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ABSTRACT The extent ofvolume fluctuation is calculated for
two simple geometrical models of globular protein molecules sub-
jected to a potential that is proportional to the surface area freshly
generated by the thermal breathing motion. The proportionality
constant, y, has the unit of surface tension. The calculated values
are compared with estimates made from the compressibility mea-
surements. After an approximate correction for the hydration ef-
fect, the experimental values are found to be between those cal-
culated by using y values of 25 and 46 cal/mol/A2 (1 cal = 4.184
J). These values bracket previously reported independent esti-
mates of interfacial tension that presumably operates at the in-
terface between a nonpolar molecule and water. This result ap-
pears to indicate that the solvent water plays a significant role in
determining the extent of volume fluctuation of globular proteins
and that the concept, and the actual value of the estimate, of the
interfacial tension around a nonpolar molecule in water may, in
fact, be useful in some applications.

1. Introduction

lieved to be proportional to the protein-water interfacial area,
this is a study of the relevance or importance of this simple for-
mulation of the hydrophobic effect on the protein dynamics.

2. The model

Suppose we consider a protein molecule as a sphere that is iso-
tropically compressible up to a certain minimum size ro. To fo-
cus on the solvent effect, let us further assume that the force
responsible for the compression is given solely by an effective
potential energy that is proportional to the increase in the in-
terfacial area between the protein and the solvent. Specifically,
we assume that the average potential energy, w, as a function
of the radius r of the molecule is given by

w(r) = yAA when r > ro
= 00 when r < ro,

[1]

It is well recognized that the folded structure of a globular pro-
tein molecule is the result of and subject to many strong forces
that are delicately balanced (1). These forces fall into two broad
types. There are the intramolecular forces that include, among
others, those that are involved in the intramolecular hydrogen
bond formation, the electrostatic interactions, and the van der
Waals interactions. The other represents the effect of solvent.
Solvent can influence the structure and dynamics of a protein
molecule by specific interaction such as forming hydrogen
bonds and hydrating charged groups but also can nonspecifically
influence by acting as a kind of cage around the molecule.
The thermodynamic properties ofa protein molecule that are

most commonly used in studying these forces are the Gibbs free
energy, enthalpy, and entropy, which are all mean properties.
On the other hand, the heat capacity and compressibility are
the thermodynamic quantities that relate to the extent of dy-
namical fluctuation ofsome variable ofthe molecule. Aside from
their intrinsic importance, the dynamical properties quite in-
dependently contain information on the nature of forces that
govern the structure and dynamics of the molecule. This is not
the case with the mean properties, the use ofwhich must always
involve study of more than one state of the molecule-for ex-
ample, the native and denatured states.

In this article the compressibility and volume fluctuation of
the protein have been analyzed against a simplified model,
wherein the only force governing the dynamics of the molecule
is assumed given by a potential that is proportional to the surface
area of the molecule. Therefore, this is a study of the effect of
solvent, acting nonspecifically as a cage, on the dynamics ofthe
protein molecule. Because "hydrophobic force" often is be-

in which AA = 41Tr2 - 41Tro2 and 'y is the proportionality con-
stant and formally represents the interfacial tension between
the protein and the solvent. The probability that the molecule
will have the radius between r and r + dr then is assumed given
by

e-w(r)/kTdr
P(r)dr = fe-u(r)/kTdr' [2]

in which k and T are the Boltzmann constant and the absolute
temperature, respectively.
The potential given above is different from the usual har-

monic potential in that it is wedge-shaped near the minimum.
(his difference arises from the assumption that the "solvent
cage force" is unidirectional-i.e., it only compresses-coupled
with the assumption that there are no other forces except the
infinitely large intramolecular repulsion at ro. In contrast, all
forces that give rise to a harmonic potential must be bidirec-
tional like that on a spring, which works both to stretch and to
compress the spring, depending on its state.) For small fluc-
tuations, it can be shown that the rms fluctuations in the radius
and in the volume of the molecule from their respective means
are given by

kT 1
rms(8r) =- -

87rfy ro [3]

and
kT

rms(Sv) = -ro.[4

These results can be derived by using different mathematical

*To whom reprint requests should be addressed at the NIH address.

622

The publication costs ofthis article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertise-
ment" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

[4]



Proc. Natl. Acad. Sci. USA 80 (1983) 623

techniques. A particularly simple procedure is outlined in the
Appendix. t

Note that, actually, the whole surface area ofthe protein need
not be considered because the portion of the surface area that
remains constant in size and character will not contribute to the
potential. This point is important in view of the fact that the
surface ofa protein molecule is highly folded at atomic scale and
its total area is much larger than that of the smooth sphere of
equal volume. Eqs. 3 and 4 will still apply if it is assumed that
the patches of surface area freshly generated by the breathing
motion lie on the surface of a sphere.

Let us now consider a different model. This time, consider
the protein molecule to be made of two incompressible hemi-
spheres of radius ro, joined at a point or hinge (Fig. 1). The
breathing motion consists of opening and closing of these two
hemispheres. Let 6 be the half-opening angle (Fig. 1). We shall
assume that this opening angle remains small so that no solvent
penetrates into the opening. [In Go's (3) language, the motion
contemplated is one of the low-frequency vibrational modes of
small-amplitude fluctuation. ] The surface area and the volume
of the protein then increase, from a minimum, by the exposed
area and the volume, respectively, ofthe space between the two
hemispheres. This then would be an idealized model for a very
anisotropic breathing motion.

For the purpose ofcalculation, let us further assume that this
opening is bounded by the circular bases ofthe two hemispheres
and by the surface of straight lines that join each point on the
periphery of one circular base to the other. Then the volume
of the opening is given exactly by 2irro3sin~cos6 and the ex-
posed surface area is given approximately (for small 6) by
4vrr02sin6. The potential energy of this model then is given by

w(6) = 4iryro2sin6 when 6> 0

when 6< 0. [5]
Because the two hemispheres are assumed incompressible,

the volume fluctuation of this molecule is the same as that of
just the opening. For small fluctuations (small 6), this model
gives (see Appendix):

_ kT 1
rms(6)== -- [6]4iry ro2

and
kT

rms(v)=Av =- ro. [7]

Thus, the volume fluctuation for this very anisotropic breathing
motion is given by the same formula as that which describes the

t In passing, we note the results of a harmonic potential-i.e.,
uw(r) = 4rry(r -r

for all values of r, where? is the mean value of r and the subscript H
indicates the harmonic potential. In this case, a straightforward ap-
plication of the usual fluctuation theory (2) gives

/ T\1/2
rmfs(&)H =

and

rrs(8SV)H= ( rkT)?2

For reasonable values of 'y and r (see below), these give fluctuations
that are an order of magnitude larger than those given by the wedge-
shaped potential.

FIG. 1. Anisotropic breathing model.

fluctuation for the isotropic breathing motion (Eq. 4). Actually,
this result could have been expected because the new surface
area generated by this anisotropic breathing motion lies ap-
proximately on the surface ofa sphere. In fact, one ofthe mech-
anisms for the volume fluctuation considered with the isotropic
model could be this sort of fissure occurring in many different
directions.

For the value of ro in Eqs. 3, 4, 6, and 7, we shall use the
following approximation,

[8]

in which 32 is the experimental partial molar volume of the pro-
tein and No is Avogadro's number. Note thati2/NO is not exactly
the same as v, the configurational average volume of a protein
molecule, because ofthe effect ofsolvation (see section 3). Also,
ro should perhaps be somewhat smaller than the radius of the
sphere of volume v for two reasons. First, ro gives the minimal
size and not that of the thermal average. However, because the
time avera e extent of thermal fluctuation is typically only
about 0.04 A (see section 4), the difference between ro and?
will be well within the experimental error of the measurement
of?. Second, ro is the radius at which new surface appears,
which is likely to be at the bottom of the atomic scale folds of
the protein surface. However, this feature is probably minor
compared to the approximation of treating the molecule as a
sphere in the first place.

3. Treatment of the experimental data

Considering a protein molecule as a system by itself (4), the
extent ofvolume fluctuation can, in principle, be obtained from
the compressibility measurement through the relation (5):

rms(6v) = (kTU Tp)112, [9]

in which AT is the isothermal compressibility of the protein.
However, this quantity is not directly measurable. What can
be measured is the compressibility of the whole solution. Ex-
tracting the contribution made by the protein is complicated
because ofthe difficulty oftreating the effect ofhydration ofthe
protein. There is a further complication in that the compress-
ibility can be measured most conveniently by the sound velocity
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technique, which yields the adiabatic rather than the isothermal
compressibility. To convert the former to the latter, one needs
information on Cv and Cp, the constant volume and constant
pressure heat capacities, respectively, or Cp and a, the thermal
expansivity. These data are not always available.
The effect ofhydration may be handled in the following man-

ner. Suppose that, in a solution made of ni moles of water and
n2 moles of protein, some of the solvent has a molar volume or

the compressibility (or both) different from the remaining bulk
solvent on account of the presence of the protein. Call this dif-
ferently behaving solvent the water of hydration. The total vol-
ume of the solution then is given by

V = n, vo + n2 402
= n, V1 + n2 T2

H H B B P
= nl Vi + fli v1 + n2 V2,

[10A]

[lOB]

[l0C]

in which v° is the molar volume ofpure water, 42 is the apparent
molar volume of the protein, Zl and i32 are the partial molar
volumes of the water and protein, respectively, nH and nB are

the number of moles ofhydration and bulk water, respectively,
and VH and v0 are the molar volumes of hydration and bulk
water, respectively. Note that nH + n B = ni. If the solution is
dilute, 315 and v0 are both equal to vo and 42 = V2 The volume
v' is defined actually by Eq. lOC and represents the volume
ofwhat might be called the "naked" protein. Note that it is not
equal to i52 unless vlH = VB. We now adopt the interpretation
that vd'/No is the same as v, the configurational average volume

of a protein molecule, and that p3P = 2
( ). Differen-

tiating Eq. lOC with respect to pressure, we have

( = ni vl , 1 + ni vl , 1
kapi

+ n2v ,3 +(vl ) [P 1]

in which the differentiation is under either isothermal or adi-
abatic conditions. Thus, to obtain pP from the compressibility
of the solution, one needs information on the amount, molar
volume, the compressibility, and the rate of change in the
amount, as a function of pressure, of the water in the state of
hydration. None of these quantities is known with high relia-
bility. Probably some of these are not precisely definable.
Therefore, we shall limit ourselves to the use of the simple ap-

proximations ofEden et al. (6)-i.e., we assume that the molar
volume of the hydration water is the same as that of the bulk,
its compressibility is equal to that of ice, and its amount does
not change with pressure. The first of these approximations
makes v2 (and hence, No-v) equal to the partial molar volume
v2. It then can be shown that, for a dilute solution,

[12A]PT = PT + Ph

PT = liM 2
n2-p 0 42 aP T

Ph = h 1(Pl 1),
V2

[12B]

[12C]

in which h is the number ofgrams of hydration water per gram
of protein, vt = 1 ml/g is the specific volume of water, and v'
is the specific volume of the protein. Following Eden et al. (6),
we use the compressibility ofwater, 45 x 10-12 cm2/dyne, and

Table 1. Primary experimental data used

Ps,
V2s, cm2/dyne

Mr ml/g* x 10'2t
Ferrocytochrome c 12,800 0.733 -2.56
Ferricytochrome c 12,800 0.731 3.20
Ribonuclease A 13,700 0.704 1.12
Lysozyme 14,300 0.712 4.67
a-Lactalbumin 14,300 0.736 8.27
Myoglobin 17,000 0.742 8.98
13-Lactoglobulin 18,400 0.751 8.45
Trypsin 23,000 0.717 0.92
as-Casein 23,600 0.732 5.68
a-Chymotrypsinogen A 25,700 0.733 4.05
Ovomucoid 28,000 0.696 3.38
Pepsin 35,500 0.743 8.60
Ovalbumin 46,000 0.746 9.18
Bovine serum albumin 68,000 0.735 10.5
Hemoglobin 68,000 0.754 10.9
Conalbumin 75,500 0.728 4.89

All data are from Gekko and Noguchi (7), except those for the cy-
tochrome c, which are from Eden et al. (6).
* Specific volume.
t Apparent adiabatic compressibility.

that of ice, 18 x 10-12 cm2/dyne, for p, and pHr respectively.
For h, we use either the experimental value, when available,
or 0.4 g/g ofprotein, which is the average ofthe values reported
by Gekko and Noguchi (ref. 7; Table 2).

In addition, because PT often is not available, we shall gen-
erally use

PT = ps + 3.5 x 10-12 cm2/dyne, [131
in which Ps is the apparent adiabatic compressibility ofthe pro-
tein defined similarly as PT. The constant difference between
PT and Ps is the average difference between values given by
Gekko and Noguchi (ref. 7; Tables 1 and 2).
4. Results

The experimental data used are given in Tables 1 and 2. All of
the compressibility data came from the sound velocity "sing
around" technique of measurements made at 2 or 3 MHz. The
rms(6v) values calculated from these data and the y values cal-
culated, in turn, from these rms(8v) values are given in Table
3.
An unsatisfactory aspect of this study is the fact, pointed out

by Gekko and Noguchi (7), that the hydration effect plays such

Table 2. Additional experimental data used

AT,
cm2/dyne h, g/g
x 10WU* of proteint

Ribonuclease A 5.48 0.40t
Lysozyme 7.73 0.34
/3-Lactoglobulin 11.8 0.55
a-Chymotrypsinogen A 6.95 0.34
Ovalbumin 12.1 0.33
Bovine serum albumin 14.6 0.40

All data are from Gekko and Noguchi (7), except for the one value
noted.
* Apparent isothermal compressibility.
t Amount of hydration.
t This entry is not given by Gekko and Noguchi (7). The number given
is the average of the other five numbers in this column.
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Table 3. Volume fluctuations and empirical interfacial tensions

Radius, rms(8u), A,
A* A3t cal/mol/A2t

Ferrocytochrome c 15.5 100 46
Ferricytochrome c 15.5 117 39
Ribonuclease A 15.6 115, 117 40, 40
Lysozyme 15.9 127, 120 37, 39
a-Lactalbumin 16.1 138 35
Myoglobin 17.1 153 33
A-Lactoglobulin 17.6 158,173 33, 30
Trypsin 18.7 148 37
as-Casein 19.0 168 33
a-Chymotrypsinogen A 19.5 169,158 34, 37
Ovomucoid 19.8 173 34
Pepsin 21.9 219 30
Ovalbumin 23.9 252, 237 28, 30
Bovine serum albumin 27.1 313, 316 26, 25
Hemoglobin 27.3 317 25
Conalbumin 27.9 295 28

* Computed from the partial specific volume and Mr according to Eq.
8.

t Obtained by using the Ps values and assuming that h = 0.4 g/g of
protein. When two numbers are given, the second number was ob-
tained by using the AT and hydration values given in Table 2.

t Obtained by using the rms(Sv) values and Eq. 4 at 250C.

a major role in determining the observed compressibility. The
estimate of this effect can be made readily by means ofEq. 12C.
By using h = 0.4 and v S = 0.73 ml/g, the value of 8h is 15
x 10-12 cm2/dyne. This is larger than 8,3 or f3T of any protein
used in the data set. The ranges of values obtained by Gekko
and Noguchi [the 1/v°o (aAVs01/aP)s term in their notation],
using much more detailed information on the-hydration, also
are generally centered about this value. Unfortunately, despite
the large amount of effort made on the subject (8), much is still
unknown about protein hydration. Because this has such a large
effect on the measured compressibility, the extent of volume
fluctuation calculated from the compressibility data necessarily
carries a large degree of uncertainty. The magnitude of this
uncertainty also is not known. For lack of other measures, we
might use the ranges of values of ah estimated by Gekko and
Noguchi as an estimate of this uncertainty. They are about 8
X 10-12 cm2/dyne on the average. Assuming that errors in the
estimate ofPT can be ignored, this translates roughly into about
+ 15-20% error in the estimate of ,8' and about ± 10% error in
the estimate of rms(8v). Therefore, the values of y given in
Table 3 must carry an error of at least this magnitude.

If one uses the value of 31 cal/mol/A2 (1 cat = 4.184 J) for
y and 20 A for the radius of a typical protein, we obtain the fol-
lowing representative values for the quantities that measure the
extent of fluctuation. The rms(8r) is calculated from Eq. 3 to
be 0.04 A at 250C. The value of the half-opening angle Gin the
anisotropic model is calculated by Eq. 6 to be 0.20. The sepa-
ration between the two hemispheres at the end.opposite to the
hinge point is 0.3 A at this opening angle. It should be realized
that these estimates of the extent of fluctuation are time aver-
ages. They do not measure the extent of occasional short-time
fluctuations, which can be very large in magnitude and. which
must surely occur, as evidenced by the hydrogen exchange,
chemical modification, and other experimental data.

5. Discussion

The compressibility may be calculated for an isolated protein
molecule by using a uniform elastic solid model (9) if proper
elasticity parameters are used (10). For example, by using the

values used by G6 (3, 9), one obtains a value ofUp = 30 X 10-12
cm2/drne, which compares favorably with the values of 16-32
X 10-2 cm2/dyne obtained from the experimental measure-
ments and Eq. 12. The success of this model depends on the
proper choice of the elasticity parameters assumed for the pro-
tein and on the validity of the harmonic approximation. Results
of recent molecular dynamics-calculations on an a-helix (11) in-
dicate that, harmonic approximation significantly underesti-
mates the extent of fluctuation. The approach taken in this ar-
ticle is the opposite in the sense that it, at least formally,
considers only the solvent.
The idea of solvent cage force and of the interfacial tension

that presumably exists at the interface of a nonpolar solute and
water is not new (12). However, whether the change in the
Gibbs free energy associated with hydrophobic effect can be
usefully approximated so simply in terms of an interfacial ten-
sion is a matter of controversy (see ref. 13 and the discussions
following it). Apparently there is little theoretical basis for ex-
pecting such a simple formulation (14).

Yet, I am aware of three different but related experimental
systems that yielded the magnitude of hydrophobicity in terms
ofwhat is at least formally an interfacial tension between a non-
polar solute and water.

Nozaki and Tanford (15) measured solubilities ofamino acids
in ethanol,, dioxane, and water and reported a table of values
for the change in the standard Gibbs free energy upon trans-
ferring nonpolar amino acid side chains from ethanol or dioxane
to water. Chothia (16) noted. that these -values varied in pro-
portion to their surface area, as calculated by Lee and Richards
(17). The proportionality constant, which has the dimensions
of a surface tension, was found to be about 25 cal/mol/A2.

Similarly, the solubility ofa liquid hydrocarbon in water gives
the value of the change in the standard Gibbs free energy upon
transferring the hydrocarbon from its pure liquid environment
to water. Hermann.(18, 19) noted that these values were a linear
function of their surface area. with a slope of 33 cal/mol/A2
Reynolds et al. (20) obtained a value of29 cal/mol/A2 from sim-
ilar data.

Lastly, a most interesting observation was made by Parsegian.
(21, 22).in connection with a study of the membrane deforma-
bility. The liquid-crystal lattice structure formed by fatty acid
bilayers at high concentration is determined primarily by the
electrostatic force between and among the charged head groups
ofthe fatty acid and the counter ions present and by the effective
repulsion.between the hydrophobic fatty acid tail and water.
Simply stated, the net electrostatic force tends to spread the
charged head groups apart from one another, expose the hy-
drophobic tail to water, and make the bilayer thinner. The hy-
drophobic force tends to decrease the exposure of the tail, pull
the charged polar goups together, and make the bilayer thicker.
Therefore, when the electrostatic forces are properly accounted
for, the equilibrium structure of such a system yields infor-
mation on the magnitude of the repulsive force between water
and the hydrocarbon -tail. Parsegian assumed this force to be
given in the form of an interfacial tension and found the value
of y to vary within a narrow range of 18.5~-19.5 dyne/cm, or
27-28 cal/mol/A2, for a large number of different fatty acids.
The same result was obtained more recently by Jonsson and
Wennerstrom (23).

It is rather remarkable that the values of yfound in this study
(Table.3) are quite similar to the values quoted above. Recall
that the model neglects all intramolecular forces and includes
only the protein-solvent interaction term. Furthermore, this
term is assumed given in the form of surface tension. Therefore,
there is the possibility that the similarity in the y values ob-
tained is produced by a cancellation of errors-one due to the
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neglect of all intramolecular forces and the other due to ap-
proximation of the effect of solvent by a surface tension force.
However, it seems unlikely that such cancellation of errors
would occur by pure accident. Rather, it seems possible that
a proper treatment of all of the forces involved could be re-
duced, to a certain useful degree of approximation, to an effec-
tive surface tension formulation. Clearly, this formulation is
completely inadequate for certain applications-e.g., in ex-
plaining the observed difference in the compressibility of the
oxidized and reduced cytochrome c. However, the concept ap-
pears to be useful in providing a general order of magnitude of
the extent of volume fluctuation.

APPENDIX

1. Wedge potential

Suppose the potential energy of a system is given by
W(x) = a'x whenx > 0 [Al]

= 00 whenx<0,
in which x is some dynamical variable and a' is a constant. The
partition function of the system then is given by

Q= e-axdx, [A2]

in which a = a'/kT. Consider another dynamical variable y,
which is linearly related to x-i.e.,

y = bx. [A3]
It then is simple to obtain the following configurational aver-
ages:

= b/a [A4]

y2 = 2(b/a)2 [A5]

rms(ay) = ((Sy)2)1/2 = (y2 _- p2)1/2 = b/a. [A6]

2. Isotropic model

In the limit of small fluctuations, AA 81Tro2x, in which x
= (r - ro)/ro. Therefore, the potential given by Eq. 1 in the
text is in the form of Eq. Al and the partition function is given
by Eq. 'A2 with a = 8irro2y/kT.

Writing r = ro + Ar, it is simple to show that the rms of r
about its mean is the same-as that-:ofAr about its mean. Because
Ar = rox, it is in the form of Eq. A3 with b = ro. Application
of Eq. A6 then immediately yields Eq. 3. Similarly, we can

write v = vO + Av and Av = (4ir/3)ro3 [(1 + X)3 - 1] 4iTr03x.
The last expression, obtained after dropping higher order
terms, is again in the form ofEq. A3 with b = 47rro3. Eq. 4 then
follows from Eq. A6.

3. Anisotropic model

The potential energy given by Eq. 5 in the text is in the form
of Eq. Al if we write sinG 6 for small 6. In this case, a =

4irro2y/kT. For 6, b = 1. The volume of the opening given in
the text is in the form of Eq. A3 because 2sin~cosO = sin26

26 for small 6. In this case, b = 2,rro3. Application of Eq.
A6 then yields Eqs. 6 and 7 of the text.
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