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1 Web Appendix

A.1: Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm for adaptive knot
selection in the exposure trajectory and disease risk models

Recall the exposure trajectory model is given by

Yij = β0 + β1(tij + adi ) +
K∑
k=1

βk+1(tij + adi − τk)+ + bi(tij + adi ) + eij

= Φ(tij + adi )
′β + bi(tij + adi ) + eij, (1)

where eij ∼ N(0, σ2
e) and bi ∼ N(0, σ2

b ). Further, the disease risk model is given by

P (Di = 1|Xi(t+ adi ),−c1 ≤ t ≤ −c2) = L

(
α + δadi +

∫ −c2
−c1

Xi(t+ adi )γ(t)dt

)
= L

(
Ad
′

i θ + β′Miφ+ biQiφ
)
, (2)

where θ = (α, δ)′, Adi = (1, adi )
′, Mi =

∫ −c2
−c1

Φ(t + adi )Ψ(t)′dt, Qi =

∫ −c2
−c1

(t + adi )Ψ(t)′dt,

and γ(t) = Ψ(t)′φ. Let Y = (Yi1, Yi2, . . . , YN,nN )′, D = (D1, D2, . . . , DN)′, and Ad =

(Ad1, A
d
2, . . . , A

d
N)′. Also let Dobs = (Y ,D,Ad) denote the observed data.

Likelihood Approximation

Following Albert and Chib (1993), we introduce latent variables W1,W2, ...,WN such that Di = 1

if Wi > 0 and Di = 0 otherwise. Let Wi be independently distributed from a t distribution with
location Hi = Ad

′
i θ+β′Miφ+ biQiφ, scale parameter 1 and degrees of freedom ν. Equivalently,

with the introduction of the additional random variable λi, the distribution of Wi can be expressed
as scale mixtures of normal distributions, i.e.,

Wi|λi ∼ N(Hi, λ
−1
i ), λi ∼ Gamma(ν/2, 2/ν)

where the Gamma pdf is proportional to λν/2−1i exp(−νλi/2). Using this approximation, we can
replace the logit link by the mixture of normals given above.
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Case I : Sampling from the posterior conditional on the number and location of knots

Using the exposure trajectory model in (1), the disease risk model in (2) and using the above data
augmentation algorithm, the likelihood function conditional on the known number and location of
knots (k1, τ , k2, ξ) is given by

L(W ,λ, b,θ,β,φ, σ2
e , σ

2
b |Dobs)

=
N∏
i=1

ni∏
j=1

p(Yij|Sij, σ2
e)×

N∏
i=1

∆i p(Wi|Hi, 1/λi) G(λi|ν/2, 2/ν) p(bi|0, σ2
b ), (3)

where ∆i = [I(Wi > 0)I(Di = 1) + I(Wi ≤ 0)I(Di = 0)], Sij = Φ(tij + adi )
′β + bi(tij + adi ),

and Hi = Ad
′
i θ + β′Miφ + biQiφ. We note that p(U |a, b) denotes a normal density with mean

a and variance b and G(V |a, b) denotes a gamma density with shape a and rate b. Let W =

(W1,W2, . . . ,WN)′, λ = (λ1, λ2, . . . , λN)′, and b = (b1, b2, . . . , bN)′.
We assume that the joint prior for (θ,β,φ, σ2

e , σ
2
b , σ

2
β, σ

2
φ) is of the form π(θ,β,φ, σ2

e , σ
2
b , σ

2
β, σ

2
φ)

= π(θ)π(β|σ2
β)π(σ2

β)π(φ|σ2
φ)π(σ2

φ)π(σ2
e)π(σ2

b ). In particular,

θ ∼ N(0, σ2
θI), β ∼ N(0, σ2

βI), φ ∼ N(0, σ2
φI)

π(σ2
e) ∝ (σ2

e)
−(a0+1)e−b0/σ

2
e , π(σ2

b ) ∝ (σ2
b )
−(a1+1)e−b1/σ

2
b ,

π(σ2
β) ∝ (σ2

β)−(a2+1)e−b2/σ
2
β , and π(σ2

φ) ∝ (σ2
φ)−(a3+1)e−b3/σ

2
φ , (4)

where σ2
θ , a0, b0, a1, b1, a2, b2, a3, and b3 are the prespecified hyperparameters. In Section 6, we

use σ2
θ = 100 for π(θ), a0 = 0.1 and b0 = 0.1 for π(σ2

e), a1 = 0.1 and b1 = 0.1 for π(σ2
b ), a2 = 3

and b2 = 3 for π(σ2
β), and a2 = 3 and b2 = 3 for π(σ2

φ). Further, we also consider other values for
(a2, b2) and (a3, b3) such as (0.1, 0.1), (1, 1), (2, 2), and (4, 4). Note that inferences are not very
sensitive to the choice of hyperparameters.

Based on the joint prior distributions in (4), the joint posterior distribution of W , λ, b, θ, β,
φ, σ2

e , σ2
b , σ2

β , and σ2
φ based on the observed data Dobs is given by

π(W ,λ, b,θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ|Dobs) ∝ L(W ,λ, b,θ,β,φ, σ2

e , σ
2
b |Dobs)

× π(θ)π(β|σ2
β)π(σ2

β)π(φ|σ2
φ)π(σ2

φ)π(σ2
e)π(σ2

b ), (5)

whereL(W ,λ, b,θ,β,φ, σ2
e , σ

2
b |Dobs) is given in (3). Next, we develop an efficient Markov Chain

Monte Carlo algorithm for fixed (k1, τ , k2, ξ).
To sample from the joint posterior π(W ,λ, b,θ,β,φ, σ2

e , σ
2
b , σ

2
β, σ

2
φ|Dobs) given in (5), we re-

quire sampling from the conditional posterior distributions as follows: (i) π(W |λ, b,θ,β,φ, σ2
e , σ

2
b ,

σ2
β, σ

2
φ, Dobs); (ii) π(λ|θ, b,β,φ, σ2

e , σ
2
b , σ

2
β, σ

2
φ, Dobs); (iii) π(b, σ2

b |W ,λ,θ,β,φ, σ2
e , σ

2
β, σ

2
φ, Dobs);

(iv) π(σ2
e |W ,λ, b,θ,β,φ, σ2

b , σ
2
β, σ

2
φ, Dobs); (v) π(θ|W ,λ, b,β,φ, σ2

e , σ
2
b , σ

2
β, σ

2
φ, Dobs); (vi) π(β,
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σ2
β|W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs); and (vii) π(φ, σ2

φ|W ,λ, b,θ,β, σ2
e , σ

2
b , σ

2
β, Dobs). We briefly

discuss how to sample from each of the conditional posterior distributions in (5). For (i),

Wi|λ, b,θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, Dobs ∼ N

(
Ad
′

i θ + β′Miφ+ biQiφ,
1

λi

)
∆i.

Thus, samplingWi from the conditional distributionsWi|λ, b,θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, Dobs is straight-

forward. For (ii),

λi|θ, b,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, Dobs ∼ Gamma

(
ν + 1

2
,
ν + (Wi − Ad

′
i θ − β′Miφ− b′iQiφ)

2

)
.

For (iii), we apply the collapsed Gibbs technique of Liu (1994) via the following identity:

π(b, σ2
b |W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs) = π(b|σ2

b ,W ,λ,θ,β,φ, σ2
e , σ

2
β, σ

2
φ, Dobs)

× π(σ2
b |W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs).

That is, we sample σ2
b after collapsing out b. Given σ2

b ,W ,λ,θ,β,φ, σ2
e , σ

2
β, σ

2
φ, and Dobs, bi’s

are conditionally independent and

bi|σ2
b ,W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs ∼ N(A−1b Bb, A

−1
b ),

where

Ab =
1

σ2
e

∑
j

(tij + adi )
2 +

1

σ2
b

+ λiφQ
′
iQiφ and

Bb =
1

σ2
e

∑
j

(yij −Φ(tij + adi )
′β)(tij + adi ) + λi(Wi − Ad

′

i θ − β′Miφ)Qiφ.

Thus, sampling bi from the conditional distributions π(bi|σ2
b ,W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs) is

straightforward. Further, the conditional posterior density for π(σ2
b |W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs)

has the form

π(σ2
b |W ,λ,θ,β,φ, σ2

e , σ
2
β, σ

2
φ, Dobs)

∝ (σ2
b )
− (N/2 + a1 + 1)exp

(
− b1
σ2
b

)
×
∏
i

A
−1/2
i exp

(
B2
b

2Ab

)
.

We use the Metropolis-Hastings algorithm to sample σ2
b from conditional distribution π(σ2

b |W ,λ,

θ,β,φ, σ2
e , σ

2
β, σ

2
φ, Dobs). For (iv),

σ2
e ∼ IG

(
a0 +

∑
i

∑
j

1

2
+ 1, b0 +

1

2

∑
i

∑
j

(
yij −Φ(tij + adi )

′β − bi(tij + adi )
)2)

,
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where IG denote an inverse-gamma distribution. For (vi), we also apply the collapsed Gibbs tech-
nique of Liu (1994) via the following identity:

π(β, σ2
β|W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs) = π(β|σ2

β,W ,λ, b,θ,φ, σ2
e , σ

2
b , σ

2
φ, Dobs)

× π(σ2
β|W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs).

That is, we sample σ2
β after collapsing out β. Given σ2

β,W ,λ, b,θ,φ, σ2
e , σ

2
b , σ

2
φ, and Dobs, the

conditional distribution of β is the normal distribution as

β|σ2
β,W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs ∼ N(A−1E BE, A

−1
E ),

where

AE =
1

σ2
e

N∑
i

ni∑
j

Φ(tij + adi )Φ(tij + adi )
′ +

N∑
i

λiMiφφ
′M ′

i +
1

σ2
β

I,

BE =
1

σ2
e

N∑
i

ni∑
j

Φ(tij + adi )(yij − bi(tij + adi )) +
N∑
i

λiMiφ(Wi − A′diθ − biQiφ).

Further, the conditional posterior density for π(σ2
β|W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs) has the form

π(σ2
β|W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs)

∝
(
σ2
β

)−(a2+ p
2
+1)

exp

(
− b2
σ2
β

)
× |AE|−1/2 exp

[
1

2
B′EAEBE

]
.

Again, we use the Metropolis-Hastings algorithm to sample σ2
β from conditional distribution π(σ2

β|
W ,λ, b,θ,φ, σ2

e , σ
2
b , σ

2
φ, Dobs). For (vii), we also apply the collapsed Gibbs technique of Liu

(1994) via the following identity:

π(φ, σ2
φ|W ,λ, b,θ,β, σ2

e , σ
2
b , σ

2
β, Dobs) = π(φ|σ2

φ,W ,λ, b,θ,β, σ2
e , σ

2
b , σ

2
β, Dobs)

× π(σ2
φ|W ,λ, b,θ,β, σ2

e , σ
2
b , σ

2
β, Dobs).

That is, we sample σ2
φ after collapsing out φ. Given σ2

φ,W ,λ, b,θ,β, σ2
e , σ

2
b , σ

2
β, and Dobs, the

conditional distribution of φ is the normal distribution as

φ|σ2
φ,W ,λ, b,θ,β, σ2

e , σ
2
b , σ

2
β, Dobs ∼ N(A−1D BD, A

−1
D ),

where

AD =
N∑
i

λi(β
′Mi + biQi)

′(β′Mi + biQi) +
1

σ2
φ

I, and

BD =
N∑
i

λi(β
′Mi + biQi)

′(Wi − A′diθ).
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Finally, the conditional posterior density for π(σ2
φ|W ,λ, b,θ,β, σ2

e , σ
2
b , σ

2
β, Dobs) has the form

π(σ2
φ|W ,λ, b,θ,β, σ2

e , σ
2
b , σ

2
β, Dobs)

∝
(
σ2
φ

)−(a3+ q
2
+1)

exp

(
− b3
σ2
φ

)
× |AD|−1/2 exp

[
1

2
B′DADBD

]
.

which we sample using the Metropolis-Hastings algorithm.

Case II: Sampling from the posterior when the number and locations of knots are unknown.

Recall that k1 and k2 are the number of knots for the exposure and disease risk models, respectively,
where 0 ≤ k1 ≤ K1, 0 ≤ k2 ≤ K2 with K1 and K2 prespecified constants. Let τ = (τ1, ..., τk1)

′

and ξ = (ξ1, ..., ξk2)
′ denote the corresponding knot locations such that

aE < τ1 < ... < τk1 < bE and aD < ξ1 < ... < ξk2 < bD.

We assume that the joint prior for (θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, k1, τ , k2, ξ) is of the form

π(θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, k1, τ , k2, ξ)

= π(θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ|k1, τ , k2, ξ)π(k1)π(τ |k1)π(k2)π(ξ|k2), (6)

where π(θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ|k1, τ , k2, ξ) is given in (4). For our analysis, given k1 and k2, we

assume a uniform prior distribution for τ and ξ, respectively as

π(τ |k1) =
k1!

(bE − aE)k1
I(aE < τ1 < ... < τk1 < bE) and

π(ξ|k2) =
k2!

(bD − aD)k2
I(aD < ξ1 < ... < ξk2 < bD).

We assume the Poisson prior distribution with mean µ1 and mean µ2 for k1 and k2, respectively.
For the analysis in Section 6, we used µ1 = 1 and K1 = 5 for k1, and µ2 = 1 and K2 = 5 for k2;
inferences were not very sensitive to these choices. Based on the joint prior distributions in (6),
the joint posterior distribution of W , λ, b, θ, β, φ, σ2

e , σ2
b , σ2

β , σ2
φ, k1, τ , k2, and ξ based on the

observed data Dobs is thus given by

π(W ,λ, b,θ,β,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, k1, τ , k2, ξ|Dobs)

∝ L(W ,λ, b,θ,β,φ, σ2
e , σ

2
b , k1, τ , k2, ξ|Dobs)

× π(θ)π(β|σ2
β)π(σ2

β)π(φ|σ2
φ)π(σ2

φ)π(σ2
e)π(σ2

b ), π(k1)π(τ |k1)π(k2), (7)

where L(W ,λ, b,θ,β,φ, σ2
e , σ

2
b , k1, τ , k2, ξ|Dobs) is given in (3). Next, we develop an efficient

reversible jump method to sample (k1, τ , k2, ξ).
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Reversible Jump Markov Chain Monte Carlo

In the following, we develop an efficient Reversible Jump Markov Chain Monte Carlo (RJMCMC)
algorithm to deal with the changing dimension of the parameter space when adding or deleting
knots. Our algorithm modifies and extends previous work (DiMateo et al., 2001; Botts and Daniels,
2008). The RJMCMC algorithm consists of three types of transitions: knot addition (birth step),
knot deletion (death step), and knot relocation (relocation step). The probabilities for choosing
each type of the moves are denoted bk, dk and ζk, respectively, and are given by

bk = c min
{

1,
π(k + 1)

π(k)

}
, dk = c min

{
1,
π(k − 1)

π(k)

}
, and ζk = 1− bk − dk. (8)

In the analysis, we take c = 0.4. For each step, the acceptance probability is given by α =

min{1, likelihood ratio× prior ratio× proposal ratio}. To determine whether or not to move from
state (k1, τ , k2, ξ) to another state (k∗1, τ

∗, k∗2, ξ
∗) using the reversible jump MCMC method, we

need to obtain the conditional posterior distributions of (k1, τ ) and (k2, ξ) after integrating out β
and φ from joint posterior distribution in (7), respectively. The conditional posteriors of (k1, τ )

and (k2, ξ) are given by

π(k1, τ |W,λ,θ,φ, σ2
e , σ

2
b , σ

2
β, σ

2
φ, Dobs) ∝ |AE|−1/2exp

[
1

2
B′EA

−1
E BE

]
and

π(k2, ξ|W,λ,θ,β, σ2
e , σ

2
b , σ

2
β, σ

2
φ, Dobs) ∝ |AD|−1/2exp

[
1

2
B′DA

−1
D BD

]
. (9)

where AE , BE , AD, and BD are given in Case I. The reversible jump Markov chain Monte Carlo
algorithm operates as follows.

Step 1. Initialization: set (k
(0)
1 , τ (0), k

(0)
2 , ξ(0),β(0),φ(0)) and i = 0.

Step 2. Iteration i: generate u∗ ∼ u(0, 1), choose either step 2.1 for (k1, τ ,β) or step 2.2 for
(k2, ξ,φ), and update the rest of the parameters in step 2.3. (Here u(a, b), denotes a uni-
form distribution over (a, b)).

Step 2.1. If u∗ < p, sample (k1, τ ,β). To do this, generate u∗∗ ∼ u(0, 1) and do

• the birth step if u∗∗ < bk.

• the death step if bk ≤ u∗∗ < bk + dk.

• the relocation step if u∗∗ ≥ bk + dk.

• then generate β conditional on (k1, τ ).

Step 2.2. If u∗ ≥ p, sample (k2, ξ,φ). To do this, generate u∗∗ ∼ u(0, 1) and do
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• the birth step if u∗∗ < bk.

• the death step if bk ≤ u∗∗ < bk + dk.

• the relocation step if u∗∗ ≥ bk + dk.

• then generate φ conditional on (k2, ξ).

Step 2.3. Update the rest of the parameters as outlined in Case I.

Step 3 Let i← i+ 1 and go to step 2.

We now provide more details on steps 2.1 and 2.2. We set p = 0.5. Given a new set (k1, τ )

and (k2, ξ), we generate β and φ from the their conditional posterior distributions, respectively as
β ∼ N(A−1E BE, A

−1
E ) and φ ∼ N(A−1D BD, A

−1
D ). We use the following proposal scheme for the

birth, death, and relocation steps. First we consider Step 2.1 for (k1, τ ). LetMk1
τ = {k1, τ1, ..., τk1}

denote the current model defined by k1 and τ . Let ε denote a tuning constant which restricts knots
to not be added too close to the current knot locations. As such, intervals for adding a knot are
defined as Ik = (τk−1 + ε, τk − ε), k = 1, . . . , k1 + 1.

For the birth step, we choose the candidate interval Ik uniformly using existing knots. The new
τ ∗ is generated from τ ∗ ∼ u(τk−1 + ε, τk − ε). Here, the jump probability is given by

q(Mk1+1
τ |Mk1

τ ) =
bk1

τk − τk−1 − 2ε
.

For the death step, the deleted knot is chosen uniformly from the existing knots and the jump
probability is

q(Mk1+1
τ |Mk1

τ ) =
dk1
k1
.

For the relocation step, we choose a knot τs uniformly from existing knots. We also choose a
candidate interval Ik uniformly using the existing knots. Then a new τ ∗s is generated from τ ∗s ∼
u(τk−1 + ε, τk − ε). Here, the jump probability is given by

q(Mk1
τ∗ |Mk1

τ ) =
ζk1

τk − τk−1 − 2ε
.

Step 2.2 for (k2, φ) is similar to Step 2.1. In analysis in Section 6, we choose ε = 5 for τ and ε = 1

for φ.
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A.2: Bayesian Equivalence of prospective and retrospective likelihoods in the semiparametric
context:

As mentioned in Section 1.1, for certain choices of the priors on the log odds, posterior in-
ference for the parameter of interest based on a prospective logistic model can be shown to be
equivalent to that based on a retrospective one. As a result, a prospective modeling framework can
be used to analyze case-control data which are generally collected retrospectively. Here we show
that the Bayesian equivalence results of Seaman and Richardson (2004) can be extended to the
semiparametric framework we have proposed. Infact, we show equivalence under a general setting
which allows for other time constant and time dependent covariates (in addition to the exposure
profile). This enables us to use a prospective logistic framework (as described in Section 3) to
analyze the PSA dataset in Section 5.

Our modeling framework hinges on the idea that for every subject, instead of a single exposure
observation, a series of past exposure observations are available. We use this “exposure trajectory”
or “exposure profile” in analyzing the present disease status of a subject. In the spirit of our
dataset, we assume that the exposure observations are continuous. Let the exposure profile for the
ith subject be Xi(t) = {Xi1(t), ..., Xini(t), i = 1, ..., N} (−c1 ≤ t ≤ −c2) where Xij(t) is the jth

exposure observation recorded for the ith subject as a function of t. Since an exposure trajectory is
composed of a finite set of exposure observations, the discretizing mechanism proposed by Rubin
(1981) and later by Gustafson (2002) can be applied to the trajectory as a whole i.e {Xi(t),−c1 ≤
t ≤ −c2} can be assumed to be a discrete random variable with support {Z1(t), ..., ZJ(t),−c1 ≤
t ≤ −c2}, the set of all observable exposure trajectories where {Zj(t),−c1 ≤ t ≤ −c2, j =

1, ..., J} is a finite collection of elements in the support of the Xij(t)’s. Let Y0j and Y1j be the
number of controls and cases having exposure profile {Zj(t),−c1 ≤ t ≤ −c2}. We denote the
“Null” or “baseline” trajectory as {X(t) = 0,−c1 ≤ t ≤ −c2}.

We also assume the presence of other time constant and time varying covariates which may
influence the current disease status. Thus, the general form of the disease model is given by

P (D = 1|X(t), U(t),−c1 ≤ t ≤ −c2,w) = L

(
α + δ′w +

∫ −c2
−c1

U(t)λ(t)dt+

∫ −c2
−c1

X(t)γ(t)dt

)
where w is a vector of time constant covariates (like age at diagnosis in equation (3) for instance)
while {U(t),−c1 ≤ t ≤ −c2} may be some other time varying covariate (distinct from the ex-
posure profile) with λ(t) expressing its (possibly) time varying influence pattern on the current
disease state.

Thus, the odds of disease corresponding to {Zj(t),−c1 ≤ t ≤ −c2} is

exp
(
α + δ′w +

∫ −c2
−c1

U(t)λ(t)dt+

∫ −c2
−c1

Zj(t)γ(t)dt

)
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and that corresponding to baseline exposure is

exp
(
α + δ′w +

∫ −c2
−c1

U(t)λ(t)dt

)
So, the odds ratio of disease corresponding to {Zj(t),−c1 ≤ t ≤ −c2} with respect to baseline

exposure is exp
(∫ −c2
−c1

Zj(t)γ(t)dt

)
. Assuming that a control has exposure profile {Zj(t),−c1 ≤

t ≤ −c2} and other extrinsic covariates ({U(t) = u(t),−c1 ≤ t ≤ −c2},w) with probability
δj/
∑J

k=1 δk, it can be easily shown that

P (X(t) = Zj(t), U(t) = u(t),−c1 ≤ t ≤ −c2,w|D = 1) =

δjexp
(∫ −c2
−c1

Zj(t)γ(t)dt

)
J∑
k=1

δkexp
(∫ −c2
−c1

Zk(t)γ(t)dt

)
Thus, the retrospective likelihood is

L(δ,φ) =
1∏
d=0

J∏
j=1


δjexp

(
d

∫ −c2
−c1

Zj(t)γ(t)dt

)
J∑
k=1

δkexp
(
d

∫ −c2
−c1

Zk(t)γ(t)dt

)

ydj

=
1∏
d=0

J∏
j=1


δjexp

(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)
J∑
k=1

δkexp
(
dφ′

∫ −c2
−c1

Zk(t)Ψ(t)dt

)

ydj

since γ(t) = Ψ(t)′φ = φ′Ψ(t) by (4). We assume δ1 = 1 for identifiability. Here d = 0 and 1
stands for controls and cases respectively. Assuming ϑ to be the baseline odds of disease i.e

ϑ =
P (D = 1|X(t) = 0, U(t) = u(t),−c1 ≤ t ≤ −c2,w)

P (D = 0|X(t) = 0, U(t) = u(t),−c1 ≤ t ≤ −c2,w)

= exp
(
α + δ′w +

∫ −c2
−c1

U(t)λ(t)dt

)
the prospective likelihood is given by

L(ϑ,φ) =
1∏
d=0

J∏
j=1


ϑdexp

(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)
1∑

k=0

ϑkexp
(
kφ′

∫ −c2
−c1

Zk(t)Ψ(t)dt

)

ydj

Based on the above setup, we have the following equivalence results :
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Theorem 1 : The profile likelihood of φ obtained by maximizing L(δ,φ) with respect to δ is the

same as that obtained by maximizing L(ϑ,φ) with respect to ϑ.

Proof : Let Ydj (d = 0, 1; j = 1, ..., J) be independently distributed as Poisson(λdj) where

logλdj = logµ+ dlogϑ+ logδj + dφ′
∫ −c2
−c1

Zj(t)Ψ(t)dt (10)

Thus, the likelihood will be

L(µ, ϑ, δ,φ) =
1∏
d=0

J∏
j=1

(λdj)
ydjexp(−λdj)

and hence the log likelihood will be

l(µ, ϑ, δ,φ) =
1∑
d=0

J∑
j=1

{ydjlog(λdj)− λdj}

Now, replacing the expression of logλdj from (10) we have

l(µ, ϑ, δ,φ) =
1∑
d=0

J∑
j=1

ydj

(
logµ+ dlogϑ+ logδj + dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)

−
1∑
d=0

J∑
j=1

µϑdδjexp
(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)
(11)

Differentiating (11) w.r.t µ and ϑ and solving the resulting equations we have

µ̂ =
∑

j y0j/
∑

j δj and ϑ̂ =

∑
j

y1j
∑
j

δj

∑
j

y0j
∑
j

δjexp
(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

)
Replacing the above expressions in (11) and then exponentiating, we obtain the expression of
L(δ,φ).

Again, differentiating (11) w.r.t δj , we have

δj =

∑
d

ydj

µ
∑
d

ϑdexp
(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

) , j = 1, ..., J (12)

It is easy to show that if we replace (12) in (11) and then exponentiate, we get the expression for
L(ϑ,φ). Since the order of maximization is immaterial, it follows that, L(δ,φ) and L(ϑ,φ), once
maximized over the nuisance parameters (ϑ and δ respectively) yield the same profile likelihood
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of φ. Thus, inferences about the parameter of interest φ can be obtained using the prospective
likelihood which has fewer nuisance parameters than the retrospective one.

Theorem 2 : Let Ydj (d = 0, 1; j = 1, ..., J) be independently distributed as Poisson(λdj) where

logλdj = dlogϑ+ logδj + dφ′
∫ −c2
−c1

Zj(t)Ψ(t)dt (13)

We assume independent priors, p(ϑ) ∝ ϑ−1 and p(δj) ∝ δ
aj−1
j for ϑ and δ. The prior for φ, p(φ)

is chosen to be independent of ϑ and δ such that for some q and r such that y0q ≥ 1 and y0r ≥ 1,

E

(
φ′
∫ −c2
−c1

Zq(t)Ψ(t)dt

)
and E

(
φ′
∫ −c2
−c1

Zr(t)Ψ(t)dt

)
exists and are finite (i.e p(φ) is such

that E(φ) exists and is finite). Let y+j = y0j + y1j and yd+ =
J∑
j=1

ydj . Then the following two

statements hold :

(i) Assuming w = logϑ, the posterior density of (w,φ) is

p(w,φ|y) ∝ p(φ)
J∏
j=1

{
exp

(
w + φ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)}y1j
{

1 + exp
(
w + φ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)}y+j+aj (14)

(ii) Assuming θ = (θ1, ..., θJ) and θj = δj/
J∑
k=1

δk, the posterior density of (θ,φ) is

p(θ,φ|y) ∝ p(φ)
J∏
j=1

θ
aj−1
j

1∏
d=0


J∏
j=1

{
θjexp

(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)}ydj
{

J∑
j=1

θjexp
(
dφ′

∫ −c2
−c1

Zj(t)Ψ(t)dt

)}yd+

 (15)

(iii) The marginal posterior densities of φ obtainable from p(w,φ|y) and p(θ,φ|y) are the same.

Proof : (i) The posterior density of (ϑ, δ,φ) is

p(ϑ, δ,φ|y) ∝ p(φ)
1

ϑ

J∏
j=1

δ
aj−1
j

1∏
d=0

J∏
j=1

(λdj)
ydjexp(−λdj) (16)

Replacing the expression of λdj from (13), we have

p(ϑ, δ,φ|y) ∝ p(φ)

ϑ

J∏
j=1

{
ϑexp

(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

)}y1j
δ
y+j+aj−1
j

× exp
[
−
(

1 + ϑexp
(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

))
δj

]
(17)
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Integrating out δj from the above expression, we have

p(ϑ,φ|y) ∝ p(φ)

ϑ

J∏
j=1

Γ(y+j + aj)[
1 + ϑexp

(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

)]y+j+aj {ϑexp
(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

)}y1j

Now, performing the transformation from ϑ to w yields expression (14).

(ii) First, we perform the transformation from δ to (θ, ψ), where ψ =
J∑
j=1

δj . Thus, δj = θjψ,

j = 1, ..., J . The jacobian of transformation will be ψJ−1.
Using this transformation in (16) and after some manipulation, we have

p(ϑ,θ,φ, ψ|y) ∝ p(φ)ψy+++a+−1ϑy1+−1
J∏
j=1

θ
y+j+aj−1
j exp

(
φ′

J∑
j=1

y1j

∫ −c2
−c1

Zj(t)Ψ(t)dt

)

× exp

[
−ψ

{
J∑
j=1

θj

(
1 + ϑexp

(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

))}]
(18)

Now, integrating (18) w.r.t ϑ we obtain

p(θ,φ, ψ|y) ∝ p(φ)
Γ(y1+)[

ψ
J∑
j=1

θjexp
(
φ′
∫ −c2
−c1

Zj(t)Ψ(t)dt

)]y1+ψy+++a+−1
J∏
j=1

θ
y+j+aj−1
j

× exp

(
φ′

J∑
j=1

y1j

∫ −c2
−c1

Zj(t)Ψ(t)dt− ψ
J∑
j=1

θj

)
(19)

Integration of (19) w.r.t ψ yields (15) after some minor manipulation.

(iii) The order in which p(ϑ, δ,φ|y) is integrated w.r.t the parameters does not make any difference
in the marginal posterior density of p(φ). Thus, integration of p(w,φ|y) w.r.t w or p(θ,φ|y) w.r.t
θ will yield the same marginal posterior density p(φ|y) of φ.

Remark:

1. As in Seaman and Richardson (2004), the assumption of existence and finiteness of

E

(
φ′
∫ −c2
−c1

Zq(t)Ψ(t)dt

)
and E

(
φ′
∫ −c2
−c1

Zr(t)Ψ(t)dt

)
is automatically satisfied pro-

vided the prior density p(φ) ensures that E(φ) exists and is finite.

2. The posterior propriety of p(ϑ, δ,φ|y) in (17) can be shown in a similar way to that in
Seaman and Richardson (2004).
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3. As in Seaman and Richardson (2004), it can be shown in the context of a case control study
that as a tends to 0, the log odds ratio parameters φ from the retrospective model converge
in distribution to the log odds ratio parameters from the limiting prospective model given by

Y1j ∼ Bin(Y+j, pj)(j = 1, ..., J); log

(
pj

1− pj

)
= ω +

∫ −c2
−c1

Zj(t)Ψ(t)dt

where φ ∼ p(φ), p(ω) ∝ 1 and θ ∼ Dirichlet(a, ..., a).

A.3: Calculations of Mi and Qi matrices

Here we explain the details of the calculation of the Mi and Qi matrices/vectors which appear
in the disease risk model (5) and (7) in the main paper.
The exposure trajectory model is given by

Yij = β0 + β1aij +
k∑
l=1

βl+1(aij − τl)+ + biaij + eij

= β0 + β1(tij + adi ) +
k∑
l=1

βl+1(tij + adi − τl)+ + bi(tij + adi ) + eij

= Φ(tij + adi )
′β + bi(tij + adi ) + eij (20)

where Φ(tij + adi ) = [1, (tij + adi ), (tij + adi − τ1)+, ..., (tij + adi − τK)+]′.

The prospective disease model is given by

P (Di = 1|Xi(t+ adi ),−c1 ≤ t ≤ −c2) = L

(
α + δadi +

∫ −c2
−c1

Xi(t+ adi )γ(t)dt

)
= L

(
α + δadi +

∫ −c2
−c1

(
Φ(t+ adi )

′β + bi(t+ adi )
)

Ψ(t)′φdt

)
= L

(
α + δadi + β′Mi(c1, c2)φ+ biQi(c1, c2)φ

)
(21)

where Mi(c1, c2) =

∫ −c2
−c1

Φ(t+ adi )Ψ(t)′dt and Qi(c1, c2) =

∫ −c2
−c1

(t+ adi )Ψ(t)′dt.

Case I : One knot in the exposure trajectory, no knots in the influence function i.e Φ(t + adi ) =

[1, (t+ adi ), (t+ adi − τ1)+]′ and Ψ(t) = (1, t)′. Then,

Φ(t+ adi )Ψ(t)′ =

 1 t
t+ adi t(t+ adi )

(t+ adi − τ1)+ t(t+ adi − τ1)+

 .
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and

(t+ adi )Ψ(t)′ =
(
(t+ adi ) t(t+ adi )

)
.

Mi(c1, c2) and Qi(c1, c2) can now be obtained by simply integrating out the elements of the above
matrices over the interval [−c1,−c2] i.e∫ −c2

−c1
dt = c1 − c2,

∫ −c2
−c1

tdt =
c22 − c21

2
,

∫ −c2
−c1

(t+ adi )dt =
c22 − c21

2
+ adi (c1 − c2),∫ −c2

−c1
t(t+ adi )dt =

c31 − c32
3

+ adi
c22 − c21

2
.

∫ −c2
−c1

(t+ adi − τ1)+dt =

∫ Ti1

Ri1

(t+ adi − τ1)dt =
T 2
i1 −R2

i1

2
+ (adi − τ1)(Ti1 −Ri1)∫ −c2

−c1
t(t+ adi − τ1)+dt =

∫ Ti1

Ri1

t(t+ adi − τ1)dt =
T 3
i1 −R3

i1

3
+ (adi − τ1)

T 2
i1 −R2

i1

2
.

where Ri1 = max(−c1, τ1 − adi ) and Ti1 = max(−c2, τ1 − adi ). Tij takes care of the case of −c2
being less than (τj − adi ). However, something like should be very rare.

Qi will be the same as the 2nd row of Mi. Addition of more knots in the trajectory would just
increase the number of rows of Mi. For example, if we add another knot, say, τ2 in the trajectory
model (such that τ2 > τ1), then,

Φ(t+ adi )Ψ(t)′ =


1 t

t+ adi t(t+ adi )
(t+ adi − τ1)+ t(t+ adi − τ1)+
(t+ adi − τ2)+ t(t+ adi − τ2)+

 .

Qi would however remain unchanged.

Case II : Let us add a knot, say κv, to the influence function γ(t) i.e

γ(t) = φ1 + φ2t+ φ3(t− κv)+

Φ(t+ adi ) would remain the same as before (i.e 2 knots in the trajectory). Then

Φ(t+ adi )Ψ(t)′ =


1 t (t− κv)+

t+ adi t(t+ adi ) (t+ adi )(t− κv)+
(t+ adi − τ1)+ t(t+ adi − τ1)+ (t+ adi − τ1)+(t− κv)+
(t+ adi − τ2)+ t(t+ adi − τ2)+ (t+ adi − τ2)+(t− κv)+


and

(t+ adi )Ψ(t)′ =
(
t+ adi t(t+ adi ) (t+ adi )(t− κv)+

)
14



The calculations of Mi and Qi would be similar as in Case I while∫ −c2
−c1

(t− κv)+dt =

∫ Wiv

Siv

(t− κv)dt =
W 2
iv − S2

iv

2
− κv(Wiv − Siv).∫ −c2

−c1
(t+ adi )(t− κv)+dt =

∫ Wiv

Siv

(t+ adi )(t− κv)dt

=
W 3
iv − S3

iv

3
+ (adi − κv)

W 2
iv − S2

iv

2
− adiκv(Wiv − Siv).∫ −c2

−c1
(t+ adi − τu)+(t− κv)+dt =

∫ Wiuv

Siuv

(t+ adi − τu)(t− κv)dt

=
W 3
iuv − S3

iuv

3
+ (adi − τu − κv)

W 2
iuv − S2

iuv

2
− (adi − τu)κv(Wiuv − Siuv)

where Siv = max(−c1, κv),Wiv = max(−c2, κv), Siuv = max{−c1,max(τu−adi , κv)} andWiuv =

max{−c2,max(τu − adi , κv)}.
As before, Qi would be the second row ofMi. Addition of more knots to the influence function

would increase the columns of Mi and Qi. The different elements of Mi can then be calculated as
shown above.

A.4: Plots

In the following, Figure 1(a) and 1(b) depicts the posterior distribution of the number of knots
for the exposure trajectory and the influence function while Figure 2 shows the smoothed density
plots of the risk scores for the cases (R1) and controls (R0).

(a) Exposure Trajectory (b) Influence Function

Figure 1: Posterior distribution of the number of knots for the exposure trajectory and influence

function.
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