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December 28, 2012

1 Department of Statistics and 2Institute for Social Research,
The University of Michigan, Ann Arbor, Michigan, USA.

email: ionides@umich.edu, wzhen@umich.edu, jatapia@isr.umich.edu

Accepted for publication in Annals of Applied Statistics

Supplementary Content

S1 Interpretation of detrending choices S-2

S2 Data analysis for additional detrending choices S-3

S3 Prewhitening for selecting the Hodrick-Prescott smoothing parameter S-5

S-1



S1 Interpretation of detrending choices

The frequency response function, A(ω), for a filter gives the fraction of the frequency component
of the time series which is retained by the filter at frequency ω (Shumway and Stoffer, 2006). The
frequency response function of the Hodrick-Prescott filter is

AHP(ω, λ) =
4λ{1− cos(ω)}2

1 + 4λ{1− cos(ω)}2
,

where λ is the smoothing parameter (King and Rebelo, 1993). The frequency response function of
the difference filter is

AD(ω) = 1− exp{−iω},

which is complex valued since the filter is not symmetric (Shumway and Stoffer, 2006). Figure S-1
graphs the frequency response function for the Hodrick-Prescott filter (at λ = 100 and λ = 6.25)
and the difference filter. This figure shows how the choice of λ = 6.25 effectively removes cyclical
components with period of more than around 8 years.

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
bs

ol
ut

e 
va

lu
e 

of
 fr

eq
ue

nc
y 

re
sp

on
se

 fu
nc

tio
n

Period, t (years)

HP (λ = 100)
HP (λ = 6.25)
Difference

Figure S-1: Frequency response functions, plotted as a function of the period of the oscillation
(t = 2π

/
ω). The solid and dashed lines show AHP(2π/t, λ) for λ = 100 and λ = 6.25. The vertical

line at t = 2 corresponds to the Nyquist frequency: annual data cannot resolve oscillations with
shorter period than 2 years. The dotted line shows |AD(2π/t)|/2. Since AD(π) = 2, the difference
filter actually inflates frequency components close to the Nyquist frequency and the rescaling factor
of 2 is appropriate for comparison.
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S2 Data analysis for additional detrending choices

The consequences for our data analysis of the choice of the Hodrick-Prescott smoothing parameter,
λ, are shown in Table S-1. The results for λ = 6.25 are generally intermediate between λ = 100
and analyses based on differencing. This might be expected from Figure S-1, since the graph of
the frequency response function for the λ = 6.25 lies between λ = 100 and the difference filter for
oscillatory periods between 2.3 and 8.8 years.

Ordinary least squares (the usual, practical and convenient methodology) is statistically effi-
cient and appropriate when the residuals have weak or negligible sample correlation. Figure S-2
shows that small values of the Hodrick-Prescott smoothing parameter, such as λ = 6.25, result
in considerable negative temporal autocorrelation of the residuals. This can be expected to make
the corresponding OLS estimates inefficient. By contrast, λ = 100 serves approximately as a
prewhitening filter.

Table S-1: Percentage increase in mortality associated with a unit increase in the state unemploy-
ment rate for model HP1λ at four choices of λ, and for model D1.

Model HP1400 HP1100 HP125 HP16.25 D1

Total -0.35 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-0.33 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-0.30 ∗ ∗ ∗
∗ ∗ ∗
∗∗

-0.24 ∗ ∗ ∗
∗ ∗ ∗
∗

-0.16 ∗
∗

20-44 -0.47 ∗∗
∗ -0.47 ∗∗

∗ -0.58 ∗ ∗ ∗
∗∗
∗

-0.73 ∗ ∗ ∗
∗∗
∗

-0.54 ∗
∗
+

45-64 -0.26 ∗ ∗ ∗
∗
∗

-0.22 ∗∗
∗
∗

-0.15 -0.14 -0.13

65+ -0.24 ∗ ∗ ∗
∗ ∗ ∗
∗∗

-0.25 ∗ ∗ ∗
∗ ∗ ∗
∗

-0.24 ∗ ∗ ∗
∗ ∗ ∗
∗

-0.16 ∗
+ -0.03

Cardiovascular disease -0.25 ∗ ∗ ∗
∗∗
∗

-0.24 ∗ ∗ ∗
∗∗
∗

-0.21 ∗
∗
+

-0.14 -0.06

Ischemic heart disease -0.55 ∗ ∗ ∗
∗∗
∗

-0.58 ∗ ∗ ∗
∗∗
∗

-0.47 ∗ ∗ ∗
∗∗
∗

-0.28 +
+ -0.14

Cancer 0.06 0.04 0.03 0.05 0.13

Respiratory disease -0.54 ∗ ∗ ∗
∗ ∗ ∗
∗

-0.71 ∗ ∗ ∗
∗ ∗ ∗
∗∗

-0.82 ∗ ∗ ∗
∗ ∗ ∗
∗∗

-0.69 ∗∗
∗∗
∗

-0.37

Other infectious disease -0.88 ∗ -0.89 ∗
+ -1.26 ∗∗

∗∗
∗

-1.72 ∗ ∗ ∗
∗∗
∗∗

-1.14 ∗
∗
∗

Traffic injury -2.56 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-2.11 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-1.74 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-1.44 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

-1.48 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Suicide 0.91 ∗ ∗ ∗
∗
∗

0.77 ∗∗
+
+

0.76 ∗
+
+

0.80 ∗
+
+

0.94 ∗
+
∗

Homicide -0.65 -0.41 -0.34 -0.74 -1.02

Columns represent models, as described in equation (1) and Table 1 of the main text. Rows
represent mortality categories. Table entries are estimates of 100α, using OLS with states weighted
by the square root of the state population. Statistical significance is shown using standard OLS
errors (black symbols, top row), error estimates clustered by state (gray symbols, middle row) and
error estimates of Cameron et al. (2011, Section 2.2) with two-way clustering by state and year
(gray symbols, bottom row; red in electronic version). ∗∗∗ P < 0.001, ∗∗ P < 0.01, ∗ P < 0.05,
+ P < 0.1.
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(a)  HP16.25
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(b)  HP125
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(c)  HP1100
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(d)  HP1400

Figure S-2: Autocorrelation of the residuals from fitting model HP1λ for four values of the Hodrick-
Prescott smoothing parameter λ. Points show the sample autocorrelation for each state, at lag 1
and lag 2. The horizontal dashed lines are at ±tn−2{n − 2 + t2n−2}−1/2 where tn−2 is the 97.5
percentile of the t distribution on n − 2 degrees of freedom, and n = 26. If the residual series
were temporally uncorrelated, approximately 95% of the points should lie between the dashed lines
(Moore and McCabe, 1999, Section 10.2). The vertical dashed lines are constructed similarly, with
n = 25.
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S3 Prewhitening for selecting the Hodrick-Prescott smoothing pa-
rameter

A classic time series regression approach to efficient statistical inference in the presence of autocor-
related errors is to apply a linear prewhitening filter, i.e., to apply a linear transformation to all
the variables in the regression so that the residuals are approximately uncorrelated (Shumway and
Stoffer, 2006). Empirically, for our data analysis, a value of λ = 6.25 leads to considerable negative
autocorrelation in the residuals (Figure S-2) whereas λ = 100 is approximately a prewhitening
filter.

Suppose that one wished to estimate the regression coefficients in equation (1) of the main
text, using Hodrick-Prescott detrending with λ = 6.25. Let f6.25(ω) be the power spectrum of the
resulting residuals. Then, the power spectrum of the residuals when detrending with λ = 100 is
approximately

f100(ω) ≈ f6.25(ω)
|AHP(ω, 100)|2

|AHP(ω, 6.25)|2
, (S1)

where AHP(ω, λ) is the frequency response function of the HP filter as in Section S1. Equation (S1)
would be exact if the choice of prewhitening filter had no consequences for parameter estimation;
the approximation results from the effect of the prewhitening filter on the estimated parameter
values. So far as the approximation in (S1) is valid, if λ = 100 is an effective prewhitening filter
for the original data then AHP(ω, 100)

[
AHP(ω, 6.25)

]−1 gives the frequency response function for
an effective prewhitening filter for the data detrended using λ = 6.25. This prewhitening filter can
be implemented by undoing the λ = 6.25 detrending and applying λ = 100. In other words, if one
wants to estimate the regression coefficients in equation (1) based on detrending with λ = 6.25, it
is reasonable to use instead the estimates resulting from using λ = 100.

The conclusion of the previous paragraph is perhaps counter-intuitive. From a theoretical
perspective, the paradox can be resolved by noting that any linear detrending method gives unbiased
parameter estimates in the context of the usual linear model that we present in equation (1) of the
main text, so long as it successfully removes deterministic trends. Prewhitening then becomes the
key criterion for efficient parameter estimation. The observation that λ = 100 is an empirically
effective prewhitening filter suggests that it does a respectable job of removing deterministic trends:
if present, these would usually be associated with high power at low frequencies.

From a practical perspective, this theoretical resolution is not entirely satisfactory. Likely, a
model such as equation (1) is not equally valid across all spatiotemporal scales and so detrending
methods which emphasize different aspects of the data may not in fact be estimating the same
quantity. Unless there are reasons for restricting attention to specific temporal scales, this practical
consideration justifies our decision to present results for a range of detrending methodologies.

The theoretically privileged position of the prewhitening choice λ = 100 does seem to have some
practical consequences: it also happens to result in the clearest statistical evidence for procyclical
mortality in our data analysis (e.g., the greatest number of significance stars in Table 3 of the main
text). However, this does not rule out the possibility that some effects may be more clearly apparent
with an alternative analysis that may also have properly justified levels of statistical significance.
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