Inducible knock-down of GNOM during root formation reveals tissue-specific response to auxin transport and its modulation of local auxin biosynthesis *Jingze Guo, Jun Wei, Jian Xu, and Meng-xiang Sun*

SUPPLEMENTARY MATERIAL

Supplementary Table S1. Sequence of RT primers

At5g25760	UBC	TATTCACTCTCGCAAATCAA
At1g13320	PP2A subunit A3	TACTCTCCAGTGCCTGTCTT
At4g26410	Expressed unknown protein	TGCCGAAGTCCGTCCATC
At4g34270	TIP41 like	CTGGAAGCCTCTGACTGATG
At5g46630	Clathrin adaptor complex subunit	TGTTGTAACCGCTCTTCTCC
	Induced antisense GNOM	AGCGGTTATGAGAAGAAATGTAAG

locus	gene	primer sequences	product	primer
number			size	design
AT1G13320	PROTEIN PHOSPHATASE	GTCCTGGCGTGTGCGTTATATG	90 bp	J ^b
	2A SUBUNIT A3	GGCACCAGATCCGTC [°] CTAGTTG [°]		
AT4G26410	Expressed unknown	GATTGGTGTCGCTGCTAGTCTC	98 bp	J
	protein	AGAATTGTGC ^C CTCTTCGCTCTG		
AT4G34270	TIP41 like	CTGAGAGTTGATGGTGTGCTTATGAG	141 bp	J
		TGGATACCCTTT ^C GCAGATAGAGAC		
AT5G25760	UBC	CTGCGACTCAG [^] GGAATCTTCTAA	61 bp	J
		TTGTGCCATTGAATTGAACCC		
AT5G46630	Clathrin adaptor	CCAAGACCAATTTCCAAGTGACAAC	78 bp	J
	complex subunit	TTCTTATC [*] TTCCAAACCAAGCAATCG		
At1g73590	PIN1	CTGGTCCCTCATTTCCTTCAA^GTG	116 bp	J
		TGAACAACC [^] CAAGACTGAACATAGC		
At5g57090	PIN2	TCCTCCATATCGCCATCGTTCAG	118 bp	J
		AGCATTCCGAATATAACC [^] GCAGTG		
At1g70940	PIN3	ATGGCGGTTAGGTTCCTTACGG	134 bp	S ^c
		GCAAACACAAAGGGCACAATTCC		
At2g01420	PIN4	ATCATTGCTTGTGGGAACTCTGTC	141 bp	J
		CAACGCAGC [^] CTGAACGATGG		
At1g23080	PIN7	AGTGTGATGACTCGGCTGATATTG	114 bp	J
		ATCCCAC ^C CTGAAAGCAACAAGAG		
At2g36910	PGP1	CCGTTATGATTGGTGGATT [^] GGCATTG	134 bp	J
		GGACTCGCTGTTACGCTCTATCG		
At2g47000	PGP4	GCTTCTCTTTCTTCGTCCTCTTCTC	138 bp	S
		ATATCGCCATTGCCGCCATTG		
At3g28860	PGP19	TTCTCTGCTATTGTTGGTGGAAT GAG	130 bp	J
		GGTCTTGAATTATCGTCGGTCTCTG		
At2g38120	AUX1	TGCCTCCGCTCGTCAG^AATG	122 bp	J
		CACCGAACCCAAATCCGACTATAAG		
At1g77690	LAX3	GCCGTCACAGT [^] GGAGATAATGC	102 bp	J
		GGATGGTAGCGTTAGCGTTAGTAC		
At4g13260	YUCCA2	ACTTCAATGCTCTTCCTTCTCTTGTG	188 bp	S
		AACTAACCCTAACCGATCCGTGTC		
At1g04610	YUCCA3	AATCATAAAGTTCGGCAAAGGCAAAG	137 bp	S
		CATCATCGGAGAAGAAGTCGTTGTC	_	
At5g11320	YUCCA4	CGTTCTTGATGTCGGTGCCATTTC	60 bp	J
_		GCTTGCGTCACTTTAA [^] TTTGTCCTG		
At5g43890	YUCCA5	GGCGAGAAATACAGAGGAAAGAGTG	125 bp	Without

		ACATGAACCGAGCTACGAACAAC		intron
At5g25620	YUCCA6	AACTTCGGTGCTCAGCCTTCTC	68 bp	S
		CCCAACATCTCTCGTGGTAGGAC		
At4g28720	YUCCA8	GGATTGTATGCGGTTGGGTTTACG	83 bp	Without
		GAGCCTATGTCTTGTGCGATCTTAAC		intron
At1g70560	TAA1	CAGACGACGACGAAGCCAAAG	152 bp	J
		CACCAATGCCCAC ^C CCAATACG		
At4g24670	TAR2	TGTGGGAATGTAACGGGCAAATC	172 bp	J
		CAAATG [^] CTGGTTGTGGCTCAAAG		
At4g31500	CYP83B1	GACCAACCTTTCTCCATCAAATTCAC	176 bp	S
		TCACCTATCACACTCCTCACTTCG		
At4g39950	<i>CYP79B2</i>	TGCTTACCGCCGATGAAATCAAAC	165 bp	S
		GTCTCTCTTTCCCGACGACTCTG		
At2g22330	<i>CYP79B3</i>	CCTTTGCTTACCGCTGATGAAATC 78 bp		S
		GGCGTTTGATGGGTTGTCTGG		
At2g20610	SUR1	AGGCATATCTAAGGGATGGGTTGTTC 143 bp		S
		TTATTGTGGCAGGGTCAGGAGTTAC		
At1g13980	GNOM	CTGGTAGCATCAAACAAGAG AAAGC	62 bp	J
		TGGTTTACTCACAATGGCATAATCAC		

^a ^ positioned exon-exon junction, where this primer is bridged.
^b J indicates that the primer was designed to bridge exon-exon junction.

^c S indicates that the primer pair spanned an intron.

G1090 GVG	E9 _T NOS	HPT	NOS _T 6xUAS _G -46	GNOM antisense sequence	3A _t
-----------	---------------------	-----	---	-------------------------	-----------------

Supplementary Figure S1. Schematic illustration of inducible antisense vector construction

Supplementalry Figure S2. Expression of endogenous *GNOM* **mRNA in EV7 seedlings treated with DEX or EtOH by indicated time**. Each data point represents mean ± SE from two biological repeats and two technical repeats.

Supplementary Figure S3. Expression and localization of other PIN family proteins in DEX or EtOH treated InAGN9 roots. Roots were counterstained with PI (red). Scale bar: 50 μm

Supplementary Figure S4. Number of lateral root primordia and lateral roots in EV7 seedlings germinated on plates containing DEX or EtOH.

Supplementary Figure S5.PIN1-GFP expression in three disorganized LRPs of DEX induced InAGN9 roots.A-C showed three disorganized LRPs without PIN1-GFP expression. Yellow dotted lines delineate shape of cells in these LRPs. Scale bar: 50 μm

Supplementary Figure S6. Quantitative analysis of changes in expression level of genes encoding auxin transport proteins after EV7 seedlings were induced by DEX.

* indicates p<0.05 (Students'st-test)

Supplementary Figure S7. Quantitative analysis of changes in expression level of auxin synthesis genes after EV7 seedlings were induced by DEX.

* indicates p<0.05 (Students'st-test)

Supplementary Figure S8. Number of lateral root primordia and lateral roots in EV7 seedlings grown on MS plates containing DEX or EtOH with 0.1 μ M NAA. Data represent mean \pm SD (n=10).

Supplementary Figure S9.Detection of GNOM protein level in DEX treated InAGN9 and EV7 seedlings by western blotting. (A) Total protein was extracted from InAGN9 and EV7 whole seedlings that germinated for 7 days on DEX or EtOH containing MS medium, then they were used for western blotting to detect protein expression level of GNOM and β -ACTINwith anti-GNOM and anti- β -ACTIN (Santa Cruz, USA) antibodies as described [1]. (B) Quantification of signal intensity for GNOM and β -ACTIN expression level using Image J software (rsbweb.nih.gov/ij/). Relative protein expression level of GNOM to β -ACTIN was calculated as the ratio of signal intensity of GNOM to β -ACTIN.

Supplementary Figure S10.Production of rabbit anti-GNOM polyclonal antibody.

(A) Expression and purification of GNOM fragment. Arrow indicated purified GNOM protein fragment. For construction of expression vector pMXB10-GNexp, 1734bp to 2198bp of GNOM coding sequence was amplified from a whole seedling cDNA library and was cloned in-frame into pMXB10 (NEB) using Nde I and Xho I sites. The plasmid was transformed into E. coli. Strain BL21 (DE3) and recombinant protein was induced and purified according of IMPACT (NEB, to manual system https://www.neb.com/~/media/Catalog/All-Products/21A73B351DD24F94BC584FAED2A8 3A0F/Datacards%20or%20Manuals/manualE6901.pdf). (B) Target protein was cut from the polyacrylamide gel after staining with CuCl2, the cutting was confirmed after staining the remaining part of gel by Coomassie blue R250 as described [1]. The cut gel with target protein fragment was used to produce antibody in rabbits as described [1]. (C) Produced antiserum in rabbit could detect a single band (approximate 150kDa) in proteins from wild type Arabidopsis seedlings, while the pre-immune serum failed to detect any signals. (D) The 13 / 14

specificity of the antiserum was confirmed using proteins from a*gnom* mutant (ABRC number: CS8146. As described by Busch [2], this EMS-mutagenized mutant has a point mutation, which produce a premature stop codon at AA647.), because it failed to detect a strong 150kDa band in the mutant protein compared with that of EV7 transgenic line.

References

- Wang, L., et al., *NtGNL1 is involved in embryonic cell division patterning, root elongation, and pollen tube growth in tobacco.* New Phytol, 2008. **179**(1): p. 81-93.
- 2. Busch, M., U. Mayer, and G. Jurgens, *Molecular analysis of the Arabidopsis* pattern formation of gene GNOM: gene structure and intragenic complementation. Mol Gen Genet, 1996. **250**(6): p. 681-91.