
1

Supporting Information S1
Global meta-analysis of transcriptomics studies
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Supporting Text S2: Rank Product

Significance Estimation

As mentioned in the main text, we used a Gamma distribution approximation method to compute the
rank product p-values, which is based on the null hypothesis that ranks are uniformly distributed [1].
Here, we describe the approach used by [1].

Succintly, if a given gene rank divided by the number of genes is approximately uniformly distributed
(the rank is discrete, not continuous, so this is necessarily an approximation), then its negative logarithm
is exponentially distributed,

rij
G + 1

≈ Unif(0, 1) , (1)

− log
rij

G + 1
≈ Exp(1) , (2)

where G is the total number of genes. In the equation above, the normalizing factor G+1 instead of G was
used, so that the expectation of the uniformly distributed normalized rank is K/2 instead of (K + 1)/2.

The sum of log-ranks that constitutes the rank product score for a given gene i is therefore related to
the sum of exponentially distributed variables,

logscore(i) =

n∑
j=1

log rij (3)

= n log(G + 1) +

n∑
j=1

log
rij

G + 1
. (4)

The sum of n exponentially distributed variables with unit expectation is equal to a Gamma-distributed
variable with shape n and unit scale. Therefore, in order to compute the probability that a given log-rank
sum is smaller than an observed value (we remind the reader that in the present context, smaller ranks
are better), one needs to compute the lower tail of the corresponding Gamma distribution,

P (logscore(i) < x) = P

n log(G + 1) +

n∑
j=1

log
rij

G + 1
< x

 (5)

= P

 n∑
j=1

log
rij

G + 1
< x− n log(G + 1)

 (6)

= P

− n∑
j=1

log
rij

G + 1
> −x + n log(G + 1)

 (7)

= P (Gamma(shape = n, scale = 1) > −x + n log(G + 1)) . (8)

In summary, to compute the p-value for a given gene log-score x, we compute the term−x+n log(G+1)
and then compute the probability that a Gamma-distributed variable with scale n and unit shape exceeds
the computed term.



4

Log-Score Interpretation

One relevant aspect of the rank product method is that the log-score assigned to each gene and used for
determining significance consists of a sum of log-ranks,

logscore(i) =

n∑
j=1

log(rank(i, j)). (9)

For a large rank r, log(r) ≈ log(r + 1), implying that the terms in (9) corresponding to large ranks
are mostly indistinguishable from one another. For instance, for ranks r1 = 1000 and r2 = 5000, we
have that log r1 ≈ 6.90 and log r2 ≈ 8.52, i.e., while r2 is five times larger than r1, its logarithm in only
about 23% larger than the logarithm of r1. To the best of our knowledge, this interpretation of the rank
product method has not been provided before.

Intuitively, the above discussion means that the terms in the log-score are softly divided into terms
corresponding to lower ranks and terms corresponding to larger ranks (which possess similar log-values).
The idea of providing a soft distinction between low-ranks and the rest has been previously used in
statistical testing frameworks for gene expression [2].

Computing Exact p-values

A method for computing exact p-values has been recently proposed [3]. Here, we measure the method’s
running time requirements on Windows 7 R, using an Intel i7-3610QM CPU at 2.3Ghz.

We assume that a given study has n genes and k samples. For the human differential expression study
collection, the median number of genes and samples is n = 9701 and k = 12. For the S. pneumoniae
study collection, the median number of genes and samples is n = 1935 and k = 6. We perform our
benchmarking using these values.

The exact method relies on explicitly computing the number of possible ways in which the product
of a gene’s ranks across a study’s samples is exactly equal to a given rank product value x. This number
is designated as H(x; k, n). The exact unnormalized p-value for a given rank product x can be obtained
by computing the total number of ways in which the rank product is less than or equal to x, i.e.,
H(1; k, n) + H(2; k, n) + . . . + H(x; k.n). The normalized p-value is then obtained by dividing by nk,
which is the total number of possible rank combinations of a gene across the k samples. The p-value
computation pseudo-code is thus as follows:

1. p← 0

2. For i = 1, . . . , x :

(a) p← p + H(i; k, n)

3. p← p
nk

We chose as a benchmark task the time it takes for the code above to reach a p-value which is deemed
significant using Bonferroni correction at an initial p-value of 0.05. For the human study collection, this
p-value threshold is p = 0.05

9701 , while for the S. pneumoniae study collection it is p = 0.05
1935 . Intuitively,

we recreate the time it takes for the exact method to return the p-value for a gene whose rank product
score is barely significant using Bonferroni correction. For both the human and the S. pneumoniae study
collection, the exact method takes over forty minutes to compute. Given the impractical running time
for the exact p-value method, we have opted for using the Gamma approximation method, which runs
instantly. However, in the future it may be possible to combine both approaches in order to obtain a fast
and precise hybrid method.
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