGGGGGGGGGAAGCGCATACGTTGG----- 

read3   GGCGCATTTTGCAACTGATTCTATGCCGGGGGGGGGGGGGAAGCGCATACGTTGGAG--- 

read4   ------TTTTGCAACTGATTCTATGCCGGGGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read5   GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAG----------------- 

read6   GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGCGC-------------- 

read7   GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGGGCA------------- 

read8   GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAGGCGCATACG--------- 

read9   GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGCGCATACGTT------- 

read10  GGCGCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGCGCATACGTTG------ 

read11  ---GCATTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read12  ------TTTTGCAACTGATTCTATGCC-GGGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read13  --------------CTGATTCTATGCC-GGGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read14  GGCGCATTTTGCAACTGATTCTATGCC--GGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read15  ---GCATTTTGCAACTGATTCTATGCC--GGGGGGGGGGGAAGCGCATACGTTGGAGCGT 

read16  GGCGCATTTTGCAACTGATTCTATGCC---GGGGGGGGGGAAGCGCATACGT-------- 

read17  -----ATTTTGCAACTGATTCTATGCC---GGGGGGGGGGAAGCGCATACGTTGGAGCGT 

 

Recurrence of INDEL errors in sequence reads. The reference is a genomic sequence of Brucella suis 1330 

which is a prokaryote with a haploid genome, and the locus is a unique region in the genome. The sequence 

reads were generated from the Illumina 101 cycle paired-end sequencing technology. Insertions or deletion 

errors by sequencing errors or other sources, such as PCR amplification error or individual cell mutation, results 

in various lengths of G homopolymers in sequence reads.  
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Signal intensities at the repeat sequences. (A) pyrosequencing. The number of homopolymer bases is 

decided by the intensity of a signal. The method often generates homopolymer errors. (B) Sanger sequencing. 

When homopolymer bases locate near to the beginning or ending position of sequencing, the boundaries of the 

homopolymer bases often become ambiguous and base-calling programs can generate homopolymer errors. 
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Different proportions of reads containing INDEL errors derived from the different lengths of 

homopolymers in the Illumina sequencing data. Each line represents the proportion of reads containing 

length x homopolymers derived from the called homopolymer alleles (the highest peak of a line, called by 

GenoTan). The graph was created with the Illumina sequencing data of the human genome HG01974 from the 

1000 genome project. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
ro

p
o

rt
io

n
 o

f 
re

ad
s 

d
e

ri
ve

d
 f

ro
m

 
d

if
fe

re
n

t 
le

n
gt

h
s 

o
f 

h
o

m
o

p
o

ly
m

e
rs

  

Length of homopolymer 



Supplementary Figure S5 

 

 

  

 

Gaussian distribution to express the bidirectional INDEL errors in sequence reads. The graph shows a 

Gaussian distribution for the locus at the supplementary figure 2. The chances of insertion errors and deletion 

errors are proportional. 
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Application of error bias toward to deletion at a 15 base repeat sequence locus. (A) This graph shows 

outputs of the probability density functions (PDFs) of the Gaussian distributions N(15, 0.5) and N(15+ω, 0.5), 

where the estimate of ω is -0.1. The parameter ω represents bias of INDEL errors at the repeat sequences in 

sequence reads derived from a repeat locus containing a 15 nucleotide allele. Because ω is a negative value, 

deletion is more likely to occur than insertion during sequencing. (B) The outputs of PDFs are discretized by the 

p(x) function as in equation 1 where μ=15+ ω.
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Performances of GenoTan with different “-C” and “-c” option values for the simulated data. (A) Different “-C” 

option values with a fixed “-c” option (0.25) of GenoTan were tested for the simulated data. The default value for 

the option “-C” is 0.35. (B) Different “-c” option values with a fixed “-C” option (0.35) of GenoTan were tested for 

the simulated data. The default value for the option “-c” is 0.25. 
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Number of correct, missed and wrong allele calls for homozygous loci of the simulated data in different 

error reads rates. The numbers of missed and wrong allele calls are shown as negative numbers. Genotan 

showed slightly higher rate of wrong allele calls than Dindel when the coverage is 10x and the proportion of 

INDEL error reads is more than 40%, but have very low rates of missed/wrong allele calls at most categories. 
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Number of correct, missed and wrong allele calls for reference/non-reference heterozygous loci of the 

simulated data in different error reads rates. The numbers of missed and wrong allele calls are shown as 

negative numbers. 
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Number of correct, missed and wrong allele calls for non-reference/non-reference heterozygous loci of the 

simulated data in different error reads rates. The numbers of missed and wrong allele calls are shown as 

negative numbers. SamTools and GATK call two reference/non-reference heterozygous genotypes or one 

reference/non-reference heterozygous with additional non-reference homozygous genotypes for a non-

reference/non-reference heterozygous locus.  RepeatSeq frequently calls more than two alleles for a locus when 

a rate of error reads is high. Only Dindel and GenoTan call a non-reference/non-reference heterozygous 

genotype but Dindel also called many wrong allele calls as reference alleles since it favored calling reference 

alleles. 
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Proportions of no calls, incorrect calls and correct calls of the programs after filtering out reads not 

completely covering the repeat sequences. RepeatSeq, GATK and Dindel did not show significant 

improvement for the filtered data. 
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Performance comparison of genotyping programs for sequence data of a single Drosophila inbred line 

(RAL-301) 
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An average number of reads completely covering the 20 base sequence containing a homopolymer at the 

center. We compared the average number of reads completely covering 20 base sequences with different lengths 

of homopolymers at their center. The number of reads dropped significantly when the length of a homopolymer 

is long. 
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Estimated percentages  

of INDEL error reads at a locus 
Homozygous Heterozygous 

0% 499 704 

0< ~5% 2383 5000 

5~10% 693 1340 

10~15% 493 1103 

15~20% 458 1158 

20~25% 463 891 

25~30% 385 610 

30~35% 414 747 

35~40% 159 395 

40~45% 499 704 

45% ~ 953 1852 

Total 6900 13800 

 

Number of loci in the simulated data 

The simulated data was generated from the Binomial random function (p=0.5) and two Gaussian random functions 

with μ1=lL1 and μ2=lL2 (where L1 and L2 were artificially generated from 1~8mer motif sets), and σ1
2
 and σ2

2
 for the 

functions were calculated from βa(=0.00099) and βb(=0.0153) which were estimated by a homopolymer 

decomposition method from the human genome NA19138. The percentage of INDEL error reads at a locus is 

estimated from the g(x; lL1, lL2, σ1
2
, σ2

2
, θ = 0.5) function for the given alleles, L1 and L2, at the locus. The average 

error rates of the simulated data may be much higher than real sequencing data since it includes many long 

homopolymer loci. 
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The performance comparison for the simulated data. The values in the table are percentages. This table is 

corresponding to the Figure 2A-D at the main text.  

  

 Coverage 10x Coverage 20x Coverage 40x 

Overall SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan 

Correct 53.9 34 47.4 76.2 84.1 51.1 29.5 61.7 86.3 90.6 37.6 23.6 56.5 89.5 94.9 

Incorrect 36.7 38.5 30.8 11.3 13.2 40.2 52.1 35.2 8.7 5.7 42.8 62.5 43.4 9.1 1.8 

No call 9.4 27.5 21.9 12.5 2.7 8.7 18.4 3.1 5 3.7 19.5 13.9 0.1 1.4 3.4 

    

Homozygous 

loci 

(non-

reference) 

SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan 

Correct 80.7 0 90 89.1 87.4 76.7 0 89.4 89.5 93.8 69.5 48.5 81.3 87.1 97.4 

Incorrect 14.8 45.8 9.6 6.5 11.9 19.9 58.1 10.6 8.9 5.3 27 51.5 18.7 12.4 1.9 

No call 4.6 54.2 0.4 4.4 0.7 3.4 41.9 0 1.6 0.9 3.5 0 0 0.4 0.8 

    

Heterozygous 

loci 

(ref/non-ref) 

SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan 

Correct 81 53.9 52 75.1 82.5 76.7 50.8 95.6 88.9 88.9 43.4 41.5 88.2 94.6 93.5 

Incorrect 2.1 30.7 0.3 4.4 13.9 2.3 42.6 1.7 4.3 6.3 1.7 54.5 11.8 3.9 1.6 

No call 16.9 15.4 47.6 20.5 3.6 21.1 6.7 2.7 6.8 4.9 54.9 3.9 0 1.4 4.9 

    

Heterozygous 

loci 

(non-ref/non-

ref) 

SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan SAMtools RepeatSeq GATK Dindel GenoTan 

Correct 0 48.1 0 64.3 82.5 0 37.7 0 80.6 89.2 0 29.4 0 86.8 93.7 

Incorrect 93.2 39.1 82.4 23.1 13.8 98.5 55.6 93.3 13 5.6 99.8 66.7 99.8 10.9 1.8 

No call 6.8 12.8 17.6 12.6 3.7 1.5 6.7 6.7 6.5 5.2 0.2 3.9 0.2 2.3 4.5 
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Num. of 

target loci 

Num. of reads 

on target loci 
lobSTR RepeatSeq GATK Dindel GenoTan 

Simulated data, 

depth 40 
20,700 827,999 11M 05S 15S 57M 40S 4H 53M 4S 9M 20S 

Mixed Drosophila 

sequence data 
3,300 73,063 45S 6S 1M 3S 4M 8S 32S 

SRR345592, chr1 58,246 3,215,705 36M 21S 32S 59M 5S 50H 24M 3S 10M 42S 

 

Comparison of computational speeds. The programs were tested in a LINUX environment with Intel 2.67GHz 

CPUs and 32Gbyte memory. To test the computational speeds of genotyping programs for only the target loci, the 

reads mapped to target loci were used. The bitwise FLAG in the SAM format for each paired-end read was 

converted to a FLAG for single-end, after mapping and filtering (Dindel does not use information of mapped reads 

of which paired reads were not mapped in paired-end mapping, when we filter out the reads not mapped to the target 

loci). 
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 Data Coverage  Method  Correct Incorrect No call 

simulated 

data 

10X 

Simple decision 

without Gaussian 
58.3 36.0 5.7 

After the first step 81.1 16.3 2.6 

With all steps 84.1 13.2 2.7 

20X 

Simple decision 

without Gaussian 
64.8 30.3 4.9 

After the first step 90.1 6.6 3.3 

With all steps 90.6 5.7 3.7 

40X 

Simple decision 

without Gaussian 
72.4 19.9 7.8 

After the first step 94.9 1.8 3.3 

With all steps 94.9 1.7 3.4 

Merged Drosophila inbred samples 

Simple decision 

without Gaussian 
63.1 36.9 0.0 

After the first step 89.8 9.4 0.8 

With all steps 90.2 9 0.8 

 pIRS simulated data 

Simple decision 

without Gaussian 
65.1 32.4 2.5 

After the first step 91.8 5.7 2.5 

With all steps 91.8 5.7 2.5 

 

Comparison of genotyping results from different steps in the GenoTan’s process. For the simple decision, a 

similar rules to the Final decision of GenoTan, 

TNC highesthigh /  and )/(/ 22 TNNNC ndhighestndlow    

 ,where Nhighest= is the read count supporting an allele candidate with the highest read frequency, N2nd= is the read 

count supporting an allele candidate with the second highest read frequency and T is the total read count for the 

locus, were calculated with cutoff values 0.35 and 0.25, which are default values of GenoTan to decide the allele 

calls. (Note1. Clow  has been used to filter out allele candidates supported by reads from mismapping, individual cell 

mutation or PCR amplification artifacts (which are difficult to identify with statistic approaches), when a ratio of 

N2nd  to Nhighest is too low) (Note2. )(
lowlow LL lp  in the Final decision of GenoTan can be higher than )(

highhigh LL lp   

because of the Gaussian mixture model, while N2nd/T is always equal to or lower than Nhightest/T. Other simple rules 

may work better than this simple decision) 

The whole genotyping process of GenoTan is composed of two step calculations using the Gaussian distribution. 

The genotyping results after only the first step were also compared. Since the pIRS simulator didn’t account the 

homopolymer errors in generating simulated data, the three methods didn’t show significantly different results. 

(Note3. Since pIRS simulator did not account homopolymer errors, the two step calculation didn’t improve the 

accuracy for its data from the first step calculation.) 
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Rescaling the Gaussian cumulative distribution function  

The approximate probability of that a length x repeat sequence in a read derived from the length L allele is 

x bases can be estimated by 




5.0

5.0
)(

x

x
L dttf . Since x is a natural number, we need to rescale to make the 

distribution a proper probability mass function. The scale factor ς is computed from the following. 
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Note that for a large L, ς is close to 1. 

 

  



Pseudo code applying the Nonlinear Least-Squares regression 

We used the Nonlinear Least-Squares (NLS) regression provided by the GNU Scientific Library (GSL, 

http://www.gnu.org/software/gsl). The NLS regression is an extension model of the linear least squares 

regression to estimate unknown parameters fitting to a given data generated from a non-linear model. The 

NLS function in the GSL requires user defined functions coordinated to the non-linear model and takes a 

data vector containing training data. 

This is a pseudo code to use the NLS regression with the mixture form of two cumulative distribution 

functions ( g(x; L1,L2) ). 

 

Set minDiff to 0 

FOR each genotype candidate (L1,L2) 

MIN = min. observed length – k 

MAX = max. observed length + k 

Initialize vector[ from MIN to MAX] to 0 

μL1 = lL1 

μL2 = lL2 

IF it is the second regression step 

μL1 += ωL1 

μL2 += ωL2 

FOR x = MIN to MAX 

vector[x] = g(x; μL1, μL2, σ1
2
 = υL1, σ2

2
 = υL2, θ = 0.5) 

END FOR 

END IF  

FOR x = MIN to MAX 

vector[x] += total mapping probability of reads with length x repeat sequence (instead observed number) 

END FOR 

total = sum(vector) 

FOR x = MIN to MAX 

vector[x] = vector[x]/total; 

END FOR 

(σL1, σL2, θ) = estimation_with_NLS(μL1, μL2, vector) 

diff = 0 

FOR x = MIN to MAX 

diff += (vector[x]- g(x; μL1, μL2, σ1
2
 = σL1

2
, σ2

2
 = σL2

2
, θ))

2
; 

END FOR 

IF minDiff > diff 

minDiff = diff 

END IF 

END FOR 

RETURN a genotype candidate with the smallest diff 

 

  

 

The NLS function provided by the GSL requires initial values of the parameters to be trained and 

incorrect initial values can cause local maxima. To reduce this problem, GenoTan tests initial values of 

σL1, σL2 from 0.15 to 1.15 and chooses the output parameters (σL1, σL2, θ) of the NLS with the initial values, 

which produce the least square errors. 

 

 



function estimation_with_NLS(μL1, μL2,vector)  

Set minDiff to 0 

Set min_σL1 to 0 

Set min_σL2 to 0 

Set min_θ to 0 

FOR (σL1, σL2) = 0.15 to 1.15, by 0.05 

θ = 0.5 

 (σL1, σL2, θ) = NLS_with_ g_function(μL1, μL2, σL1, σL2, θ, vector) 

diff = 0 

FOR x = MIN to MAX 

diff += (vector[x]- g(x; μL1, μL2, σ1
2
 = σL1

2
, σ2

2
 = σL2

2
, θ))

2
; 

END FOR 

IF minDiff > diff 

minDiff = diff 

min_σL1 = σL1 

min_σL2 = σL2 

min_θ = θ 

END IF 

END FOR 

RETURN (min_σL1, min_σL2, min_θ) 

 

  

 

  



Homopolymer decomposition 

The homopolymer decomposition method is a process to decompose sequences into a set of 

homopolymers to estimate parameters ωL and υL. For example, the ‘TAAACAAATAAA’ sequence is 

composed of three ‘AAA’, two ‘T’ and one ‘C’ (‘T’ and ‘C’ are monomers but we treat them as 

homopolymers). To make the problem tractable, we assume the following: 

A1) Insertion and deletion error events in each homopolymer are independent from those in the 

neighborhood homopolymers.  

A2) Each error at a base is independent from the errors at neighborhood bases. 

A3) Only one of the insertion or deletion error events in the repeat sequence of a read is considered. This 

means we only consider the observed event. For example, we only consider 1 base deletion error for {1 

base insertion + 2 base deletion}, {2 base insertion + 3 base deletion} and so on. 

A4) All of the insertion errors are derived only from the existing neighborhood nucleotides. If a sequence 

read has ‘TGAAATAAATAAA’ sequence and the second base ‘G’ is identified as an insertion error, we 

assume the first homopolymer ‘T’ or the second homopolymer ‘AAA’ caused the insertion error. 

A5) Probabilities of insertion and deletion errors are affected only by the lengths of homopolymers. We 

ignore the other factors including high error rates at the end bases of sequence reads, GC-content biases 

during library amplification/sequencing and effects of specific sequences such as ‘GGC’ inducing 

sequencing errors which are known to occur in the Solexa next generation sequencing platform 

(Nakamura, et al., 2011).  

As an example, suppose that 15 and 1 reads containing ‘TAAATAAA’ and ‘TAATAAA’ respectively, 

have been mapped to a locus A. We would conclude that the inherited allele is ‘TAAATAAA’ and 

‘TAATAAA’ is derived from ‘TAAATAAA’ by a 1-base deletion error. Then an estimated average 

length of the sequence in a read which is derived from the ‘TAAATAAA’ allele is 7.93 bases (15/16×8 + 

1/16×7). For another example, suppose that 14, 2 and 1 reads containing ‘GTTTGTTT’, ‘GTTGTTT’, 

and ‘GTTTTCGTTT’ respectively, have been mapped to another locus B. We would conclude that the 

inherited allele is ‘GTTTGTTT’, and ‘GTTGTTT’ and ‘GTTTTCGTTT’ have a 1-base deletion error and 

a 2-base insertion error respectively. Then an estimated average length of the sequence in a read which is 

derived from the ‘GTTTGTTT’ allele is 7.99 bases (14/17×8 + 2/17×7 + 1/17×10). Based on the 

assumption A5, the alleles of locus A and B can be treated as the same sequence in an abstract form, 

{1N3N1N3N}, and the average length of the sequence can be calculated together. Then the estimated 

average length of the sequence in a read derived from {1N3N1N3N} is 7.97 (=29/33×8 + 3/33×7 + 

1/33×10). By simply subtracting 7.97 from 8, we can estimate ω, which represents the error bias toward 

deletion or insertion at the microsatellite sequence in a read derived from the {1N3N1N3N} allele. While 

the positive result of the subtraction represents bias toward insertion, the negative result represents bias 

toward deletion in sequence reads derived from the allele. 

If we collect more reads derived from all loci containing the {1N3N1N3N} alleles, we can estimate a 

more accurate average length of repeat sequences in reads derived from the alleles. But some alleles (e.g. 

{40N10N}) may not be covered by enough reads to be used as the training set to estimate the accurate 

average length, so we apply the homopolymer decomposition method. The average length of the 

sequences in the previous example is 7.97 and the abstract form of the allele is {1N3N1N3N}. This form 

can be decomposed into ‘2·{1N} + 2·{3N}’. Since each {iN} can be regarded as an individual variable, 

we can define them as {N1, N2, N3, N4 …}, and the example can be described by ‘7.97 = 2·N1+ 2·N3’. 

Then we can write an equation summarizing all possible allele sequences as follows 



 

 
I

i

ii NnNnNnNnY ...332211  (S1) 

 

where Y is the average length of repeat sequences in reads derived from a single abstracted allele. Due to 

the limitation of the current sequencing technology, the maximum length, I, of a sequence, we can obtain, 

is not infinite. Y and ni for an allele are simply calculated from the training data, and {N1, N2, N3, N4 …} 

can be estimated by a linear regression method. Moreover, because of the correlation between Ni and Ni+1, 

we define Ni with two additional cofactors αa and αb as  

 

bai iiN    (S2) 

 

where αb and αb represent a bias gradient and an initial bias respectively. Then we can write the equation 

S1 as 

 

 
I

i

bai iinY )(   (S3) 

 

Because the variables i and ni represent the length and the number of each homopolymer at a given 

abstracted allele respectively, the equation S3 can be modified as follows 

 

 
I

i

bai inY )(length)  allele(   (S4) 

 

The cofactors αa and αb are estimated by a nonlinear regression method from the genotyping results of the 

first genotyping regression step and are used to calculate the parameters ωL for a given allele candidate L 

in the second genotyping regression step from the following function 

 

 
I

i

baibaL inL )(),, allele of sequence susias(consenget_mean_b   (S5) 

 

since we can simply count the number of each length i homopolymer from the consensus sequence of the 

given allele candidate L. 

Based on the assumption A1 and A2, the parameter υL can be estimated in the same way with ωL. For a 

given abstracted allele {1N3N1N3N}, the variance is calculated by the NLS regression function. And the 

abstracted form is decomposed into ‘2·M1+ 2·M3’, where Mi is a corresponding variable to Ni in the 

previous paragraph. Then we can write an equation summarizing all possible allele sequences as follows 

 

 
I

i

ii MnZ  (S6) 

 



where Z is an estimated variance of lengths of microsatellite sequences in reads derived from a given 

abstracted allele. We define Mi with two additional cofactors βa and βb as  
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which describes rapid change of variances according to the length of homopolymers. They are also 

estimated by a nonlinear regression, and are used to estimate the parameters υL for a given allele candidate 

L in the second genotyping regression step from the following function 
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where φ with default value 0.5, is added to υL to reduce the probability of allele candidates supported by a 

small number of reads. 

  



Supplementary Notes 
 

Limitation of the Bayesian approach considering only sequencing errors for INDEL 

genotyping 

Most genotyping programs, including Dindel, employing the Bayesian approach calculate a likelihood 

outcome for a locus in a diploid genome from the following equation; 

  

 (    |  )  ∏  (  |    )  ∏ 
 (  |  )

 
 

 (  |  )

 
 

  

  

 

where Ri is the i
th
 observed read at the locus, and Hp and Hm are paternal and maternal hapolotype 

candidates respectively. Since this approach assumes that all reads are generated from one of two 

chromosomes, genotyping programs incorporate the mapping quality scores generated by mapping 

programs into the approach to control incorrectly mapped reads. However, relying on mapping quality 

scores could result in false positive prediction for INDEL genotyping, since mapping programs cannot 

calculate all possible alignments and often generate incorrect quality scores. Suppose that we have 5 reads, 

6 reads and 1 read, which are mapped to a same locus, containing five base deletions, four base deletions 

and one base insertion respectively, and mapping quality scores of all reads are same. We would expect 

that the heterozygous genotype [allele with two base deletion, allele with three base deletion], which is 

presented by G(-4, -6), produces the highest probability among all possible genotype candidates, but the 

likelihood outcome of G(-4, 1) could be the highest because p(R(1 base insertion)| {-4, -5}) by sequencing 

errors is close to 0. Thus, an effective method to handle noise due to incorrectly mapped reads (the noise 

could also be the result of individual cell mutation or PCR amplification artifacts) is necessary, and we 

used a regression approach which could filter out such noise efficiently. 

 

 

Shell scripts to run genotyping programs 

GATK realignment  

cat test.repeat.lst | perl -ne '@arr=split/\t/; print "$arr[0]:$arr[1]-".($arr[1]+$arr[2]-1)."\n";' > test.repeat.intervals 

perl getReadsOnMicrosatellites.pl -m test.repeat.lst -s  $bam -o test.ms.sam    ### gets reads overlapping 2 bases down/upstream of targets.  

samtools view -S test.ms.sam -bo test.ms.bam 
samtools index test.ms.bam 

 

java -jar ~/opt/GATK/GenomeAnalysisTK.jar  -T  IndelRealigner  -R  $ref  -targetIntervals  test.repeat.intervals  -I  test.ms.bam -o 
test.GATK.bam 

 
 

DIndel  

mkdir dindel 

/bin/rm -f dindel/*dindel* 

~/dindel/dindel --analysis getCIGARindels --bamFile $bam --outputFile dindel/dindel --ref $ref 
~/dindel/makeWindows.py --inputVarFile dindel/dindel.variants.txt --windowFilePrefix dindel/dindel.realign_windows --numWindowsPerFile 

1000 

perl -e ' 



  for($i = 1; $i < 10000; $i++){ 

    last if(not -e "dindel/dindel.realign_windows.$i.txt"); 
    system("~/dindel/dindel --analysis indels --doDiploid --bamFile $bam --ref $ref --varFn dindel/dindel.realign_windows.$i.txt --libFile 

dindel/dindel.libraries.txt --outputFile dindel/dindel.stage2.windows.$i"); 

  } 
' 

perl -e ' 

  for($i = 1; $i < 10000; $i++){ 
    last if(not -e "dindel/dindel.stage2.windows.$i.glf.txt"); 

    system("echo dindel/dindel.stage2.windows.$i.glf.txt >> dindel/dindel.stage2.files.txt"); 

  } 
' 

 
~/dindel/mergeOutputDiploid.py --inputFiles dindel/dindel.stage2.files.txt --outputFile dindel/dindel.vcf --ref $ref 

 

rm dindel/*.txt -f 

 
 

GATK 

java -Xmx1g -jar GATK_dir/GenomeAnalysisTK.jar -T UnifiedGenotyper -R $ref -glm INDEL -I $bam -o GATK.vcf 

##  “-allowPotentiallyMisencodedQuals”  is required for GATK2 
 

 

SamTools 

samtools mpileup -uf $ref $bam | bcftools/bcftools view -Abvcg - > samtools.raw.bcf 

bcftools/bcftools view samtools.raw.bcf | bcftools/vcfutils.pl varFilter -W 50 > samtools.vcf 

 

 

lobSTR 

python ~/lobSTR/scripts/GetSTRInfo.py $bed $ref > test.str.tab 
 

mkdir lobSTR_index 

 
python ~/lobSTR/scripts/lobstr_index.py --str $bed  --ref $ref --out_dir lobSTR_index 

~/lobSTR/bin/lobSTR  --fastq --p1 $fq_1 --p2 $fq_2 --index-prefix lobSTR_index/lobSTR_ -o test.lobSTR 

 
allelotype --command simple --bam  test.lobSTR.aligned.bam  --strinfo test.str.tab  --out test.lobSTR  --haploid no 

python ~/lobSTR/scripts/lobstr_to_vcf.py --gen test.lobSTR.genotypes.tab --sample test --out test.lobSTR 

 

 

RepeatSeq 

repeatseq  $bam  $ref  $regions 

 

 

 

  



Supplementary Results 
 

Performance test with two different mapping programs for simulated data 

generated by pIRS from the Drosophila reference  

The performance of genotyping programs were compared for mapping results generated by two different 

mapping programs, BWA (0.6.1) and Novoalign (2.08.02) (default options). To create a simulated 

sequence reads, we selected the first 10,000 microsatellite loci in the Drosophila reference sequence and 

created two different chromosome sets by inserting INDELs to the reference sequence for the loci using a 

random function (1~8 repeat units variation, {non-ref Homozygous, ref/non-ref Heterozygous, non-

ref/non-ref Heterozygous}). From the two chromosome sets, simulated sequence reads were generated by 

a pIRS simulator resulting in 20 read coverage depth. Then, BWA and Novoalign were used to map reads 

to the reference sequence, and genotyping programs, GATK, Dindel and GenoTan (with “-c 0.15” option 

because of no homopolymer or PCR amplification errors), were used to call genotypes for the target loci. 

The profiling results of lobSTR (2.0.2, default options, “allelotype --command simple”) were also 

compared. 

 

The numbers are percentages (%). 

 

GenoTan is slightly more sensitive to the mapping results than Dindel. Since the pIRS simulator didn’t 

account the INDEL errors and substitution errors induced by long homopolymer runs (Supplementary 

Figures S1 and S2) and the errors due to individual cell mutation or PCR amplification artifacts, for 

which our method has strength, the results only partially represent real data and might be biased to the 

local alignment-based approach used by Dindel. Considering the computational speeds, GenoTan is 

highly competitive with respect to other genotyping programs. 

  

  

Mapping 

program 

BWA Novoalign  

 
GATK Dindel GenoTan RepeatSeq GATK Dindel GenoTan RepeatSeq lobSTR 

Correct 79.8 92.4 91.8 53.7 84.3 95.6 95.4 55.0 2.8 

Incorrect 9.5 2.7 5.7 3.8 6.9 1.5 2.7 1.3 24.2 

No call 10.7 4.9 2.5 42.5 8.7 2.9 2.0 43.7 

73.0 

{<2, >6} 

mer motif : 

49% 



Comparison of GATK ver. 1 and ver. 2 

Since the new version of GATK was released during our experiment, we compared the results of GATK 

ver. 1.6-9 and ver. 2.3-9 to test the difference in performance. 

 

 
  Simulated data Mixed data of two 

Drosophila inbred 

pIRS 

simulated data Coverage 10x 20x 40x 

Version 1.6-9 

Correct 47.4 61.7 56.5 45.9 79.8 

Incorrect 30.8 35.2 43.4 8.7 9.5 

No call 21.9 3.1 0.1 45.4 10.7 

Version 2.3-9 

Correct 45.1 58.5 59.5 44.9 79.7 

Incorrect 33.3 38.8 39.3 7.6 9.6 

No call 21.6 2.7 1.2 47.5 10.7 

 

Two versions of GATK showed very similar results. 

 

 

 


