Regenerative glycosylation under nucleophilic catalysis

Swati S. Nigudkar, Keith J. Stine, and Alexei V. Demchenko*

Department of Chemistry and Biochemistry, University of Missouri - St. Louis One University Boulevard, St. Louis, Missouri 63121, USA Fax: (+) 1-314-516-5342; E-mail: <u>demchenkoa@umsl.edu</u>

Contents

Table 1S. Synthesis of 3,3-difluoro-3 <i>H</i> -indol-2-yl (OFox) imidatesS2	
Table 2S. The effect of solvents on the stereoselectivity of glycosidation	
of per-benzylated OFox donor 3 S3	
Table 3S. Temperature dependence on the stereoselectivity of glycosidation	
of per-benzylated OFox donor 3 S3	
Table 4S. The effect of dilution on the stereoselectivity of glycosidation of	
per-benzylated OFox donor 3 with acceptor 4 in the presence of TMSOTf S3	
Table 5S. The effect of anomeric configuration on the stereoselectivity of	
glycosidation of OFox donors 3 and 12 S4	
Table 6S. The effect of promoter on the stereoselectivity of glycosidation of	
per-benzylated OFox donor 3 S4	
Table 7S. Comparative hydrolytic stability study of OFox, trichloro- and	
trifluoroacetimidates under various reaction conditions S5	
Table 8S. TMSOTf-promoted glycosidation of OFox donor 3 with different	
acceptors in CH ₂ Cl ₂ or EtCN at -78 °C S6	
Table 9S. Glycosylation with per-acylated glucosyl, galactosyl, and mannosyl	
OFox donors in CH ₂ Cl ₂ with TMSOTf as a promoter at rt S7	
Table 10S. Regenerative glycosylation, a complete experimental datasetS8	
Scheme 1S. "Regenerative glycosylation" experiment performed in the NMR tube	
with bromide donor 7, HOFox (0.25 equiv.), Ag ₂ O (3.0 equiv.) in CDCl ₃ at 0 °C in	
the absence of a glycosyl acceptor S9	
General experimental remarks S10	0
Synthesis of 3,3-difluoroxindole (HOFox) S10	0
Preparation of OFox imidates S10	0
Preparation and characterization of other glycosyl donors and intermediates S14	4
General glycosylation procedures for the synthesis of glycosides and	
disaccharides S1	7
A typical procedure for regenerative glycosylation S22	3
NMR spectra S2	5
References S7	3

Entry	Starting material	Conditions, ^a temp, time	Product	Yield, / ratio
1		A , rt, 8 h	BnO BnO BnO 3 ^{EnO} BnO	62% 10/1
2	EnO CEN EnO CH 9	A , rt, 12 h	BnO BnO BnO BnO BnO CEn O Fox	61% only
3	Aco Aco BrO _{Br}	B , 0 °C, 40 min	$A_{ACO} \rightarrow OFox$ BnO BnO BnO	80% only
4	11	B , rt, 5 h	a_{cO} a_{cO} a_{cO} a_{cO} a_{cO} a_{cO} a_{cO} a_{cO} a_{cO}	81% only
5	Aco Aco Aco 13 ^{AcO} Er	C , rt, 6 h	Aco Aco Aco Aco Aco Aco Aco Aco Aco Aco	80% only
6	BzO BzO BzO BzO BzO BzO Br	B , rt, 10 h	BzO BzO BzO EzO _{CFox}	75% only
7	EzO CEZ EzO CEZ BZO 17	D , 0 °C to rt, 6 h	BzO_CBz BzO_CFox BzO 18	75% only
8	BZO BZO I9 CBz 19	D , rt, 2.5 h	BzO BzO BzO CEz CEz CEz CEz CEz CEz CEz CEz CEz CEz	84% only
9	Aco Aco Aco Naer	B , 0 °C to rt, 3 h	$\frac{AcO}{AcO} - O CFox$ 22 N_3	70% only

Table 1S. Synthesis of 3,3-difluoro-3H-indol-2-yl (OFox) imidates

^a – Conditions:

A: i) SOCl₂, DMF, CH₂Cl₂, ii) 3,3-difluoroxindole, Ag₂O, DIPEA, CH₂Cl₂;
B: 3,3-difluoroxindole, Ag₂O, DIPEA, CH₂Cl₂;
C: 3,3-difluoroxindole, Ag₂O, DIPEA, toluene;

D: i) 33% HBr/AcOH, CH₂Cl₂, ii) 3,3-difluoroxindole, Ag₂O, DIPEA, CH₂Cl₂

	BnO EnO EnO BnO EnO CFox BnO EnO BnO EnO BnO EnO BnO EnO BnO EnO BnO CFox BnO EnO S A BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox BnO CFox CFox CFox CFox CFox CFox CFox CFox	DH TMSOTf (5 m Solven molec. siev 5 min	mol %) t t t t t t t t t t t t t	
Entry	Solvent	Temp	<i>Yield of</i> 5 , %	/ ratio
1	CH_2Cl_2	-78 °C	94	1/24
2	Et_2O	-78 °C	84	1/5.0
3	Et_2O	50 °C	81	1.6/1
4	THF	50 °C	79	1.4/1
5	CH ₃ CN	-40 °C	87	1/14
6	EtCN	-78 °C	99	only
7	CH ₂ Cl ₂ /CH ₃ CN (1/2, v/v)	-40 °C	96	1/6.0
8	CH ₂ Cl ₂ /CH ₃ CN/EtCN (1/2/1, v/v/v)	-78 °C	99	only

Table 2S. The effect of solvents on the stereoselectivity of glycosidation of per-benzylatedOFox donor 3.

Table 3S. Temperature dependence on the stereoselectivity of glycosidation of per-benzylated
OFox donor 3.

BnO- BnO-	EnO CFox EnO OH BnO EnO EnO CMe 3 4	TMSOTf (5 mol %) CH ₂ Cl ₂ molec. sieve 4Å 5 min	
Entry	Temp	<i>Yield of</i> 5 , %	/ ratio
1	-78 °C	94	1/24
3	-40 °C	97	1/8.0
4	rt	93	1/1.2
5	50 °C	93	1/1.0

Table 4S. The effect of dilution on the stereoselectivity of glycosidation of per-benzylatedOFox donor 3 with acceptor 4 in the presence of TMSOTF.

Entry	Solvent	Temp, time	<i>Yield of</i> 5 , %	/ ratio
1	CH ₂ Cl ₂ (86 mM)	-78 °C, 10 min	94	1/24
2	EtCN (86 mM)	-78 °C, 10 min	99	only
3	CH ₂ Cl ₂ (17 mM)	-78 °C, 10 min	88	1/24
4	EtCN (17 mM)	-78 °C, 10 min	97	only

Table 6S. The effect of promoter on the stereoselectivity of glycosidation of per-benzylatedOFox donor 3

Entry	Promoter (equiv.)	Temp, time	<i>Yield of</i> 5 , %	/ ratio
1	TMSOTf (0.05 equiv.)	-78 °C, 5 min	94	1/24
2	TMSOTf (0.05 equiv.) ^a	-78 °C, 10 min	84	1/5.0
3	BF ₃ -OEt ₂ (0.1 equiv.)	-78 °C, 5 min	93	1/20
4	Cu(OTf) ₂ (0.2 equiv.)	-78 °C, 5 min	97	only
5	MeOTf (0.2 equiv.)	-78 °C, 10 min	91	>1/25
6	AgOTf (0.5 equiv.)	rt, 24 h	71	1/1.6
7	$PdCl_2$ (0.3 equiv.)	rt, 36 h	57	1/1.7
8	$TMSClO_4 (0.1 \text{ equiv.})^a$	rt, 10 min	75	5.0/1
9	$\text{TMSClO}_4 (0.1 \text{ equiv.})^{\text{b}}$	rt, 5 min	54	6.2/1
10	$Bi(OTf)_3$ (0.1 equiv.)	-78 °C, 5 min	85	1/7
10	Di(011)3 (0.1 equiv.)	-70 C, 5 mm	05	1/ /

^a - Et₂O was used as the reaction solvent;

^b - A mixture of $Et_2O/1,4$ -dioxane (1/1, v/v) was used as the reaction solvent

Table 7S. Comparative hydrolytic stability study of OFox, trichloro- and trifluoroacetimidates under various reaction conditions

For these studies, per-benzoylated OFox glycosyl donor **16** was compared with 2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranosyl trichloroacetimidate **23** and 2,3,4,6-tetra-*O*-benzoyl- , -D-glucopyranosyl *N*-phenyltrifluoroacetimidate **24.** These studies were performed in the presence of various Lewis acids in wet ClCH₂CH₂Cl. A mixture of imidate (**16**, **23**, or **24**, 0.01 mmol), promoter (A-D, see below, 0.013 mmol) in ClCH₂CH₂Cl/H₂O (0.5 mL, 500/1, v/v) was stirred for 24 h at rt. Quantitative estimates were made at 1, 16 and 24 h time points and are based on the accumulation of 2,3,4,6-tetra-*O*-benzoyl-D-glucopyranose **25**,¹ as observed by TLC ($R_f = 0.45$, ethyl acetate/hexanes, 3/7, v/v).

Entry	Donor	Conditions ^a	% of hemiacetal 25 formed after		
Entry		Conations	1 h	16 h	24 h
1	16	А	quant.	quant.	quant.
2	23	А	50	60	60
3	24	А	40	50	50
4	16	В	0	0	0
5	23	В	0	0	0
6	24	В	0	0	0
7	16	С	0	quant.	quant.
8	23	С	0	0	20
9	24	С	0	0	0
10	16	D	0	0	50
11	23	D	0	10	quant.
12	24	D	0	70	quant.

^a Conditions:

A: BF₃-OEt₂ (0.1 equiv.); B: Bi(OTf)₃ (0.1equiv.); C: MeOTf (1.0 equiv.); D: PdCl₂ (0.1 equiv.)

	BnO-BnO-	3 BrCO N	TMSOTf RCH (1.0 equiv.) -78 °C solvent MS-4Å	_CR	
Entry	Acceptor	Solvent	Product	Yield, $\%^b$	/ ratio ^c
1	2-propanol 26	EtCN	BrO BrO ErO CBn 27	77	only
2	4	CH_2Cl_2	Eno Bno CBn ^{Bn} O Eno Eno Bno Bno Eno Eno Eno Eno Eno Eno CMe	94	1/24
3	4	EtCN	5	99	only
4	HO BZO BZO BZO CMe 28	CH_2Cl_2	BnO BnO CBn ^{BzO} 29 BzO _{CMe}	89	1/11
5	28	EtCN	29	87	1/18
6	30 COH	CH ₂ Cl ₂	BrO BrO BrO BrO BrO BrO BrO O O O O O O	85	1/12
7	30	EtCN	31	89	only
8	BrO BrO BrO BrO CMe 32	CH ₂ Cl ₂	Bro CBn CBn Bro Bro Bno Bno Bno CMe 33	94	1/4.0
9	32	EtCN	33	92	1/12
10	BrO BrO HO CMe	CH ₂ Cl ₂	Broto Bro Meo OBn Bro Meo 35	90	1/6.0
11	34	EtCN	35	88	1/15
12		CH ₂ Cl ₂	BnO BnO BnO OBn H H YH 37	86	-only
13	CH 38	CH ₂ Cl ₂	BrO BrO CEn 39	88	1/23

Table 8S. TMSOTf-promoted glycosidation of OFox donor 3 with different acceptors in CH_2Cl_2
or EtCN at -78 °C

Entry	Donor	Acceptor	Product	Yield, %
1 ^a	AcO AcO AcO 14	4	Aco Aco Aco OAc Bno Eno CMe	80
2	BzO BzO EzO EzO EzO EzO Fox 16	4	BzO BzO BzO BzO BzO BzO BrO BrO CMe	94
3	16	28	$ \begin{array}{c} BzO \\ BzO \\ BzO \\ BzO \\ 43 \\ \end{array} $	86
4	16	30	BzO BzO BzO 44 BrO Me	90
5	16	32	Bro Bzo Bzo Bzo Meo CBn Bzo Meo CBn CBn CBn CBn CBn CCBn CBn Bzo CBn Bzo CBn Bzo CBn Bzo CBn Bzo CBn Bzo CBz CBz CBz CBz CBz CBz CBz CBz CBz CBz	93
6	BZO CBZ BZO CFox BZO 18	4	BzO BnO BrO BnO BnO BnO BnO BnO BnO BnO BnO BnO BnO	98
7	18	30	BzO CBz CBz CBz CBz BnO CMe CBz CBn O O CBn O O O O O O O O O O O O O	98
9	BzO BzO BzO 20 CBz CFox	4	BzO BzO BzO BzO BzO BzO BzO BrO BrO BrO BrO BrO Me	93
10	20	30	BzO BzO BzO BrO BrO BrO BrO CBn CBn CBn CMe	90

Table 9S.	Glycosylation	with per-acylated	l glucosyl,	galactosyl,	and mannosyl	OFox	donors in
		CH ₂ Cl ₂ with TM	ISOTf as a	promoter a	ıt rt.		

 a – SnCl₄ was used as a promoter to prevent acetyl migration to the C-6 of acceptor that was observed in the presence of TMSOTf.

 Table 10S.
 Regenerative glycosylation, a complete experimental dataset

Scheme 1S. "Regenerative glycosylation" experiment performed in the NMR tube with bromide donor 7, HOFox (0.25 equiv.), Ag_2O (3.0 equiv.) in CD_2Cl_2 at 0 °C in the absence of a glycosyl acceptor

General Experimental Remarks

All reactions were performed under argon with dry, freshly distilled solvents unless otherwise noted. CH₂Cl₂, ClCH₂CH₂Cl, toluene, CH₃CN, and EtCN were distilled from CaH₂ directly prior to application. Anhydrous 1,4-dioxane, tetrahydrofuran, and diethyl ether were used as is. AgOTf was co-evaporated with toluene (3 x 10 mL) and dried in vacuo for 2-3 h directly prior to application. TMSOTf, SnCl₄, MeOTf, BF₃-OEt₂, Cu(OTf)₂, PdCl₂, TMSClO₄ and Bi(OTf)₃ were used as is. Molecular sieves (3 Å or 4 Å), used for the reactions, were crushed and activated at 390 °C and then for 2-3 h at 390 °C prior to application. Reactions were monitored by TLC on Kieselgel 60 F₂₅₄ and the compounds were detected by examination under UV light and by charring with 10% sulfuric acid in methanol. Solvents were removed under reduced pressure at < 40 °C. Column chromatography was performed on silica gel 60 (70-230 mesh). Optical rotations were measured at 'Jasco P-1020' polarimeter. ¹H n.m.r. spectra were recorded at 300 MHz, 500 MHz, or 600 MHz. ¹³C n.m.r. spectra were recorded at 75 MHz or 150 MHz. ¹⁹F spectra were recorded at 282.2 MHz. The ¹H chemical shifts are referenced to the signal of the residual CHCl₃ ($_{\rm H} = 7.27$ ppm) for solutions in CDCl₃. The ¹³C chemical shifts are referenced to the central signal of CDCl₃ ($_{\rm C}$ = 77.23 ppm) for solutions in CDCl₃. HRMS determinations were made with the use of JOEL MStation (JMS-700) Mass Spectrometer.

Synthesis of 3,3-difluoroxindole (HOFox, 3,3-difluoroindolin-2-one)

The title compound was obtained from isatin and DAST as previously described. Analytical data were in accordance with that previously reported.²

Preparation of OFox imidates

Method A. A typical procedure for the preparation from hemiacetals via glycosyl chlorides. $SOCl_2$ (81.1 µL, 1.11 mmol) was added dropwise to a solution of hemiacetal (8 or 9, 0.20 g, 0.37 mmol) in dry CH₂Cl₂ (2.0 mL) and dry DMF (14.3 µL) and the resulting mixture was stirred under argon for 7 h at rt. Upon completion, the reaction mixture was diluted with CH₂Cl₂ (~30 mL) and washed with sat. aq. NaHCO₃ (2 x 15 mL) and cold water (2 x 15 mL). The organic phase was separated, dried with $MgSO_4$, and concentrated *in vacuo*. The residue containing crude glycosyl halide (0.37 mmol) was dried under high vacuum for 4 h. Freshly activated molecular sieves (3 Å, 600 mg) and dry CH₂Cl₂ (2.0 mL) were added and the resulting mixture was stirred under argon for 1 h at rt. After that, 3,3-difluorooxindole (69 mg, 0.41 mmol), Ag₂O (258 mg, 1.11 mmol), and diisopropylethylamine (DIPEA, 97 µL, 0.56 mmol) were added and the resulting mixture was stirred for 8-12 h. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 15 mL) and water (2 x 15 mL). The organic phase was separated, dried with MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford the corresponding OFox imidates 3 or 10 in yields listed in Table 1S.

Methods B and C. A typical procedure for the preparation from glycosyl bromides. A mixture of a glycosyl bromide (11, 13, 15 or 21, 0.15 mmol) and freshly activated molecular sieves (3 Å, 300 mg) in dry CH_2Cl_2 (Method B, 1.0 mL) or toluene (Method C, 1.0 mL) was stirred under argon for 1 h at rt. After that, 3,3-difluorooxindole (25.7 mg, 0.15 mmol), Ag₂O (105 mg, 0.45 mmol), and DIPEA (39.7 µL, 0.23 mmol) were added and the resulting mixture was stirred for 40 min-10 h at the temperature indicated in Table 1S. The solids were filtered off through a pad of Celite and rinsed successively with CH_2Cl_2 . The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 15 mL) and water (2 x 15 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford the corresponding OFox imidates in yields listed in Table 1S.

Method D. A typical procedure for the preparation from pentabenzoates via glycosyl bromides. A 33% solution of HBr in AcOH (0.10 mL, 1.7 mmol) was added to a solution of a 1,2,3,4,6-penta-O-benzoyl-D-galacto or mannopyranose (17 or 19, 100 mg, 0.14 mmol) in dry CH₂Cl₂ (0.2 mL) and the resulting mixture was stirred under argon for 2-4 h at rt. The reaction mixture was then diluted with CH₂Cl₂ (~40 mL) and washed with cold sat. aq. NaHCO₃ (2 x 15 mL) and cold water (2 x 15 mL). The organic phase was separated, dried with MgSO₄, and concentrated in vacuo. The residue containing crude glycosyl bromide (0.14 mmol) was dried under high vacuum for 4 h. After that, freshly activated molecular sieves (3 Å) and dry CH₂Cl₂ (1.4 mL) were added and the resulting mixture was stirred under argon for 1 h at rt. After that, the resulting mixture was cooled to 0 °C in case of galactose sugar and at rt for mannose sugar, followed by addition of 3,3-difluorooxindole (26.7 mg, 0.16 mmol), Ag₂O (99.2 mg, 0.43 mmol) and DIPEA (37.4 µL, 0.21 mmol) were added and the resulting mixture was stirred for 2-6 h as indicated in Table 1S. The solids were then filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 15 mL) and water (2 x 15 mL). The organic phase was separated, dried with MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford the corresponding OFox imidates in yields listed in Table 1S.

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzyl- / -D-glucopyranoside (3)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzyl-D-glucopyranose **8**³ by Method B in 62% yield (/ = 10/1) as a white foam. Analytical data for **-3**: $R_f = 0.43$ (ethyl acetate/hexanes, 1/4, v/v); ¹H n.m.r. (300 MHz): , 3.66 (dd, 1H, $J_{5,6a} = 1.8$ Hz, $J_{6a,6b} = 10.9$ Hz, H-6a), 3.79 (dd, 1H, $J_{2,3} = 9.3$ Hz, H-2,), 3.79 (dd, 1H, $J_{5,6b} = 3.3$ Hz, H-6b), 3.83 (dd, 1H, $J_{4,5} = 9.3$ Hz, H-4), 4.01 (m, 1H, H-5), 4.13 (dd, 1H, $J_{3,4} = 9.3$ Hz, H-3), 4.52 (dd, 2H, ²J = 12.0 Hz, CH₂Ph), 4.69 (dd, 2H, ²J = 10.5 Hz, CH₂Ph), 4.73 (s, 2H, CH₂Ph), 4.93 (dd, 2H, ²J = 10.9 Hz, CH₂Ph), 6.50 (d, 1H, $J_{1,2} = 3.3$ Hz, H-1), 7.11-7.42 (m, 24H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 68.1, 73.2, 73.5, 73.6 (x 2), 75.2, 75.3, 79.4, 81.5, 99.8, 117.4, 120.4, 123.3, 125.7, 127.8, 127.9, 128.0 (x 4), 128.0 (x 2), 128.1 (x 7), 128.6 (x 8), 133.6, 137.9, 138.0, 138.2, 138.8 ppm; ¹⁹F n.m.r.: , -121.3 (s, 2F, CF₂) ppm; HR-FAB MS [M+Na]⁺ calculated for C₄₂H₃₉F₂NO₆Na⁺ 714.2643, found 714.2645.

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzyl- -D-mannopyranoside (10)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzyl- / -D-mannopyranose 9^4 by Method A in 61% yield as a white foam. Analytical data for **10**: $R_f = 0.45$ (ethyl acetate/hexanes, 2/3, v/v); $[]_D^{24} + 13.7$ (c = 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 3.74 (dd, 1H, $J_{5,6a} = 1.8$ Hz, $J_{6a,6b} = 11.3$ Hz, H-6a), 3.84 (dd, 1H, $J_{5,6b} = 4.3$ Hz, H-6b), 3.95-4.03 (m, 3H, H-2, 4, 5), 4.14 (m, 1H, $J_{3,4} = 9.5$ Hz, H-3), 4.60 (dd, 2H, ²J = 11.6 Hz, CH₂Ph), 4.62 (dd, 2H, ²J = 12.1 Hz, CH₂Ph), 4.70 (dd, 2H, ²J = 10.7 Hz, CH₂Ph), 4.78 (s, 2H, CH₂Ph), 6.40 (d, 1H, $J_{1,2} = 1.1$ Hz, H-1), 7.15-7.47 (m, 24H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 69.1, 72.6, 72.8, 73.1, 73.4, 74.0, 74.8, 75.3, 79.0, 97.7, 120.5 (x 2), 123.4 (x 2), 125.9, 126.7, 127.7, 127.7 (x 2), 128.0 (x 3), 128.1 (x 2), 128.2 (x 2), 128.3 (x 3), 128.5 (x 2), 128.6 (x 6), 133.7, 138.0, 138.2, 138.4 (x 2), ppm; ¹⁹F n.m.r.: , -121.5 (s, 2F, CF₂) ppm; HR-FAB MS [M+Na]⁺ calculated for C₄₂H₃₉F₂NO₆Na⁺ 714.2643, found 714.2639.

3,3-Difluoro-3*H*-indol-2-yl 3,4,6-tri-*O*-acetyl-2-*O*-benzyl- -D-glucopyranoside (-12)

The title compound was obtained from 3,4,6-tri-*O*-acetyl-2-*O*-benzyl- -D-glucopyranosyl bromide **11** by Method B at rt in 80% yield as a white foam. Analytical data for -**12**: $R_f = 0.39$ (ethyl acetate/hexanes, 2/3, v/v); [$]_D^{26}$ +13.7 (c = 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 1.95, 2.03, 2.07 (3s, 9H, 3 x COCH₃), 3.80 (dd, 1H, $J_{2,3} = 7.9$ Hz, H-2), 3.95 (m, 1H, H-5), 4.14 (dd, 1H, $J_{5,6a} = 2.3$ Hz, $J_{6a,6b} = 12.5$ Hz, H-6a), 4.34 (dd, 1H, $J_{5,6b} = 4.4$ Hz, H-6b), 4.74 (dd, 2H, ²J = 11.6 Hz, CH₂Ph), 5.11 (dd, 1H, $J_{4,5} = 9.5$ Hz, H-4), 5.27 (dd, 1H, $J_{3,4} = 9.2$ Hz, H-3), 5.94 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 7.18-7.49 (m, 9H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 20.7 (x 2), 20.8, 61.5, 67.9, 72.6, 73.6, 74.7, 77.6, 99.1, 120.6, 123.3, 126.2, 128.1 (x 2), 128.3 (x 3), 128.5 (x 3), 133.7, 137.1, 150.3, 169.7, 170.0, 170.7 ppm; ¹⁹F n.m.r.: , -122.0 (d, 2F, CF₂) ppm; HR-FAB MS [M+Na]⁺ calculated for C₂₇H₂₇F₂NO₉Na⁺ 570.1552, found 570.1562.

3,3-Difluoro-3*H*-indol-2-yl 3,4,6-tri-*O*-acetyl-2-*O*-benzyl- -D-glucopyranoside (α-12)

The title compound was obtained from 3,4,6-tri-*O*-acetyl-2-*O*-benzyl- -D-glucopyranosyl bromide **11** by Method B at 0 °C in 81% yield as a white foam. Analytical data for α -**12**: $R_f = 0.38$ (ethyl acetate/hexanes, 2/3, v/v); [$]_D^{25}$ +101.4 (c = 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 2.02, 2.03, 2.05 (3s, 9H, 3 x COCH₃), 3.81 (dd, 1H, $J_{2,3} = 9.9$ Hz, H-2), 4.06 (dd, 1H, $J_{5,6a} = 2.0$ Hz, $J_{6a,6b} = 12.4$ Hz, H-6a), 4.18 (m, 1H, H-5), 4.29 (dd, 1H, $J_{5,6b} = 4.1$ Hz, H-6b), 4.67 (s, 2H, CH₂Ph), 5.11 (dd, 1H, $J_{4,5} = 10.0$ Hz, H-4), 5.57 (d, 1H, $J_{3,4} = 9.7$ Hz, H-3), 6.45 (d, 1H, $J_{1,2} = 3.5$ Hz, H-1), 7.17-7.40 (m, 9H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 20.7 (x 2), 20.8, 61.4, 67.8, 69.8, 71.4, 73.3, 75.7, 95.0, 120.4, 123.3, 125.9, 126.8, 127.9 (x 3), 128.2, 128.6 (x 3),

133.5, 137.2, 150.4, 168.7, 169.8, 170.1 ppm; ¹⁹F n.m.r.: , -121.6 (s, 1F, CF_2^{a}), -121.5 (s, 1F, CF_2^{b}); HR-FAB MS [M+Na]⁺ calculated for $C_{27}H_{27}F_2NO_9Na^+$ 570.1552, found 570.1569.

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-acetyl- -D-glucopyranoside (14)

The title compound was obtained from 2,3,4,6-tetra-*O*-acetyl- -D-glucopyranosyl bromide **13**⁵ by Method C in 62% yield as a white foam. Analytical data for **14**: $R_f = 0.42$ (ethyl acetate/hexanes, 1/1, v/v); [$]_D^{21}$ +5.2 (*c*= 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 1.96, 1.97, 1.98, 2.01 (4s, 12H, 4 x COCH₃), 3.95 (m, 1H, H-5), 4.15 (dd, 1H, $J_{5,6a} = 2.3$ Hz, $J_{6a,6b} = 12.5$ Hz, H-6a), 4.30 (dd, 1H, $J_{5,6b} = 4.3$ Hz, H-6b), 5.17-5.32 (m, 3H, H-2, 3, 4), 5.95 (m, 1H, H-1), 7.14-7.40 (m, 4H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 20.4, 20.6 (x 2), 20.7, 61.4, 67.6, 70.3, 72.4, 72.9, 96.6, 120.5 (x 2), 123.3 (x 2), 126.2, 126.8, 133.6, 150.0, 169.3, 169.4, 170.2, 170.8 ppm; ¹⁹F n.m.r.: , -122.4 (s, 1F, CF₂^a), -122.3 (s, 1F, CF₂^b) ppm; HR-FAB MS [M+H]⁺ calculated for C₂₂H₂₃F₂NO₁₀ 500.1290, found 500.1361.

3,3-Difluoro-3H-indol-2-yl 2,3,4,6-tetra-O-benzoyl- -D-glucopyranoside (16)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranosyl bromide **15**⁶ by Method B in 75% yield as a pale yellow foam. Analytical data for **16**: $R_f = 0.41$ (ethyl acetate/hexanes, 3/7, v/v); [$]_D^{23}$ +45.8 (*c*= 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 4.48 (dd, 1H, $J_{5,6a} = 4.7$ Hz, $J_{6a,6b} = 12.4$ Hz, H-6a), 4.64 (m, 2H, $J_{5,6b} = 2.3$ Hz, H-5, 6b), 5.69 (dd, 1H, $J_{2,3} = 10.2$ Hz, H-2), 5.83 (dd, 1H, $J_{4,5} = 10.0$ Hz, H-4), 6.31 (dd, 1H, $J_{3,4} = 10.0$ Hz, H-3), 6.82 (d, 1H, $J_{1,2} = 3.7$ Hz, H-1), 7.05-7.99 (m, 24H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 62.4, 68.6, 70.1, 70.3, 70.6, 94.8, 120.6, 123.2, 126.0, 126.5, 128.3, 128.4 (x 2), 128.4 (x 2), 128.5 (x 4), 128.6 (x 2), 128.8, 129.1, 129.5, 129.7 (x 2), 129.8 (x 2), 130.0 (x 4), 133.1, 133.4 , 133.5, 133.6, 133.7, 150.1, 165.2, 165.5, 165.6, 166.0 ppm; ¹⁹F n.m.r.: , -121.8 (s, 1F, CF₂^a), -121.6 (s, 1F, CF₂^b) ppm; HR-FAB MS [M+Na]⁺ calculated for C₄₂H₃₁F₂NO₁₀Na⁺ 770.1813, found 770.1800.

3,3-Difluoro-3H-indol-2-yl 2,3,4,6-tetra-O-benzoyl- -D-galactopyranoside (18)

This compound was obtained from 2,3,4,6-tetra-*O*-benzoyl- -D-galactopyranosyl bromide 17^7 by Method D in 75% yield as a white foam. Analytical data for **18**: $R_f = 0.39$ (ethyl acetate/hexanes, 3/7, v/v); $[]_D^{22} + 2.7$ (c = 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 4.51 (dd, 1H, $J_{5,6a} = 5.9$ Hz, $J_{6a,6b} = 10.6$ Hz, H-6a), 4.63 (m, 1H, H-5), 4.72 (dd, 1H, $J_{5,6b} = 6.6$ Hz, H-6b), 5.75 (dd, 1H, $J_{3,4} = 3.4$ Hz, H-3), 6.11 (m, 2H, H-2, 4), 6.34 (d, 1H, $J_{1,2} = 7.8$ Hz, H-1), 7.14-8.14 (m, 24H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 61.8, 67.6, 68.9, 71.4, 72.7, 97.4, 120.4, 123.6, 124.7, 125.4, 128.3, 128.6 (x 4), 128.7, 128.8, 128.9 (x 2), 129.0, 129.2 (x 2), 129.4, 129.9 (x 9),

130.1 (x 2), 133.3, 133.5, 133.6, 133.8, 165.1, 165.5 (x 2), 166.0 ppm; ¹⁹F n.m.r.: , -122.2 (s, 2F, CF₂); HR-FAB MS [M+Na]⁺ calculated for $C_{42}H_{31}F_2NO_{10}Na^+$ 770.1813, found 770.1791.

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzoyl- -D-mannopyranoside (20)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzoyl- -D-mannopyranosyl bromide **19**⁸ by Method D in 84% yield as a white foam. Analytical data for **20**: $R_f = 0.43$ (ethyl acetate/hexanes, 3/7, v/v); $[]_D^{21}$ -5.3 (c = 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 4.52 (dd, 1H, $J_{5,6a} = 4.4$ Hz, $J_{6a,6b} = 12.1$ Hz, H-6a), 4.62 (m, 1H, H-5), 4.70 (dd, 1H, $J_{5,6b} = 2.2$ Hz, H-6b), 6.02 (dd, 1H, $J_{2,3} = 3.3$ Hz, H-2), 6.07 (dd, 1H, $J_{3,4} = 10.0$ Hz, H-3), 6.24 (dd, 1H, $J_{4,5} = 10.0$ Hz, H-4), 6.64 (d, 1H, $J_{1,2} = 1.7$ Hz, H-1), 7.16-8.09 (m, 24H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 62.5, 66.2, 69.0, 69.6, 71.5, 96.0, 121.0, 123.5, 125.5, 126.4, 126.8, 128.4, 128.5 (x 2), 128.6 (x 2), 128.7 (x 2), 128.8, 128.9 (x 2), 128.9, 129.0, 129.2, 129.8, 129.9 (x 2), 130.0 (x 2), 130.1 (x 4), 133.2, 133.6, 133.8, 134.0, 138.1, 165.2, 165.5, 165.6, 166.1 ppm; ¹⁹F n.m.r.: , -121.8 (s, 1F, CF₂^a), -121.5 (s, 1F, CF₂^b); HR-FAB MS [M+Na]⁺ calculated for C₄₂H₃₁F₂NO₁₀Na⁺ 770.1813, found 770.1814.

3,3-Difluoro-3*H*-indol-2-yl 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- -D-glucopyranoside (22)

The title compound was obtained from 3,4,6-tri-*O*-acetyl-2-azido-2-deoxy- -D-glucopyranosyl bromide **21** by Method B in 70% yield as a white foam. Analytical data for **22**: $R_f = 0.43$ (ethyl acetate/hexanes, 2/3, v/v); $[]_D^{24} + 8.4$ (*c*= 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 2.05, 2.08, 2.12 (3s, 9H, 3 x COCH₃), 3.88 (dd, 1H, $J_{2,3} = 9.2$ Hz, H-2), 3.93 (m, 1H, H-5), 4.16 (dd, 1H, $J_{5,6a} = 2.3$ Hz, H-6a), 4.35 (dd, 1H, $J_{5,6b} = 4.3$ Hz, $J_{6a,6b} = 12.6$ Hz, H-6b), 5.13 (dd, 1H, $J_{4,5} = 8.9$ Hz, H-4), 5.17 (dd, 1H, $J_{3,4} = 9.2$ Hz, H-3), 5.82 (d, 1H, $J_{1,2} = 8.3$ Hz, H-1), 7.19-7.43 (m, 4H, aromatic) ppm; ¹³C n.m.r. (75 MHz): , 20.7, 20.8, 20.9, 60.6, 63.1, 67.8, 72.7, 73.0, 97.6, 120.7, 123.5, 126.5, 126.7, 127.0, 127.3, 133.8, 150.1, 169.8, 170.0, 170.7 ppm; ¹⁹F n.m.r.: , -122.2 (s, 2F, CF₂). HR-FAB MS [M+Na]⁺ calculated for C₂₀H₂₀F₂N₄O₈Na⁺ 505.1147, found 505.1142.

Preparation and characterization of other glycosyl donors and intermediates

2,3,4,6-Tetra-O-benzyl- / -D-glucopyranosyl trichloroacetimidate (1)

This compound was obtained from 2,3,4,6-tetra-*O*-benzyl-D-glucopyranose **8**³ in 62% yield as a white foam as previously described.⁹ Analytical data for is this for -**1**: $R_f = 0.43$ (ethyl acetate/hexanes, 1/4 v/v); ¹H n.m.r. (300 MHz): , 3.67 (dd, 1H, $J_{5,6a} = 1.9$ Hz, $J_{6a,6b} = 10.9$ Hz, H-6a), 3.74-3.80 (m, 3H, H-2, 4, 6b), 3.99 (m, 1H, H-5), 4.05 (dd, 1H, $J_{3,4} = 9.4$ Hz, H-3), 4.53 (dd, 2H, ²J = 12.0 Hz, CH_2 Ph), 4.71 (dd, 2H, ²J = 11.7 Hz, CH_2 Ph), 4.73 (dd, 2H, ²J = 10.7 Hz,

CH₂Ph), 4.84 (dd, 2H, ${}^{2}J$ = 7.6 Hz, CH₂Ph), 6.50 (d, 1H, $J_{1,2}$ = 3.4 Hz, H-1), 7.12-7.33 (m, 24H, aromatic), 8.57 (s, 1H, NH) ppm; 13 C n.m.r. (75 MHz): , 68.1, 73.0, 73.2, 73.6, 75.5, 75.8, 79.5, 81.5, 91.4, 94.5, 127.8 (x 3), 127.9 (x 2), 128.0, 128.1 (x 2), 128.2 (x 4), 128.5 (x 4), 128.6 (x 4), 137.9, 138.1, 138.2, 138.7, 161.4 ppm; HR-ESI MS [M+Na]⁺ calculated for C₃₆H₃₆Cl₃NO₆Na⁺ 706.1506, found 706.1500.

2,3,4-Tri-O-benzyl- , -D-glucopyranosyl N-phenyltrifluoroacetimidate (2)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzyl-D-glucopyranose 8^3 by adapting previously published procedure.¹⁰ 2,2,2-Trifluoro-*N*-phenylethanimidoyl chloride (89.4 µL, 0.55 mmol) and K₂CO₃ (55 mg, 0.55 mmol) were added to a solution of 8 (150 mg, 0.28 mmol) in acetone (1.5 mL) and the resulting mixture was stirred for 3 h at rt. The solids were filtered off through a pad of Celite and the filtrate was concentrated in *vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford the title compound in 72% yield as a white amorphous solid. Analytical data for -2: $R_f = 0.5$ (ethyl acetate/hexanes, 1/4, v/v); ¹H n.m.r. (500 MHz): , 3.56-3.95 (m, 6H, H-2, 3, 4, 5, 6a, 6b), 4.58 (dd, 2H, ²J = 9.5 Hz, CH₂Ph), 4.69 (dd, 2H, ²J = 12.2 Hz, CH₂Ph), 4.88 (s, 2H, CH₂Ph), 5.00 (dd, 2H, ²J = 10.2 Hz, CH₂Ph), 5.74 (d, 1H, J_{1,2} = 8.0 Hz, H-1), 6.78-7.5 (m, 25H, aromatic); ¹³C n.m.r. (75 MHz): , 73.6, 75.3, 75.4, 75.8 (x 2), 75.9 (x 2), 75.8, 81.1, 84.7, 119.5, 124.5, 127.9, 128.0 (x 2), 128.1 (x 3), 128.2 (x 3), 128.4 (x 2), 128.6 (x 6), 128.7 (x 7), 128.9 (x 2), 137.9, 138.1 (x 2), 138.5, 143.6 ppm; HR-FAB MS [M+Na]⁺ calculated for C₄₂H₄₀F₃NO₆Na⁺ 734.2705, found 734.2720.

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio- -D-glucopyranoside (6)

The title compound was obtained as previously described.¹¹

3,4,6-Tri-O-acetyl-2-O-benzyl- -D-glucopyranosyl bromide (11)

The title compound was obtained from 1,3,4,6-tetra-*O*-acetyl-2-*O*-benzyl-D-glucopyranose¹² in 90% yield as a white foam as previously described.¹³ Analytical data for **11**: $R_f = 0.43$ (ethyl acetate/hexanes, 2/3, v/v); ¹H n.m.r. (300 MHz): , 1.96, 1.98, 2.00 (3s, 9H, 3 x COCH₃), 3.57 (dd, 1H, $J_{2,3} = 9.6$ Hz, H-2), 4.12 (m, 1H, $J_{5,6a} = 4.1$ Hz, H-6a), 4.22 (m, 1H, H-5), 4.27 (dd, 1H, $J_{5,6b} = 4.0$ Hz, $J_{6a,6b} = 12.6$ Hz, 6b), 4.63 (dd, 2H, ²J = 12.3 Hz, CH₂Ph), 5.06 (dd, 1H, $J_{4,5} = 9.8$ Hz, H-4), 5.48 (dd, 1H, $J_{3,4} = 9.5$ Hz, H-3), 6.34 (d, 1H, $J_{1,2} = 3.9$ Hz, H-1) ppm; ¹³C n.m.r. (75 MHz): , 20.8, 20.9 (x 2), 61.3, 67.3, 72.2 (x 2), 72.9, 76.5, 89.2, 128.1 (x 2), 128.5, 128.8 (x 2), 137.0, 169.9, 170.1, 170.7 ppm; HR-FAB MS [M+Na]⁺ calculated for C₁₉H₂₃BrO₈Na⁺ 481.0474, found 481.0483.

2,3,4,6-Tetra-O-benzoyl- -D-galactopyranosyl bromide (15)

The title compound was obtained from 1,2,3,4,6-penta-*O*-benzoyl-D-galactopyranose in 90% yield as a white foam as previously described.¹⁴ Analytical data for **15**: $R_f = 0.44$ (ethyl acetate/hexanes, 3/7, v/v); $[]_D^{21}$ +152.5 (*c*= 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 4.47 (dd, 1H, $J_{5,6b} = 6.0$ Hz, $J_{6a,6b} = 11.6$ Hz, H-6b), 4.65 (dd, 1H, $J_{5,6a} = 6.8$ Hz, H-6a), 4.93 (dd, 1H, H-5), 5.67 (dd, 1H, $J_{2,3} = 9.8$ Hz, H-2), 6.06 (dd, 1H, $J_{3,4} = 10.0$ Hz, H-3), 6.13 (dd, 1H, $J_{4,5} = 3.8$ Hz, H-4), 6.98 (d, 1H, $J_{1,2} = 4.0$ Hz, H-1) ppm; ¹³C n.m.r. (75 MHz): , 61.9, 68.3, 68.8, 69.1, 72.0, 88.5, 128.6 (x 2), 128.7 (x 2), 128.7, 128.8 (x 2), 128.9 (x 2), 129.0 (x 2), 129.4, 130.0 (x 4), 130.2 (x 4), 133.6 (x 2), 134.0 (x 2), 165.5, 165.6, 165.8, 166.1 ppm; HR-FAB MS [M+Na]⁺ calculated for C₃₄H₂₇BrO₉Na⁺ 681.0736, found 681.0721.

3,4,6-Tri-O-acetyl-2-azido-2-deoxy- -D-glucopyranosyl bromide (21)

The title compound was obtained from 1,3,4,6-tetra-*O*-acetyl-2-azido-2-deoxy-D-glucopyranose^{15,16} in 90% yield as a white foam as previously described.^{17,18} Analytical data for **21**: $R_f = 0.46$ (ethyl acetate/hexanes, 2/3, v/v); $[]_D^{19} + 146.9$ (*c*= 1.0, CHCl₃); ¹H n.m.r. (300 MHz): , 2.06, 2.09, 2.11 (3s, 9H, 3 x COCH₃), 3.81 (dd, 1H, $J_{2,3} = 10.2$ Hz, H-2), 4.12 (m, 1H, $J_{5,6a} = 1.9$ Hz, $J_{6a,6b} = 8.5$ Hz, H-6a), 4.33 (m, 2H, $J_{5,6b} = 4.1$ Hz, H-5, 6b), 5.14 (dd, 1H, $J_{4,5} = 9.8$ Hz, H-4), 5.5 (dd, 1H, $J_{3,4} = 10.0$ Hz, H-3), 6.42 (d, 1H, $J_{1,2} = 3.8$ Hz, H-1) ppm; ¹³C n.m.r. (75 MHz): , 20.5, 20.6 (x 2), 61.0, 62.3, 67.3, 71.7, 72.4, 87.4, 169.6, 169.7, 170.4 ppm; HR-FAB MS [M+Na]⁺ calculated for C₁₂H₁₆BrN₃O₇Na⁺ 416.0069, found 416.0065.

2,3,4,6-Tetra-O-benzoyl- -D-glucopyranosyl trichloroacetimidate (23)

The title compound was obtained from 2,3,4,6-tetra-O-benzoyl-D-glucopyranose 25¹ in 83% yield as a white foam as previously described.¹ Analytical data for 23 was in accordance with that reported previously.¹⁹

2,3,4,6-Tetra-O-benzoyl- -D-glucopyranosyl N-phenyltrifluoroacetimidate (24)

The title compound was obtained from 2,3,4,6-tetra-*O*-benzoyl-D-glucopyranose 25^1 by adapting previously published procedure.¹⁰ 2,2,2,-Trifluoro-*N*-phenylethanimidoyl chloride (0.70 mL, 4.37 mmol) and K₂CO₃ (0.54 g, 5.46 mmol) were added to a solution of 25 (2.17 g, 3.64 mmol) in acetone (25 mL) and the resulting mixture was stirred for 5 h at rt. The solids were filtered off through a pad of Celite and the filtrate was concentrated in *vacuo*. The residue was purified by

column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford the title compound in 86% yield as a white foam. Analytical data for -**24**: $R_f = 0.5$ (ethyl acetate/hexanes, 3/7, v/v); [$]_D^{27}$ +49.4 (c= 1.0, CHCl₃); ¹H n.m.r. (500 MHz): , 4.51 (dd, 1H, $J_{5,6a} = 4.4$ Hz, $J_{6a,6b} = 12.5$ Hz, H-6a), 4.69 (m, 1H, H-5), 4.77 (dd, 1H, $J_{5,6b} = 1.8$ Hz, H-6b), 5.67 (dd, 1H, $J_{2,3} = 10.3$ Hz, H-2), 5.93 (dd, 1H, $J_{4,5} = 10.1$ Hz, H-4), 6.30 (m, 3H, H-3, 2', 6'), 6.92 (d, 1H, $J_{1,2} = 3.6$ Hz, H-1), 7.00-8.15 (m, 25H, aromatic) ppm; ¹³C n.m.r. (125 MHz): , 62.4, 68.6, 70.0, 70.5, 70.8, 92.3, 119.1, 124.4, 128.6 (x 2), 128.7 (x 5), 128.8 (x 5), 128.9, 129.7, 129.9 (x 2), 130.0 (x 8), 133.3, 133.4, 133.7, 133.8, 142.8, 143.0, 165.2, 165.4, 165.7, 166.1; ¹⁹F n.m.r.: , -65.51 (s, 3F, CF₃) ppm; HR-FAB MS [M+Na]⁺ calculated for C₄₂H₃₁F₂NO₁₀Na⁺ 790.1876, found 790.1886.

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio- -D-galactopyranoside (52)

BnÖ OEn EnO SEt

The title compound was obtained as previously described.²⁰

Ethyl 2,3,4,6-tetra-O-benzyl-1-thio- -D-mannopyranoside (54)

BnO OBn BnO OBn BnO SEt

The title compound was obtained as previously described.²¹

General glycosylation procedures

<u>Method A.</u> A typical TMSOTf-promoted glycosylation procedure. A mixture of glycosyl donor (0.11 mmol), glycosyl acceptor (0.10 mmol), and freshly activated molecular sieves (4Å, 90 mg) in CH_2Cl_2 (0.5 mL) or other solvent as indicated in Tables was stirred under argon for 1 h at rt. The mixture was cooled to -78 °C or other temperature as indicated in Tables, TMSOTf (0.0055-0.011 mmol) was added, and the resulting mixture was stirred for 10-15 min as indicated in Tables. The solids were filtered off through a pad of Celite and rinsed successively with CH_2Cl_2 . The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford a glycoside derivative in yields listed in Tables.

<u>Method B.</u> A typical BF_3 - OEt_2 -promoted glycosylation procedure. A mixture of 3,3-difluoro-3H-indol-2-yl 2,3,4,6-tetra-O-benzyl- α -D-glucopyranoside **3** (32.7 mg, 0.047 mmol), methyl 2,3,4-tri-O-benzyl- -D-glucopyranoside **4** (18.3 mg, 0.043 mmol), and freshly activated molecular sieves (4Å, 95 mg) in CH₂Cl₂ (0.6 mL) was stirred under argon for 1 h at rt. The mixture was cooled to -78 °C, BF₃-OEt₂ (0.3 μ L, 0.002 mmol) was added, and the resulting mixture was stirred for 5 min. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 93% yield (α / = 1/20, Table 6S).

Method C. A typical $Cu(OTf)_2$ -promoted glycosylation procedure. A mixture of donor **3** (38.3 mg, 0.055 mmol), methyl 2,3,4-tri-*O*-benzyl- -D-glucopyranoside **4** (23.4 mg, 0.05 mmol), and freshly activated molecular sieves (3 Å, 110 mg) in CH₂Cl₂ (0.64 mL) was stirred under argon for 1 h at rt. $Cu(OTf)_2$ (2.0 mg, 0.003 mmol) was added and the resulting mixture was stirred for 5 min. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 97% yield (only, Table 6S).

<u>Method D.</u> A typical MeOTf-promoted glycosylation procedure. A mixture of donor **3** (30.6 mg, 0.044 mmol), acceptor **4** (18.7 mg, 0.040 mmol), and freshly activated molecular sieves (4Å, 90 mg) in CH₂Cl₂ (0.5 mL) was stirred under argon for 1 h at rt. MeOTf (0.55 μ L, 0.0044 mmol) was added and the resulting mixture was stirred for 10 min. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 91% yield (α / = 1/>25, Table 6S)

<u>Method E.</u> A typical AgOTf-promoted glycosylation procedure. A mixture of donor **3** (43.5 mg, 0.062 mmol), acceptor **4** (26.7 mg, 0.057 mmol), and freshly activated molecular sieves (4Å, 120 mg) in CH₂Cl₂ (0.73 mL) was stirred under argon for 1 h at rt. AgOTf (7.3 mg, 0.028 mmol) was added and the resulting mixture was stirred for 24 h. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 71% yield (α / = 1/1.6, Table 6S).

<u>Method F.</u> A typical PdCl₂-promoted glycosylation procedure. A mixture of donor **3** (33.2 mg, 0.048 mmol), acceptor **4** (20.3 mg, 0.044 mmol), and freshly activated molecular sieves (4Å, 90 mg) in CH₂Cl₂ (0.55 mL) was stirred under argon for 1 h at rt. PdCl₂ (2.55 mg, 0.014 mmol) was added and the resulting mixture was stirred for 36 h. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 57% yield (α / = 1/1.7, Table 6S).

<u>Method G.</u> A typical TMSClO₄-promoted glycosylation procedure. A mixture of donor **3** (0.044 mmol), acceptor **4** (0.040 mmol), and freshly activated molecular sieves (3 Å, 90 mg) in Et₂O (0.5 mL) or Et₂O/1.4-dioxane (0.5 mL, 1/1, v/v) was stirred under argon for 1 h at rt. TMSClO₄²²

(0.0044 mmol) was added and the resulting mixture was stirred for 5 min. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 75% (α / = 5/1, Table 6S) or 54% yield (α / = 6.2/1), respectively.

Method H. A typical Bi(OTf)₃-promoted glycosylation procedure. A mixture of donor **3** (41.3 mg, 0.059 mmol), acceptor **4** (25.2 mg, 0.054 mmol), and freshly activated molecular sieves (4Å, 120 mg) in CH₂Cl₂ (0.7 mL) was stirred under argon for 1 h at rt. The reaction was cooled to -60 $^{\circ}$ C followed by the addition of *Bi*(*OTf*)₃ (3.9 mg, 0.006 mmol) and the resulting mixture was stirred for 20 min. The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **5** in 85% yield, (α / = 1/7.0, Table 6S).

<u>Method I.</u> A typical SnCl₄-promoted glycosylation procedure. A mixture of 3,3-difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranoside **14** (25.8 mg, 0.051 mmol), acceptor **4** (21.8 mg, 0.046 mmol), and freshly activated molecular sieves (4Å, 90 mg) in CH₂Cl₂ (0.5 mL) was stirred under argon for 1 h at rt. SnCl₄ (0.6 µL, 0.005 mmol) was added and the resulting mixture was stirred for 10 min (Table 4). The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~40 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford disaccharide **41** in 80% yield (Table 9S).

2-Propyl 2,3,4,6-tetra-O-benzyl- -D-glucopyranoside (27)

The title compound was obtained by Method A from donor **3** and isopropanol **26** as a white amorphous solid in 77% yield (only). Analytical data for **27** was in accordance with that reported previously.²³

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl- -D-glucopyranosyl)- -D-glucopyranoside (5)

The title compound was obtained by Methods A-H from donor **3** and acceptor 4^{24} in 54-97% yield (/ ranging from 6.2/1 to -only, see Tables). Analytical data for **5** was in accordance with that reported previously.^{25,26}

The title compound was obtained by Method A from donor **3** and methyl 2,3,4-tri-*O*-benzoyl- - D-glucopyranoside **28**²⁷ in CH₂Cl₂ or EtCN in 89% (/ = 1/11) or 87% yield (/ = 1/18), respectively. Analytical data for **29** was in accordance with that reported previously.²⁸

6-*O*-(2,3,4,6-Tetra-*O*-benzyl- -D-glucopyranosyl)-1,2:3,4-di-*O*-isopropylidene- -D-galactopyranose (31)

The title compound was obtained by Method A from donor **3** and 1,2:3,4-di-*O*-isopropylidene--D-galactopyranose **30** in CH₂Cl₂ or EtCN in 85% (/ = 1/12) or 89% yield (only), respectively. Analytical data for **31** was in accordance with that reported previously.²⁹

Methyl 2,3,6-tri-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)- -D-

The title compound was obtained by Method A from donor **3** and methyl 2,3,6-tri-*O*-benzyl- -D-glucopyranoside 32^{24} in CH₂Cl₂ or EtCN in 94% (/ = 1/4) or 92% yield (/ = 1/12), respectively. Analytical data for **33** was in accordance with that reported previously.²⁸

Methyl 2-*O*-(2,3,4,6-tetra-*O*-benzyl- -D-glucopyranosyl)-3,4,6-tri-*O*-benzyl- -D-glucopyranoside (35)

The title compound was obtained by Method A from donor **3** and methyl 3,4,6-tri-*O*-benzyl- -D-glucopyranoside 34^{24} in CH₂Cl₂ or EtCN in 90% (/ = 1/6.0) or 88% yield (/ = 1/15), respectively. Analytical data for **35** was in accordance with that reported previously.³⁰

(3)-Cholest-5-en-3-yl 2,3,4,6-tetra-O-benzyl- -D-glucopyranoside (37)

The title compound was obtained by Method A from donor **3** and (3)-cholest-5-en-3-ol **36** as a white amorphous solid in 86% yield (-only). Analytical data for **37** was in accordance with that reported previously.³¹

1-Adamantyl 2,3,4,6-tetra-O-benzyl-D-glucopyranoside (39)

The title compound was obtained by Method A from donor **3** and 1-adamantol **38** as a white amorphous solid in 88% yield (/ = 1/23). Analytical data for **39** was in accordance with that reported previously.³¹

Methyl 2-O-(3,4,6-tri-O-acetyl-2-O-benzyl- -D-glucopyranosyl)-3,4,6-tri-O-benzyl- -D-glucopyranoside (40)

The title compound was obtained by Method A from donor α -12 or donor -12 and acceptor 34^{24} as a clear film in 89% or 88% yield (α only), respectively. Analytical data for 40 was in accordance with that reported previously.³⁰

Methyl 6-O-(2,3,4,6-tetra-O-benzoyl- -D-glucopyranosyl)-2,3,4-tri-O-benzyl- -Dglucopyranoside (41)

The title compound was obtained by Method I from donor **14** and acceptor 4^{24} as a clear film in 80% yield. Analytical data for **41** were essentially the same as reported previously.³²

Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranosyl)-2,3,4-tri-*O*-benzyl- -D-glucopyranoside (42)

The title compound was obtained by Method A from donor **16** and acceptor 4^{24} as a clear film in 94% yield. Analytical data for **42** were essentially the same as reported previously.²⁴

6-*O*-(2,3,4,6-Tetra-*O*-benzoyl- -D-glucopyranosyl)-1,2:3,4-di-*O*-isopropylidene- -D-galactopyranose (43)

BzO-BzO EzO EzO O

The title compound was obtained by Method A from donor **16** and acceptor **30** in 86% yield. Analytical data for **43** were essentially similar as reported previously.³⁰

Methyl 4-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranosyl)-2,3,6-tri-*O*-benzyl- -D-glucopyranoside (44)

The title compound was obtained by Method A from donor 16 and acceptor 32^{24} as a clear film in 90% yield. Analytical data for 44 were essentially the same as reported previously.²⁴

Methyl 2-O-(2,3,4,6-tetra-O-benzoyl- -D-glucopyranosyl)-3,4,6-tri-O-benzyl- -D-glucopyranoside (45)

The title compound was obtained by Method A from donor 16 and acceptor 34^{24} as a clear film in 93% yield. Analytical data for 45 were essentially the same as reported previously.²⁴

Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-galactopyranosyl)-2,3,4-tri-*O*-benzyl- -D-glucopyranoside (46)

The title compound was obtained by Method A from donor **18** and acceptor 4^{24} as a clear film in 98% yield. Analytical data for **46** were essentially the same as reported previously.³³

Methyl 4-O-(2,3,4,6-tetra-O-benzoyl- -D-galactopyranosyl)-2,3,6-tri-O-benzyl- -D-glucopyranoside (47)

The title compound was obtained by Method A from donor **18** and acceptor 32^{24} as a clear film in 98% yield. Analytical data for **47** were essentially the same as reported previously.³⁰

Methyl 6-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-mannopyranosyl)-2,3,4-tri-*O*-benzyl- -D-glucopyranoside (48)

The title compound was obtained by Method A from donor 20 and acceptor 4^{24} as a clear film in 93% yield. Analytical data for 48 were essentially the same as reported previously.³⁰

Methyl 4-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-mannopyranosyl)-2,3,6-tri-*O*-benzyl- -Dglucopyranoside (49)

The title compound was obtained by Method A from donor 20 and acceptor 32^{24} as a clear film in 90% yield. Analytical data for 49 were essentially the same as reported previously.³⁴

A typical procedure for regenerative glycosylation

A mixture of ethyl 2,3,4,6-tetra-*O*-benzyl-1-thio- -D-glucopyranoside 6^{11} (30 mg, 0.051 mmol) and activated molecular sieves (3 Å, 90 mg) in CH₂Cl₂ (0.5 mL) was stirred under argon for 1 h at rt. The mixture was cooled to 0 °C, bromine (0.27 µL, 0.01 mmol) was added, and the resulting mixture was kept for 15 min at 0 °C. After that, 3,3-difluorooxindole (0.9 mg - 8.9 mg, 0.0051-0.051 mmol, see Table 2 of the manuscript), and Ag₂O (36 mg, 0.16 mmol) were added to the reaction mixture and the resulting mixture was stirred for 10 min - 1 h at 0 °C. Methyl 2,3,4-tri-*O*-benzyl- -D-glucopyranoside **4** (18.3 mg, 0.039 mmol) and BF₃-OEt₂ (0.33 µL, 0.0025 mmol) were added and the reaction was stirred for 10 min - 5 h (see Table 2 of the manuscript). The solids were filtered off through a pad of Celite and rinsed successively with CH₂Cl₂. The combined filtrate (~20 mL) was washed with 1% aq. NaOH (2 x 10 mL) and water (2 x 10 mL). The organic phase was separated, dried with MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (ethyl acetate-hexanes gradient elution) to afford disaccharide **5** in 9-90% yield (see Table 2 of the manuscript).

Methyl 3-*O*-(2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranosyl)-2,4,6-tri-*O*-benzyl- -D-glucopyranoside (51)

The title compound was obtained from donor **6** and acceptor 50^{24} as a white amorphous solid in 62% yield (/ = 1/1.0). The analytical data for **7** was essentially the same as reported previously.²⁴

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-D-galactopyranosyl)- -D-glucopyranoside (53)

The title compound was obtained from glycosyl donor **52** and acceptor 4^{24} as a white amorphous solid in 69% yield (/ = 1/1.1). Analytical data for **53** was in accordance with that reported previously.^{26,35}

Methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)- -Dglucopyranoside (55) Bro OBN Br

The title compound was obtained from donor **54** and acceptor **4** as a white amorphous solid in 75% yield (/ = 2.5/1). The title compound was reported previously.³⁶

NMR spectra

(2D NMR 500 MHz, CDCl₃)

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranoside (3)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 150 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzyl- -D-mannopyranoside (10)

(2D NMR 300 MHz, CDCl₃)

3,4,6-Tri-*O*-acetyl-2-*O*-benzyl-α-D-glucopyranosyl bromide (11)

(2D NMR 300 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzoyl- -D-glucopyranoside (16)

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzoyl- -D-galactopyranoside (18)

(2D NMR 300 MHz, CDCl₃)

3,3-Difluoro-3*H*-indol-2-yl 2,3,4,6-tetra-*O*-benzoyl- -D-mannopyranoside (20)

(2D NMR 300 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

2,3,4,6-Tetra-O-benzoyl- -D-glucopyranosyl N-phenyltrifluoroacetimidate (24)

(2D NMR 500 MHz, CDCl₃)

Isopropyl 2,3,4,6-tetra-O-benzyl- -D-glucopyranoside (27)

(2D NMR 300 MHz, CDCl₃)

Methyl 6-O-(2,3,4,6-tetra-O-benzyl-α/ -D-glucopyranosyl)-2,3,4-tri-O-benzoyl- -D-

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

6-O-(2,3,4,6-Tetra-O-benzyl- $\alpha/$ -D-glucopyranosyl)-1,2:3,4-di-O-isopropylidene- -D-galactopyranose (31)

S-63

S-64

(2D NMR 300 MHz, CDCl₃)

(3)-Cholest-5-en-3-yl 2,3,4,6-tetra-O-benzyl- -D-glucopyranoside (37)

(2D NMR 300 MHz, CDCl₃)

(¹³C NMR 75 MHz, CDCl₃)

(2D NMR 300 MHz, CDCl₃)

 $Methyl \qquad 2-O-(3,4,6-tri-O-acetyl-2-O-benzyl-\alpha-D-glucopyranosyl)-3,4,6-tri-O-benzyl- -D-glucopyranoside (40)$

<u>References</u>

- (1) Egusa, K.; Kusumoto, S.; Fukase, K. Eur. J. Org. Chem. 2003, 2003, 3435-3445.
- (2) Torres, J. C.; Garden, S. J.; Pinto, A. C. *Tetrahedron* **1999**, *55*, 1881-1892.
- (3) Dinkelaar, J.; Witte, M. D.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A. *Carbohydr. Res.* 2006, *341*, 1723-1729.
- (4) Kim, I. S.; Kim, S. J.; Lee, J. K.; Li, Q. R.; Jung, Y. H. *Carbohydr. Res.* **2007**, *342*, 1502-1509.
- (5) Lemieux, R. U. In *Methods in Carbohydrate Chemistry*; Whistler, R. L., Wolform, M. L., Eds.; Academic Press Inc.: New York and London, 1963; Vol. 2, p 221-222.
- (6) Lemieux, R. U. In *Methods in Carbohydrate Chemistry*; Whistler, R. L., Wolform, M. L., Eds.; Academic Press Inc.: New York and London, 1963; Vol. 2, p 226-228.
- (7) Kartha, K. P. R.; Jennings, H. J. J. Carbohydr. Chem. 1990, 9, 777-781.
- (8) Dowlut, M.; Hall, D. G.; Hindsgaul, O. J. Org. Chem. 2005, 70, 9809-9813.
- (9) Schmidt, R., R.; Stumpp, M. Liebigs Ann. Chem. 1983, 1249-1256.
- (10) Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405-2407.
- (11) Andersson, F.; Fugedi, P.; Garegg, P. J.; Nashed, M. Tetrahedron Lett. **1986**, 27, 3919-3922.
- (12) Excoffier, G.; Gagnaire, D. Y.; Vignon, M. R. Carbohydr. Res. 1976, 46, 215-226.
- (13) Brennan, S.; Finan, P. A. J. Chem. Soc., C 1970, 1742-1744.
- (14) Parameswar, A. R.; Hawkins, J. A.; Mydock, L. K.; Sands, M. S.; Demchenko, A. V. *Eur. J. Org. Chem.* **2010**, 3269-3274.
- (15) Pavliak, V.; Kovac, P. Carbohydr. Res. 1991, 210, 333-337.
- (16) Suárez, J. R.; Trastoy, B.; Pérez-Ojeda, M. E.; Marín-Barrios, R.; Chiara, J. L. Adv. Synth. Catal. 2010, 352, 2515-2520.
- (17) Paulsen, H.; Wulff, A.; Heitman, A. C. Liebigs Ann. Chem. 1988, 1073-1078.
- Rowan, A. S.; Nicely, N. I.; Cochrane, N.; Wlassoff, W. A.; Claiborne, A.; Hamilton, C. J. Organic & biomolecular chemistry 2009, 7, 4029-4036.
- (19) Nigudkar, S. S.; Parameswar, A. R.; Pornsuriyasak, P.; Stine, K. J.; Demchenko, A. V. *Org. Biomol. Chem.* **2013**, *11*, 4068-4076.
- (20) Weïwer, M.; Sherwood, T.; Linhardt, R. J. J. Carbohydr. Chem. 2008, 27, 420-427.
- (21) Wang, C.; Sanders, B.; Baker, D. C. Can. J. Chem. 2011, 89, 959-963.
- (22) Wakao, M.; Nakai, Y.; Fukase, K.; Kusumoto, S. Chem. Lett. 1999, 27-28.
- (23) Jansson, K.; Noori, G.; Magnusson, G. J. Org. Chem. 1990, 55, 3181-3185.
- (24) Ranade, S. C.; Kaeothip, S.; Demchenko, A. V. Org. Lett. 2010, 12, 5628-5631.
- (25) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269-4279.
- (26) Nguyen, H. M.; Chen, Y. N.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2001, 123, 8766-8772.
- (27) Zhang, F.; Zhang, W.; Zhang, Y.; Curran, D. P.; Liu, G. J. Org. Chem. 2009, 74, 2594-2597.
- (28) Boltje, T. J.; Kim, J.-H.; Park, J.; Boons, G.-J. Org. Lett. 2011, 13, 284-287.
- (29) Koshiba, M.; Suzuki, N.; Arihara, R.; Tsuda, T.; Nambu, H.; Nakamura, S.; Hashimoto, S. *Chem. Asian J.* **2008**, *3*, 1664-1677.
- (30) Pornsuriyasak, P.; Demchenko, A. V. Chem. Eur. J. 2006, 12, 6630-6646.
- (31) Mensah, E. A.; Azzarelli, J. M.; Nguyen, H. M. J. Org. Chem. 2009, 74, 1650-1657.
- (32) Huang, K. T.; Winssinger, N. Eur. J. Org. Chem. 2007, 1887-1890.

- (33) Tatai, J.; Fugedi, P. Org. Lett. 2007, 9, 4647-4650.
- (34) Kim, K. S.; Fulse, D. B.; Baek, J. Y.; Lee, B. Y.; Jeon, H. B. J. Am. Chem. Soc. 2008, 130, 8537-8547.
- (35) Vankar, Y. D.; Vankar, P. S.; Behrendt, M.; Schmidt, R. R. *Tetrahedron* **1991**, *47*, 9985-9992.
- (36) Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620-9621.