Serine Integrase Directional Recombination (SIDR) for rapid metabolic pathway assembly and modification

Supplementary Information

Sean D. Colloms¹*, Christine A. Merrick¹, Femi J. Olorunniji¹, W. Marshall Stark¹, Maggie C. M. Smith², Anne Osbourn³, Jay D. Keasling^{4,5,6}, and Susan J. Rosser¹*

¹Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Ave, Glasgow G12 8QQ, Scotland UK.

² Department of Biology, University of York, Wentworth Way, YO10 5DD, UK.

³ Department of Metabolic Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.

⁴ Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, USA.

⁵Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA

⁶Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

* Corresponding authors Telephone: 0141-330-6236 email: <u>Sean.Colloms@glasgow.ac.uk</u> / <u>Susan.Rosser@glasgow.ac.uk</u>

Figure S1. (A) Recombination specifically between fragments with matching *attP* and *attB* sites. A 1.0 kb *crtE* fragment with *attB*^{CT} and *attB*^{GT} sites and a 1.6 kb *crtI* fragment with *attP*^{GT} and *attP*^{CA} sites were incubated in the presence or absence of 200 nM ϕ C31 integrase. The 2.6 kb product formed by recombination between *attB*^{GT} and *attP*^{GT} is indicated. (B) SIRA reaction to join the five zeaxanthin biosynthetic genes *crtB*, *crtE*, *crtI*, *crtY* and *crtZ* together and insert them into pSIRA1. Equimolar amounts of the indicated PCR products were incubated with pSIRA1 with or without 200nM integrase. All reactions contained ~5 nM of each PCR product and were incubated for four hours at 30°C in integrase reaction buffer with 10% ethylene glycol. Reactions were stopped by heating to 75°C for 10 minutes, treated with SDS and protease K and run on a 1.2% agarose Tris-Acetate EDTA (TAE) gel. The gel was stained with ethidium bromide and photographed on a Biorad GelDoc apparatus. Images are shown in reverse contrast.

Number of ampicillin resistant colonies

Time (min)	Kan-BB	Cm-BB	Kan-PP	Cm-PP	Kan-PB	Cm-PB
No Integrase	0	0	0	0	0	0
5	97	89	164	212	122	134
15	320	298	496	374	734	694
60	1448	1060	1200	1448	1944	2260
240	2232	1712	1896	1560	3240	2224
1440	1344	1544	1672	1400	3096	2048

Number of ampicillin resistant colonies (no insert)

Time (min)	pSIRA1	pSIRA2	pSIRA3
No Integrase	0	0	0
240	0	0	59
1440	0	0	68

В

Fraction of colonies correctly assembled (resistant / total)

TIME	Kan-BB	Cm-BB	Kan-PP	Cm-PP	Kan-BP	Cm-BP
5	20/20	20/20	20/20	20/20	22/22	19/20
15	20/20	21/21	20/20	20/20	20/20	20/20
60	20/20	22/22	20/20	20/20	20/20	22/22
240	20/20	20/20	20/20	20/20	64/66	64/66
1440	20/20	20/20	20/20	20/20	44/46	46/46

Figure S2. Time course of SIRA reactions to insert single linear DNA fragments into plasmid vectors. DNA fragments, containing a chloramphenicol resistance (Cm^R) or a kanamycin resistance (Kan^R) gene, were produced by PCR with pSW23 or pSW29 as template. The primers used incorporated $attB^{TT}$ upstream and $attB^{TC}$ downstream (BB), $attP^{TT}$ upstream and $attP^{TC}$ downstream (PP), or $attP^{TT}$ upstream and $attB^{TC}$ downstream (PB) of the resistance gene. Reactions (60 µl at 30°C) contained ~ 5 nM linear DNA fragment and ~5 nM pSIRA1 (PP), pSIRA2 (BB) or pSIRA3 (PB), and were set up in integrase reaction buffer without ethylene glycol. Recombination was initiated by the addition of 6 μ l of 2 μ M ϕ C31 integrase. Samples (10 µl) were withdrawn after 5 minutes, 15 minutes, one hour, 4 hours and 24 hours and heated at 75°C for 10 minutes to inactivate the recombinase. A 2 µl aliquot from each time-point was transformed into chemically competent TOP10 cells (6 x 10^6 transformants / µg pUC19 DNA) and transformants were selected on LB-agar plates containing ampicillin. Control reactions were carried out with no integrase. (A) The number of ampicillin-resistant colonies obtained for each reaction are plotted against time in the graph and shown in the tables below. (B) Randomly chosen transformant colonies were streaked onto one plate containing ampicillin and another plate containing chloramphenicol or kanamycin as appropriate. The table shows the fraction of colonies expressing the expected antibiotic resistance gene (number of chloramphenicol- or kanamycin-resistant colonies / number of ampicillin-resistant colonies).

Figure S3. Time course of three-fragment SIRA reactions to assemble the *crtB-crtE-crtI* lycopene biosynthetic pathway. Assembly reactions were carried out with (**A**) pSIRA3 and linear PCR products, each with an upstream *attP* and a downstream *attB* (PB-PB-PB) or (**B**) with pSIRA1 and linear PCR products, each with either two *attP* or two *attB* sites (PP-BB-PP). Reactions (60 μ l at 30°C) contained 5 nM of each linear DNA fragment and 3 nM SIRA vector and were in integrase reaction buffer with or without 5% ethylene glycol (EG). Recombination was initiated by the addition of 6 μ l of 2 μ M ϕ C31 integrase. Samples (10 μ l) were withdrawn after 15 minutes, one hour, 4 hours and 24 hours and heated at 75°C for 10 minutes to stop the reaction. A 2 μ l aliquot from each time-point was transformed into chemically competent TOP10 cells (10⁶ transformants / μ g pUC19) and transformants were selected on LB-agar plates containing ampicillin. (**C**) Graph showing the number of ampicillin-resistant transformants obtained, plotted against reaction time. (**D**) Randomly chosen transformant colonies were streaked on plates containing ampicillin and grown overnight at 37°C. The histogram shows the percentage of colonies that were correctly assembled and therefore produced lycopene.

Table S1 Oligonucleotides. S1.1 Oligonucleotides used for plasmid construction

attP-RX-TT-top	
attP-RX-TT-bot	CTAGA <mark>ACGCCCCCAACTGAGAGAACTC<mark>AA</mark>AGGTTACCCCAGTTGGGGCACT</mark> G
attB-RX-TT-top	
attB-RX-TT-bot	CTAGA <u>GGAGTACGCGCCCGGGGAGCCCAA</u> GGGCACGCCCTGGCACCCGCAC
attP-PS-TC-top	G <mark>AGTGCCCCAACTGGGGTAACCT<mark>TC</mark>GAGTTCTCTCAGTTGGGGGGCGT</mark> A
attP-PS-TC-bot	CTAGTACGCCCCCAACTGAGAGAACTC <mark>CA</mark> AGGTTACCCCAGTTGGGGCACTCTG CA
attB-PS-TC-top	G <mark>GTGCGGGTGCCAGGGCGTGCCCTC</mark> GGGCTCCCCGGGCGCGTACTCCA
attB-PS-TC-bot	CTAGT <mark>GGAGTACGCGCCCGGGGAGCCC<mark>GA</mark>GGGCACGCCCTGGCACCCGCAC</mark> CT GCA
attP-SP-TC-top	CTAG <mark>AGTGCCCCAACTGGGGTAACCT<mark>TC</mark>GAGTTCTCTCAGTTGGGGGGCGT</mark> CTGC A
attP-SP-TC-bot	GACGCCCCCAACTGAGAGAACTC <mark>GA</mark> AGGTTACCCCAGTTGGGGCACT
pL-Eco-top	
	ACTGACCAAGCTTGCTCTAGA
pL-Eco-bot	ACTGACCAAGCTTGCTCTAGA
pL-Eco-bot pL-tet-top	ACTGACCAAGCTTGCTCTAGA AATTTCTAGAGCAAGCTTGGTCAGTGCGTCCTGCTGATGTGCTCA AATTCTTAAGTCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATA CTGAGCACATCAGCAGGACGC
pL-Eco-bot pL-tet-top pL-tet-bot	ACTGACCAAGCTTGCTCTAGA AATTTCTAGAGCAAGCTTGGTCAGTGCGTCCTGCTGATGTGCTCA AATTCTTAAGTCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATA CTGAGCACATCAGCAGGACGC GTATCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGACTTAAG
pL-Eco-bot pL-tet-top pL-tet-bot pL-lac-top	ACTGACCAAGCTTGCTCTAGA AATTTCTAGAGCAAGCTTGGTCAGTGCGTCCTGCTGATGTGCTCA AATTCTTAAGTCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATA CTGAGCACATCAGCAGGACGC GTATCTCTATCACTGATAGGGATGTCAATCTCTATCACTGATAGGGACTTAAG AATTCTTAAGAATTGTGAGCGGATAACAATTGACATTGTGAGCGGATAACAAGATA CTGAGCACATCAGCAGGACGC

Table S1.2 PCR primers for initial isolation of crt genes

<i>crtB</i> -EU-for	AGGAGGA TTACAAA ATGAATAATCCGTCGTTACTCAATCATGCGG
<i>crtB</i> -EU-rev	TTAGAGCGGGCGCTGCCAG
<i>crtE</i> -EU-for	AGGAGGATTACAAAATGACGGTCTGCGCAAAAAAACACG
<i>crtE</i> -EU-rev	TTAACTGACGGCAGCGAGTTTTTTGTC
crtl-EU-for	AGGAGGATTACAAAAGAAGAAACCAACTACGGTAATTGGTGCAGG
crtl-EU-rev	TTA TATCAGATCCTCCAGCATCAAACCTGC
crtY-EU-for	AGGAGGA TTACAAAAAGCCGCATTATGATCTGATTCTCG
crtY-EU-rev	TTA ACGATGAGTCGTCATAATGGCTTGC

Table S1.3 PCR primers incorporating *attP* and *attB* sequences

attB-TT-antibiotic- resistance-F	GAATTC <mark>GTGCGGGTGCCAGGGCGTGCCC</mark> TTGGGGCTCCCCGGGCGCGTACTCCA AGAGGTTCCAACTTTCACCAT
attB-TC- antibiotic- resistance-R	CCATG <mark>GTGCGGGTGCCAGGGCGTGCCCTC</mark> GGGCTCCCCGGGCGCGTACTCCTT TCTAGGCACCAATAACTGC
attP-TT-antibiotic- resistance-F	TCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>TT</mark>GAGTTCTCTCAGTTGGGGGCGT</mark> AAG AGGTTCCAACTTTCACCAT
attP-TC- antibiotic- resistance-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>TC</mark>GAGTTCTCTCAGTTGGGGGCG <mark>T</mark>TTTCTAGGCACCAATAACTGC</mark>
attB-TC- antibiotic- resistance-R	ACTAGT <mark>GGAGTACGCGCCCGGGGAGCCCGA</mark> GGGCACGCCCTGGCACCCGCAC TTCTAGGCACCAATAACTGC
attP-TT-crtB-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>TT</mark>GAGTTCTCTCAGTTGGGGGCGT <u>AGGAGGA</u>TTACAAA<u>ATG</u>AATAATCCGTCG</mark>
attP-CT-crtB-R	AGCAAATTC <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCGT TTA</mark> GAGCGGGCGCTGCCAG
attB-CT-crtB-R	AGCACTAGT <mark>GGAGTACGCGCCCGGGGAGCCCAG</mark> GGGCACGCCCTGGCACCCG CACTTAGAGCGGGCGCTGCCAG
attB-CT-crtE-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCAC</mark> GGGCACGCCCTGGCACCCG CACAGGAGGA
attP-CT-crtE-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>AGGAGGA</mark>TTACAAA<u>ATG</u>ACGGTCTGC</mark>
attB-GT-crtE-R	AGCACTAGT <mark>GGAGTACGCGCCCGGGGAGCCCAC</mark> GGGCACGCCCTGGCACCCGC ACTTAACTGACGGCAGCGAGTTTTTTGTC

attP-GT-crtl-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>GT</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>AGGAGGA</mark>TTACAAA<u>ATG</u>AAACCAACTACG</mark>
attP-CT-crtl-R	AGCGAATTC <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCG T<u>TTA</u>TATCAGATCCTCCAGCATCAAACCTGC</mark>
attP-CA-crtI-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>CA</mark>GAGTTCTCTCAGTTGGGGGCG T<u>TTA</u>TATCAGATCCTCCAGCATCAAACCTGC</mark>
attP-TC-crtl-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCTTCGAGTTCTCTCAGTTGGGGGCG</mark> T <u>TTA</u> TATCAGATCCTCCAGCATCAAACCTGC
attB-CC-crtI-R	AGCACTAGT <mark>GGAGTACGCGCCCGGGGAGCCCGG</mark> GGGCACGCCCTGGCACCCG CACTTATCAGATCCTCCAGCATCAAACCTGC
attB-TC-crtI-R	AGCACTAGT <mark>GGAGTACGCGCCCGGGGAGCCCGA</mark> GGGCACGCCCTGGCACCCG CACTTATATCAGATCCTCCAGCATCAAACCTGC
attP-CC-crtY-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CC</mark>GAGTTCTCTCAGTTGGGGGGCG T<mark>AGGAGG</mark>ATTACAAA<u>ATG</u>CAACCGC</mark>
attP-TC-crtY-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCTTCGAGTTCTCTCAGTTGGGGGCG</mark> T <u>TTA</u> ACGATGAGTCGTCATAATGGCTTGC
attB-CA-crtZ-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCTG</mark> GGGCACGCCCTGGCACCCGC ACAGGAGGA
attB-CC-crtZ-R	AGCACTAGT <mark>GGAGTACGCGCCCGGGGAGCCC</mark> GGGGCACGCCCTGGCACCCG CACCCTTACTTCCCGGATGC
attP-TT-crt*-F	AGCACTAGTAGTGCCCCAACTGGGGTAACCTTGGGGGTCTCTCTC
attP-CT-crt*-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCG TGCTGGAATTCGCCCTTTTA</mark>
attB-CT-crt*-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCAC</mark> GGGCACGCCCTGGCACCCG CACTCGCCCTTAGGAGGATTACA
attB-GT-crt*-R	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCAC</mark> GGGCACGCCCTGGCACCCGC ACGCTGGAATTCGCCCTTTTA
attP-GT-crt*-F	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>GT</mark>GAGTTCTCTCAGTTGGGGGCG TCGCCCTTAGGAGGATTACA</mark>
attP-TC-crt*-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCTTCGAGTTCTCTCAGTTGGGGGCG T</mark> GCTGGAATTCGCCCTTTTA
attR-GT-BB-F	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>GT</mark>GGGCTCCCCGGGCGCGTACTC CCGCTAAGGATGATTTCTGGA</mark>
attR-CA-BB-R	AGCACTAGTAGTGCCCCAACTGGGGTAACCTCAGGGCTCCCCGGGCGCGTACTC CGGTGACACCTTGCCCTTTT
attB-CT-idi-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCAC</mark> GGGCACGCCCTGGCACCCG CACAGGAGGA
attB-CC-idi-R	AGCACTAGT <u>GGAGTACGCGCCCGGGGAGCCCGG</u> GGGCACGCCCTGGCACCCG CACTTA
attP-CC-dxs-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CC</mark>GAGTTCTCTCAGTTGGGGGGCG T<u>AGGAGGA</u>TTACCTG<u>ATG</u>AGTTTTGATATTGCC</mark>
attP-CA-dxs-R	GCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>CA</mark>GAGTTCTCTCAGTTGGGGGCGT GGGA<u>TTA</u>TGCCAGCCAGG</mark>

attP-TT-vioA-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>TT</mark>GAGTTCTCTCAGTTGGGGGCGT AGGAGGA</mark>
attP-CT-vioA-R	AGCAATTC <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCGT<u>T</u> <u>TA</u>CGCGGCGATGCGCTGCAGCAG</mark>
attB-CT-vioB-F	AGCTCTAGA <u>GGAGTACGCGCCCGGGGAGCCCAG</u> GGGCACGCCCTGGCACCCG CACAGGAGGA
attB-GT-vioB-R	AGCACTAGT <u>GGAGTACGCGCCCGGGGAGCCCAC</u> GGGCACGCCCTGGCACCCGC ACTTAGGCCTCTCTAGAAAGCTTTCC
attP-GT-vioC-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>AGGAGGA</mark>TTACAAA<u>ATG</u>AAAAGAGCAATCATAGTCGGA</mark>
attP-CA-vioC-R	GCACTAGTAGTGCCCCAACTGGGGTAACCTCAGTTCTCTCAGTTGGGGGGCGT TTAGTTGACCCTCCCTATCTTGTAC
attB-CA-vioD-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCTG</mark> GGGCACGCCCTGGCACCCGC ACAGGAGGA
attB-CC-vioD-R	AGCACTAGT <u>GGAGTACGCGCCCGGGGAGCCCGG</u> GGGCACGCCCTGGCACCCG CACTTAGCGTTGCAGCGCGTAGCGCAG
attP-CC-vioE-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CC</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>AGGAGGA</mark>TTACAAA<u>ATG</u>GAAAACCGGGAACCGCCGCTG</mark>
attP-TC-vioE-R	AGCACTAGT <mark>AGTGCCCCAACTGGGGTAACCT<mark>TC</mark>GAGTTCTCTCAGTTGGGGGCG T<u>TTA</u>GCGCTTGGCGGCGAAGACGGC</mark>
D-attP-TT-vioA-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>IT</mark>GAGTTCTCTCAGTTGGGGGCGT ARRARRA</mark> TTAAAAAAATGAAGCATTCTTCCGATATCTGC
D-attB-CT-vioB-F	AGCTCTAGA <mark>GGAGTACGCGCCCGGGGAGCCCAG</mark> GGGCACGCCCTGGCACCCG CACARRARRATTAAAAT <u>ATG</u> AGCATTCTGGATTTTCCACGC
D-attP-GT-vioC-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CT</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>ARRARRA</mark>TTAAAAAATGAAAAGAGCAATCATAGTCGGA</mark>
D-attB-CA-vioD-F	AGCTCTAGAGGAGTACGCGCCCGGGGAGCCCTGGGGCACGCCCTGGCACCCGC ACARRARRATTACAAAATGAAGATTCTGGTCATCGGCGCG
D-attP-CC-vioE-F	AGCTCTAGA <mark>AGTGCCCCAACTGGGGTAACCT<mark>CC</mark>GAGTTCTCTCAGTTGGGGGCG T<mark>ARRARRA</mark>TTAAAAA<u>ATG</u>GAAAACCGGGAACCGCCGCTG</mark>

attP sequences are shown highlighted in yellow, *attB* sequences are highlighted in cyan. Bottom strand *attP* and *attB* sequences are underlined. Central dinucleotides (named according to their sequence on the top strand) are highlighted red. Ribosome binding sites (generally AGGAGGA) and start codons (ATG) in forward primers, and the reverse complement of stop codons (TTA) in reverse primers are shown underlined and bold.

Table S1.4 Sequencing Primers

VF2	TGCCACCTGACGTCTAAGAA
VR	ATTACCGCCTTTGAGTGAGC
crtB-out	CTGGAGCATGAAGGTCTGAA
crtE-out	GACGCTGGTCAATCTGTTAG
crtE-int-for	AACGTATTCGCCCCATGTT
crtl-int-for	GCCACCTCATCCATTTATAC
crtl-int-rev	CCACCCAGATCCTGAAACAG
crtl-3'-out	TCTGTGGAGCCCGTTCTTAC
crtl-out	GCATAACCGCGATAAAACCA
vioA-out	GTTCTGCCGCGACAGCGATA
vioB-out	ATACCCGCAGCTACGACGAC
vioC-out	ACACCCGCTACATGCATAGC
vioD-out-2	AGTCCGGCCACTTCTCCAT

Table S2 Summary of PCRs for assembly reactions

1 gene (attP attP)	Cm ^R into pSIRA1	
Forward Primer	Reverse Primer	Template
<i>attP</i> -TT-antibiotic- resistance-F	attP-TC-antibiotic- resistance-R	pSW23

1 gene (attP attB)	Cm ^R into pSIRA3	
Forward Primer	Reverse Primer	Template
<i>attP</i> -TT-antibiotic- resistance-F	<i>attB</i> -TC-antibiotic- resistance-R	pSW23

1 gene (attB attB)	Cm ^R into pSIRA2	
Forward Primer	Reverse Primer	Template
<i>attB</i> -TT-antibiotic- resistance-F	attB-TC-antibiotic- resistance-R	pSW23

1 gene (attP attP)	Kan ^R into pSIRA1	
Forward Primer	Reverse Primer	Template
<i>attP</i> -TT-antibiotic- resistance-F	attP-TC-antibiotic- resistance-R	pSW29

1 gene (attP attB)	Kan ^R into pSIRA3	
Forward Primer	Reverse Primer	Template
<i>attP</i> -TT-antibiotic- resistance-F	attB-TC-AbR	pSW29

1 gene (attB attB)	Kan ^R into pSIRA2	
Forward Primer	Reverse Primer	Template
attB-TT-antibiotic- resistance-F	attB-TC-antibiotic- resistance-R	pSW29

3 genes	crtB, crtE, crtl into pSIRA1	
Forward Primer	Reverse Primer	Template
attP-TT-crtB-F	attP-CT-crtB-R	pCM1
attB-CT-crtE-F	attB-GT-crtE-R	pCM2
attP-GT-crtI-F	attP-TC-crtI-R	pCM3

3 genes	crtB, crtE, crtl into pSIRA3	
Forward Primer	Reverse Primer	Template
attP-TT-crtB-F	attB-CT-crtB-R	pCM1
attP-CT-crtE-F	attB-GT-crtE-R	pCM2
attP-GT-crtI-F	attB-TC-crtI-R	pCM3

4 genes	crtB, crtE, crtI, crtY into pSIRA1	
Forward Primer	Reverse Primer	Template
attP-TT-crtB-F	attP-CT-crtB-R	pCM1
attB-CT-crtE-F	attB-GT-crtE-R	pCM2
attP-GT-crtI-F	attB-CC-crtI-R	pCM3
attP-CC-crtY-F	attP-TC-crtY-R	pCM4

5 genes	crtB, crtE, crtI, crtZ, crtY into pSIRA1		
Forward Primer	Reverse Primer	Template	
attP-TT-crtB-F	attP-CT-crtB-R	pCM1	
attB-CT-crtE-F	attB-GT-crtE-R	pCM2	
attP-GT-crtI-F	attP-CA-crtI-R	pCM3	
attB-CA-crtZ-F	attB-CC-crtZ-R	P. agglomerans genomic DNA	
attP-CC-crtY-F	attP-TC-crtY-R	pCM4	

3 genes random		
order	crtB, crtE, crtI, crtZ,	crtY into pSIRA1
Forward Primer	Reverse Primer	Template
attP-TT-crt*-F	attP-CT-crt*-R	pCM1
attB-CT-crt*-F	attB-GT-crt*-R	pCM1
attP-GT-crt*-F	attP-TC-crt*-R	pCM1
attP-TT-crt*-F	attP-CT-crt*-R	pCM2
attB-CT-crt*-F	attB-GT-crt*-R	pCM2
attP-GT-crt*-F	attP-TC-crt*-R	pCM2
attP-TT-crt*-F	attP-CT-crt*-R	pCM3
attP-CT-crt*-F	attB-GT-crt*-R	pCM3
attP-GT-crt*-F	attP-TC-crt*-R	pCM3

attP-GT-crt*-F	attP-TC-crt*-R	pCM3		
5 genes	vioA vioB, vioC, v	vioA vioB, vioC, vioD, vioE into pSIRA4		
Forward Primer	Reverse Primer	Template		
attP-TT-vioA-F	attP-CT-vioA-R	C. violaceum genomic DNA		
attB-CT-vioB-F	attB-GT-vioB-R	C. violaceum genomic DNA		
attP-GT-vioC-F	attP-CA-vioC-R	C. violaceum genomic DNA		
attB-CA-vioD-F	attB-CC-vioD-R	C. violaceum genomic DNA		
attP-CC-vioE-F	attP-TC-vioE-R	C. violaceum genomic DNA		
	vioA vioB, vioC, v	ioD, vioE degenerate RBS into		

5 genes	<i>vioA vioB, vioC, vioD, vioE</i> degenerate RBS into pSIRA4		
Forward Primer	Reverse Primer	Template	
D-attP-TT-vioA-F	attP-CT-vioA-R	C. violaceum genomic DNA	
D-attB-CT-vioB-F	attB-GT-vioB-R	C. violaceum genomic DNA	
D-attP-GT-vioC-F	attP-CA-vioC-R	C. violaceum genomic DNA	
D-attB-CA-vioD-F	attB-CC-vioD-R	C. violaceum genomic DNA	
D-attP-CC-vioE-F	attP-TC-vioE-R	C. violaceum genomic DNA	

ccdB-Cm ^R cassette	into pSIRA1 crtB-crtE-crtI-crtZ-crtY	
Forward Primer	Reverse Primer	Template
attR-GT-BB-F	attR-CA-BB-R	p-Cm ^R -ccdB

crtl mutant library	into pSIRA1 crtB-crtE-ccdB-Cm ^R -crtZ-crtY	
Forward Primer	Reverse Primer	Template
attP-GT-crtI-F	attP-CA-crtI-R	pCM3

3 genes crtl-dxs-idi	into pSIRA1 crtB-crtE-ccdB-Cm ^R -crtZ-crtY	
Forward Primer	Reverse Primer	Template
attP-GT-crtI-F	attP-CT-crtI-R	рСМ3
attB-CT-idi-F	attB-CC-idi-R	<i>E. coli</i> genomic DNA
attP-CC-dxs-F	attP-CA-dxs-R	<i>E. coli</i> genomic DNA