
Analogy and cognitive architecture 1

Text S2

In this section, we define a (pointed) set of concept trees and a partial (approximation) ordering over

them, and together they constitute a poset and hence a category. Moreover, a product in this category

is a greatest lower bound on the approximation of two concept trees. This categorical approach provides

the formal basis for deriving Gentner’s systematicity from universal constructions.

Definition (n-ary relational concept). An n-ary relational concept is a concept that takes n concepts

as related arguments. Constants or features are regarded as 0-ary (nullary) relational concepts. Predicates

are regarded as 1-ary (unary) relational concepts. Binary relations are regarded as 2-ary, ternary relations

as 3-ary, quaternary as 4-ary relational concepts, etc.

Example (n-ary relational concepts). Nouns and values, e.g., ball, red, are typically 0-ary relational

concepts, as they do not take any concepts as relational arguments. Categories of features, e.g., colour,

are usually 1-ary relational concepts, as they take a single argument as the related concept, e.g., colour

red. Loves is a binary relational concept, e.g., John loves Mary. Gives is a ternary relational concept,

e.g., John gives Mary a book.

Definition (N -ary relational concept trees). Let An be a set of n-ary relational concepts, for

0 ≤ n ≤ N . A relational concept tree is a pair consisting of a single n-ary relational concept (a ∈ An) leaf

and a sequence of n relational concept branch trees, denoted (t1, . . . , tn), or in shorter index form, (ti)
n
i=1.

A relational concept tree is denoted 〈a, (t1, . . . , tn)〉, or 〈a, (ti)ni=1〉. When n = 0 (a constant concept tree),

the sequence of branch trees is empty, denoted (), and in a slight abuse of notation, a constant concept

tree 〈a, ()〉 is simply denoted 〈a〉. An N-ary relational concept tree is a relational concept tree with

maximum relational concept arity N over all subtrees.

Example (N -ary relational concept trees). An example of a 0-ary (constant) relational concept

tree is 〈John〉. An example of a 1-ary relational concept tree is 〈colour, (〈red〉)〉. An example of a 2-ary

relational concept tree is 〈loves, (〈John〉, 〈Mary〉)〉.

Definition (Relational concept order). The relational concept order of a concept in a concept tree

is either: zero for 0-ary relational concepts; or one plus the maximum order of the concepts in its branch

trees for i -ary concepts, 1 ≤ i. Concepts of order one are called first-order, and concepts of order greater

than one are called higher-order relational concepts.

Example (Relational concept order). Loves is a first-order concept in 〈loves, (〈John〉, 〈Mary〉)〉.

Knows is a higher(second)-order concept in the tree 〈knows, (〈Sue〉, 〈loves, (〈John〉, 〈Mary〉)〉)〉.



Analogy and cognitive architecture 2

Definition (Pointed tree). A pointed tree is an N -ary relational concept tree constructed from a set of

relational concept trees that includes a designated point element ⊥. The point is the “unknown” concept

tree.

Example (Pointed tree). An example is 〈loves, (〈John〉,⊥)〉, which indicates that what is loved by

John is not known.

Definition (Approximation ordering). The approximation ordering v is a binary relation on a set

of N -ary relational (approximation) concept trees, T⊥, that is defined for 0 ≤ n ≤ N by:

⊥ v t and

〈a, (ti)ni=1〉 v 〈b, (ri)ni=1〉 ⇔ (a = b) ∧

(
n∧

i=1

ti v ri

)

Example (Tree orderings). The following are examples of approximation orderings on pointed trees:

⊥v⊥; ⊥v 〈John〉; and 〈loves, (〈John〉,⊥)〉 v 〈loves, (〈John〉, 〈Mary〉)〉. Examples of pairs of trees that

are not ordered are: 〈John〉 and 〈Mary〉; and 〈loves, (〈John〉,⊥)〉 and 〈loves, (⊥, 〈Mary〉)〉.

Remark (Least). ⊥ is the least element of T⊥, i.e. ⊥v t for all t ∈ T⊥.

Proposition (Approximation partial order). The approximation ordering v is a partial order.

Proof. We are required to prove that v is: reflexive, t v t; transitive, s v t ∧ t v r ⇒ s v r; and

antisymmetric, t v r ∧ r v t ⇒ t = r for all s, t, r ∈ T⊥. The proof is by structural induction. Structural

induction proceeds analogously to mathematical induction. First, we prove that the target proposition

holds for the base case. Next, we prove that if the target proposition holds for trees (ti)
n
i=1, then it holds

for 〈a, (ti)ni=1〉.

Reflexive:

Base (t =⊥): Immediate, since ⊥v⊥ (from the definition).

Hypothesis ((ti)
n
i=1): For each i, we assume ti v ti.

Induction (〈a, (ti)ni=1〉): Immediate (from the definition), since a = a and ti v ti (by hypothesis) implies

〈a, (ti)ni=1〉 v 〈a, (ti)ni=1〉.

Transitive:



Analogy and cognitive architecture 3

Base (s, t, r =⊥):

s v t ∧ t v r (definition)

⇒⊥v⊥ (substitution)

⇒ s v r

Hypothesis ((si)
n
i=1, (ti)

n
i=1, (ri)

n
i=1): For each i, we assume the following holds: si v ti∧ti v ri ⇒ si v ri.

Induction (〈a, (si)ni=1〉, 〈b, (ti)ni=1〉, 〈c, (ri)ni=1〉):

〈a, (si)ni=1〉 v 〈b, (ti)ni=1〉 ∧ 〈a, (si)ni=1〉 v 〈c, (ri)ni=1〉 (definition)

⇒ (a = b) ∧ (si v ti)
n
i=1 ∧ (b = c) ∧ (ti v ri)

n
i=1 (=, hypothesis)

⇒ (a = c) ∧ (si v ri)
n
i=1 (definition)

⇒ 〈a, (si)ni=1〉 v 〈c, (ri)ni=1〉

Antisymmetric:

Base (t, r =⊥): Immediate.

Hypothesis ((ti)
n
i=1, (ri)

n
i=1): For each i, we assume the following proposition holds: ti v ri ∧ ri v ti ⇒

ti = ri.

Induction (〈a, (ti)ni=1〉, 〈b, (ri)ni=1〉):

〈a, (ti)ni=1〉 v 〈b, (ri)〉 ∧ 〈b, (ri)〉 v 〈a, (ti)ni=1〉 (definition)

⇒ (a = b) ∧ (ti v ri)
n
i=1 ∧ (ri v ti)

n
i=1 (hypothesis)

⇒ (a = b) ∧ (ti = ri)
n
i=1 (equality)

⇒ 〈a, (ti)ni=1〉 = 〈b, (ri)ni=1〉

Proposition (Tree category). A pointed set of N -ary relational concept trees (T⊥) together with an

approximation ordering (v) is a category.

Proof. Immediate from the fact that (T⊥,v) is a poset.

Definition (gca). The function (binary operator) gca : T⊥ × T⊥ → T⊥, which produces the greatest



Analogy and cognitive architecture 4

common approximation of N -ary relational concept trees, is defined for all t, r ∈ T⊥ and 0 ≤ m,n ≤ N

by:

gca(t,⊥) =⊥

gca(⊥, r) =⊥

gca(〈a, (ti)mi=1〉, 〈b, (rj)nj=1〉) =⊥ a 6= b

gca(〈a, (ti)ni=1〉, 〈a, (ri)ni=1〉) = 〈a, (gca(ti, ri))ni=1〉

Example (gca). The gca of 〈loves, (〈John〉,⊥)〉 and 〈loves, (⊥, 〈Mary〉)〉 is 〈loves, (⊥,⊥)〉.

Theorem (gca). The greatest common approximation of trees t, r ∈ T⊥ is the greatest lower bound of

t and r.

Proof. By structural induction: we need to show that for all z, t, r ∈ T⊥ when z v t ∧ z v r we have

z v gca(t, r). In short, we need to prove the following target proposition: z v t ∧ z v r ⇒ z v gca(t, r).

Base (t =⊥): The only case of z for which z v⊥ ∧ z v r is z =⊥, since ⊥ is the least element of T⊥.

Hence, we have:

z v⊥ ∧ z v r ⇒ z v gca(t, r) (substitution)

⇒⊥v gca(t, r) (least element)

⇒ True (reduction)

True

Hypothesis ((ti)
n
i=1): For each i, we assume the following proposition holds: zi v ti ∧ zi v ri ⇒ zi v

gca(ti, ri).

Induction (〈a, (ti)ni=1〉): By definition (approximation), there are two cases of z for which z v 〈a, (ti)ni=1〉:

(1) z =⊥ and (2) z = 〈a, (zi)ni=1〉, where zi v ti.

Case 1: This case has already been proven in the base case, t =⊥.

Case 2: Given that z = 〈a, (zi)ni=1〉, the target proposition only requires us to consider the trees r where



Analogy and cognitive architecture 5

〈a, (zi)ni=1〉 v r. By definition (approximation), we only need to consider the trees r = 〈a, (ri)ni=1〉, where

zi v ri. Hence, given z = 〈a, (zi)ni=1〉, r = 〈a, (ri)ni=1〉 and zi v ri, we are required to prove:

z v 〈a, (ti)ni=1〉 ∧ z v r〉 ⇒ z v gca(〈a, (ti)ni=1〉, r〉)

(substitution)

⇒ 〈a, (zi)ni=1〉 v gca(〈a, (ti)ni=1〉, 〈a, (ri)ni=1〉)

(definition of gca)

⇒ 〈a, (zi)ni=1〉 v 〈a, (gca(ti, ri))ni=1〉

(definition of approximation)

⇒
n∧

i=1

zi v gca(ti, ri)

(hypothesis)

⇒ True

(reduction)

True

Theorem (Tree product, gca). In the (pointed poset as a) category (T⊥,v), a product of trees

t, r ∈ T⊥ is the greatest common approximation tree of t and r together with the two approximation

arrows, vt: t× r → t and vr: t× r → r, together denoted (t× r,vt,vr).

Proof. Immediate from the fact that the greatest common approximation tree is the greatest lower bound,

a greatest lower bound is a product in a pointed poset as a category, and (T⊥,v), as a pointed poset, is

a category.

Remark (All products). The category (T⊥,v) is said to have all binary products, since gca (hence,

product) is defined for all pairs of trees in T⊥.


