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1 Phylogenetic Reconstruction

Since the second stage in our algorithm builds a tree from a distance ma-
trix, and since we also compare our trees to competitive trees constructed by
standard approaches, we here give a very high level description of phyloge-
netics. Standard sequence (or nucleotide) based phylogenetic reconstruction
receives as input a set of n orthologous sequences (typically representing the
same gene at the n different species under study) and attempts to constructs
a tree that best represents the evolutionary history of the gene set. These
methods are divided into two main categories: character based versus dis-
tance based methods. Character based methods first align the sequences
by stretching them to a uniform length using gaps to account for events
of DNA insertion and deletion. The goal is to posit all homologous bases
in the sequences in one column that induces a character over the set of all
possible states. The most prevalent character based methods are maximum
likelihood (ML) [7] and maximum parsimony (MP) [10]. ML is model based
and attempts to optimize the model parameters to maximize the likelihood,
while MP is parameter free and seeks for a tree minimizing the sum of
mutations. Although both steps of character based methods, the multiple
alignment and the phylogenetic reconstruction, are very computationally
intensive, this approach is considered more accurate and a constant effort
is being done to improve their performance (e.g., RAXML [22, 23|, Fast-
Tree [17] and GARLI [27]).

In contrast to character based methods, distance based methods work on
pairs of sequences and therefore alleviate the computational burden of con-
sidering all sequences simultaneously. Hence, these methods are considered
less accurate. Their major advantage is their efficient algorithm and hence
its popularity among practitioners. At the first stage, pairwise distances
between all pairs of sequences are estimated, based on a specific model of



sequence evolution [12]. This results in a n x n distance matrix [D]; ;. At
the second stage, some recursive “cherry-picking” algorithm is applied on
the matrix D, resulting in a tree T" where the distances between leaves in 7',
approximate the distances in D. The most popular algorithm for the latter
task is neighbor-joining (NJ) [21] that is implemented by a host of software
(see e.g. [11, 8, 25])

Sequence based reconstruction is fundamentally based on deep statisti-
cal, mathematical and computational foundations with aspect of statistical
consistency, fast convergence and computational complexity (see e.g. [1, 2,
14, 5, 6, 13, 15]). These aspects are beyond the scope of the current work
(but see the Conclusions Section for further discussion on the subject).

2 Bootstrap

Testing the significance or probability of the resulted phylogeny can be car-
ried out by decay index [4], minimum evolution [19, 20|, bootstrap [9] or
the comparison of tree Log likelihoods [16] methods. Out of the mentioned
methods, the most commonly used is bootstrap analysis. Bootstrap is a
statistical method for estimating the distribution of a statistic test by re-
sampling one’s data. Normally, in sequence based reconstruction, each site
of the aligned sequences is chosen uniformly at random and this procedure
is repeated as the length of the aligned sequences.

In order to perform bootstrap analysis on the SI tree a different bootstrap
based calculation is required since the SI tree is based on synteny index and
not on a set of homologous aligned sequences. Therefore we devised the
following approach to allow bootstrap for the new method: for every pair of
genomes G;, Gj from the genome set G, we constructed the SI probability
density function f(SI), where, for 0 < x < 2k, f(z) holds the number of
genes in the union set of genes G; U Gj with ST = x. Next we conducted a
weighted sampling from that distribution with number of samples |G; UGj|.
For example, suppose that a fraction of 0.2 of all the genes in G;UG; have SI
5. Then the SI value 5 is chosen with probability 0.2. When we average the
obtained results of all |G; U G| samples, we obtain the bootstrap SI value
for genomes G, G;. This value is put in the G;, G; entry in the bootstrap
distance matrix. Having done so for all pairs, we obtain the bootstrap SI
matriz from which we build the tree.

The process is iterated as the number of bootstrap iterations defined. We
used bootstrap value of 500.



3 Tree Reconstruction Comparisons

To test genome reconstruction methods we first generate random yule tree [26],
representing the species evolution, and subsequently evolve an ancestral
genome according to it, yielding descendants (taxa) genomes at the leaves.
Thereafter we attempt to reconstruct the original tree from the generated
taxa genomes. The final step is to compare the original model, species tree
and the reconstructed one using the standard Robinson and Foulds (RF)
tree comparison measure implemented in the Phylip phylogenetics suit [8].

Pseudo algorithm

1. orig_yule_tree<—generate_yule_tree(parameters)

2. taxa_genomes<simulate_taxa_genomes(orig_yule_tree, ancestor_genome)
3. reconstructed_tree<—reconstruction_method(taxa_genomes)

4. score «+ RF(orig_yule_tree, reconstructed_tree)

3.1 Yule tree generation

A Yule process advances recursively and builds a tree while advancing. At
every recursion step the node with the earliest time point is chosen and
processed. At node’s processing two edge lengths are tossed randomly from
a predefined distribution. These will be the edge lengths to the two children
of the chosen node and their time points will be their ancestor’s time plus
their edge lengths. When the set of yet unprocessed nodes contains n nodes,
the recursion terminates and all nodes are assigned with the time of the
earliest unprocessed node. Such a procedure generates an ultrametric tree
(or molecular clock tree) in which the distance (path length) from the root
to any leaf, is the same.

Edge length desceribe a birth Poisson process that distribute exponentially
with rate £. p represents the probability of an event occuring during this
time period. The procedure receives p as a parameter and transforms it to
the corresponding time period, that we denote by length ¢ = —log(1 — p).
Next, edge length leading node v is drwan randomly end exponentially, [, ~
Exp(¢). Hence we obtain that edge lengths for our tree are exponentially
distributed with length ¢ = —log(1 — p).



3.2 Simulating Genome Evolution

To generate genomes, i.e. gene sequences, according to the species tree we
first define the ancestral root genome (usually 1,2,3..N for simplicity) and
then propagate it down along the Species tree. Hence, given any ancestral
genome we obtain its two children according to their edge lengths with the
following procedure - every gene in the child node v’s genome undergoes an
event with probability 1 — e =% where ¢, is the length of the node entering
v (i.e. the edge from v’s ancestor to v). An event can be either an HGT
or a gene loss. In a HGT event, a new location on the genome is chosen
uniformly and the gene is moved to this location. Otherwise (a gene loss
event) the gene is deleted from the genome. In models where no gene loss
is permitted (the simulation to genome rearrangement software) all events
are HGT. In other models (simulation to gene content or directed pairs)
the type of event is determined with probability Pr(pHGT) (see sub section
of simulations for Whole Genome based Reconstruction). Hence, the closer
the children to their ancestor, they carry more resemblance to it (in terms
of SI), as they underwent less events. This process is repeated recursively
along the tree until the leaves are reached. Their resulted genomes are our
input taxa genomes which is fed to the reconstruction methods. The proce-
dure also supports more general and more parametrized genomic mutation
mechanisms including gene deletion, gene gain, gene block HGT and non
uniform HGT new location choice.

Simplified pseudo algorithm:

define Simulate genomes(genome, treenode)
If leaf then
taxa_genomes < genome
Else
child_1 genome < mutate genome( father_genome,
mutation_rate=child1_edge_length )
Simulate_genome(child1_genome, child1)
child_2 genome < mutate genome( father_genome,
mutation_rate=child2_edge length )
Simulate_genome(child2_genome, child2)

run Simulate genomes(source_genome, source_treenode)



3.3 Tree Similarity Measures

There are several approaches to measure similarity between phylogenies.
These are normally used in simulation studies where the “true” model tree
is known and the accuracy of the reconstruction method is measured by the
distance of the reconstructed tree to the model tree. There are several tree
metrics. We chose the most common ones:

1. Robinson-Foulds Symmetric Difference: The removal of an edge in a
phylogenetic tree induces two sub-trees and hence partitions (or splits)
the taxa set into two parts. An edge is shared by two trees over the
same taxa set, if it induces the same partition in the two trees. The
Robinson-Foulds (RF) [18] symmetric difference between two trees is
the number of edges (splits) in ezactly one tree. This is commonly
normalized by the total sum of internal edges in both trees to give a
number between zero and one. As we here measure similarity rather
than distance between trees, we subtract the symmetric difference from
one. RF was produced by the function treedist in Phylip [8].

2. Mazimum Agreement Subtree (MAST): Let T be a tree over a taxa set
S and A C S. We denote by T'|4 the tree induced by the subset A of
leaves, so that all degree-two nodes are suppressed. We also normalize
the scores to [0..1] scale for readability and simplicity. The MAST
score between two trees 17,75 is the size of the largest subset A, such
that T1|4 = T|a. To produce the MAST distance between T} and T5,
we normalize the MAST score by the number of leaves common to T}
and Ty Note that if the MAST distance between two trees is 1, then
the two trees are identical. MAST is implemented by the function
agree in PAUP* [24].

3. Quartet Fit: A quartet is a tree on four leaves {a,b,c,d}. We write a
quartet g over {a, b, c,d} as ab|cd if there exists an edge in ¢ splitting
a,b from c,d. If the quartet is resolved (i.e., binary), then it has an
edge separating two of the leaves from the other two. Hence, each
binary quartet on a,b,c,d can be written as one of ablcd, ac|bd, or
ad|bc. When a tree T on the full taxa set S has an edge separating
a,b from ¢, d, then we say that T induces the quartet ab|cd, and that
the quartet tree abled is consistent (or agrees) with T. There are (})
quartets in a tree (note that a quartet does not have to be resolved
under a given tree). The quartet fit [3] measure counts which of all
(Z) quartets share the same topology between the two trees. As the



size of the trees prohibits testing all (Z) combinations of four taxa, we
implemented a randomized version that samples uniformly at random
a subset of the full (}) set.

3.4 Simulation Results Graphs

Figures 1 and 2 show simulation results measuring quality of reconstruction
as a function of k for various HGT rates.
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Figure 1: Quality of reconstruction (RF symmetric difference to the model tree) as
a function of k for various HGT rate (HGT probability at each a gene in a genome).
Simulated number of taxa (n) is 100, genome size is 500.

Figure 2 shows a similar result, only that here k is held constant and
the rate of HGT is varied (that is, trees of different lengths were generated).
Again, the superiority of small &k, but not too small, is shown over too large
k’s.



10 Reconstruction quality as a function of HGT rate
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Figure 2: Quality of reconstruction (RF symmetric difference) as a function of
HGT intensity for various values of k. Simulated number of taxa (n) is 100, genome
size is 500.



3.5 Simulation Results with Related Whole Genome based
Reconstruction Techniques

Figures 3, 4, and 5 show results on camparison of Synteny Index vs Directed
Pairs vs Gene Content. The different figs show results for different values
pHGT (0.9, 0.8, 0.7)

Reconstruction Quality Benchmark:

loPhon Sl vs. Directed Pairs vs. Gene Content. pHGT = 0.9
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Figure 3: Phylo SI vs. Directed Pairs vs. Gene Content reconstruction qual-
ity Benchmark. Measured: reconstruction quality (normalized Robinson-Folds be-
tween model and reconstructed trees) as a function of event rate. Probability of
event at a gene in a genome distributed exponentially with parameter “event rate”.
An event at a gene is HGT with probability (pHGT) or gene loss with probability
(1-pHGT). Genomes size is 700, number of taxa in the phylogenetic tree is 80, K
value in SI method is 10, pHGT (HGT probability at the mutation event in tree
simulation) is 0.9.



Reconstruction Quality Benchmark:
Phylo Sl vs. Directed Pairs vs. Gene Content. pHGT = 0.8
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Figure 4: Same parameters as in Figure 3 but pHGT 0.8.

Reconstruction Quality Benchmark:

loPhon Sl vs. Directed Pairs vs. Gene Content. pHGT = 0.7
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Figure 5: Same parameters as in Figure 3 but pHGT 0.7.



4 The 89 Uniformly Selected Bacterial Trees

4.1 Genome Preprocessing

As described in the main text, we created gene lists, based on RefSeq annota-
tion. RefSeq however contains many spurious entries such as “hypothetical
gene” and alike. We therefore applied the following rule. We removed all
gene names of length greater than five letters. The average percentage of re-
moved genes was 5.63% (std 0.72) and the average genome length (#genes)
after removal was 1782.57. This relatively low percentage shows that the
influence of these spurious genes is negligible. Figures 6 and 7 show a his-
togram of the gene name lengths in the genome analyzed and a histogram
of the percentage of genes that were removed in each genome.

Finally, Figure 8 shows a histogram of the genome length after name
filtration.
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Figure 6: distribution of gene name lengths in the organisms analyzed.
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16 Filtered genes percentage histogram
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Figure 7: Percentage of genes filtered out from the genomes.
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Figure 8: Genome size (#genes) histogram for the genomes analyzed.
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4.2 Resulted Trees

We here show the resulted trees by the four methods, the SI-tree, the TOL-
tree, the 16s-tree, and the AMPHORA tree. Trees were all rooted identi-
cally with Bacteroides fragilis as outgroup to facilitate comparison.

The supplementary material contains the trees in Newick format and
additionally the original RDP NJ tree and the gene content and directed
pairs trees.

Figure 9: The SI tree on 89 microbial organisms.
The tree was constructed by Neighbor Joining from pairwise distances [D]; ; =
1-510(G;, G;). The tree is, by construction, fully resolved (86 internal branches).

12



Chiinophaga pinensis DS s
e Chlrabium imicola DSW s

Symbiotacterum amophium e

—_
e Desulbtomacuium reducens 4
“Ammonite degensilKC1
[ T Culsanasronactr subtemansus e
” 0Si s
i aiiesiuntor saccharcifcus DM ams
Oceanobacilus neyensis HTEns

Ackdobactenum capsulatum ATOC 1
Mpcococeus cnthus DK 12
Nitatiuptorsp Siss:2
Campyobacter concisus 152
AcinGbacus Succinogenss 1z

—
goregatiacte
L Haemonhius intuemzae sastip

Baumannia cicadsiinicoa st He

Shewancia bllca 05155

Dubin st CT_isasss
x

WoH 57

————— Paniosa ananats LG s
Acantoracborkumensis SKi
cinstotacter baumanni ABws?

Aatlimnicora shichil VLHE 1

Vibro choleras s
r
e Ao samonicida Lrlus

4 i Brucela meltensis by 1515441

Caulobactervibriodes CBis
Acighium et JF-5
Sphingomonas aromatichorans DSM s2us

.2 3
e —
Biarossoracsshise AL 2

Rusgeria pomeroyi D355
Dechioromonas aromaica RCE

Ralstonia picketi 1:0

 Gaita aidovorans Seria
Neissera genanhoeas FA

e — e T
DS e
L Renacteium samoninarum ATCC s ;
Bifdobacarium adolaszanls ATCC 1502
‘Rubrabacterlanophius DSN s

Acatyochlors marina HBICasor
‘anacasnavariabils ATCC s
Nostoc sp PCC 71
Cpancthece sp PCC 2t
Synechocaccus elongaus POC o1

Chlorefoxus aggragans DS yws

Chlamycia murdarum Nigg

Opiuus fira: B

Suluribycrogenibium sp YOIAOP
Thermotoga lstinga THO
Dainacoccus desaiVCDLss

Figure 10: The Tree of Life was constructed using iTOL on 89 microbial organisms.
As can be seen the tree is very loosely resolved with only 41 internal branches.
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Figure 11: The 16s rRNA tree built by maximum likelihood using PhyML GTR
+ gamma (designed for sequences with significant between-site rate heterogeneity)
over aligned sequences extracted from the Ribosomal Database Project.
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Figure 12: The Amphora tree.

15



5 The Tree Over Large Enough Genomes

5.1 Genome Size Confidence Values under RefSeq

As was discussed before, RefSeq annotation for several genomes is very
sparse, to the degree that some genomes in our 89 uniformly selected genomes,
contain only a few dozens of annotated genes, preventing any reliable phy-
logenetic inference. As it was shown above, the major factor of confidence,
is the “coverage” of the genome, that is, the number of identified genes. For
this purpose, we devised the following confidence criterion. Let g; = |G}
be the “size” of genome ¢ in terms of the number of annotated genes under
RefSeq, and gpr be the maximum g; over all genomes in the set. Then, for
a leaf GG; in the tree, the confidence of the branch emanating from G;, Cj, is
defined as C; = log g;/ log gps. Alternatively, for an internal node i, let ; be
the tree (clade) rooted under it, and |¢;| the number of leaves in ¢;. Then,
the confidence of internal node i is a weighted sum of the confidence of its
children where the weight of a child j is its subtree size |t;| and the total
sum is normalized by the subtree size under node i, |t;|. It is easy to see
that C; is at most 1 and equals 1 only for the genome with the maximum
number of annotated genes.

5.2 The 5004+ Genes Genome Tree

We filtered out all genomes with less than 500 genes and left with only
47 organisms, where the maximally annotated genome is of Pantoea ana-
natis with 3494 genes. The table, with confidence values is found in the
supplementary material. The resulted tree is shown in Figure 13
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Figure 13: The tree over genomes of at least 500 genes. The numbers at the nodes
represent the confidence values for the respective nodes.
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6 The Alphaproteobacteria Trees
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Figure 14: The SI tree on 45 «-proteo bacteria organisms. The tree
was constructed by Neighbor Joining from pairwise distances [D]; ;

1-— WlO(Gi, Gj).
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Crientia Tsutsugamushi Boryong
| Rickettsia typhi str. Wilmingtan

Rickettsia belli RML365.C
Rickettsia felis URRWXCal2
Rickettsia africae ESF 5
Rickettsia conoril str. Malish 7
Rickettsia massiliae MTUS
Brucella ovis ATCC 25840
Brucella abortus bv.1 str.9.941
Brucella canis ATCC 23345
Brucella suis ATCC 23445

Bartonella clarridgeiae 73
Bartonella quintana str Toulouse
Bartonella tribocorum CIP 105476
Bartonella grahamii asdaup
Bartonella bacillifermis KC583

Sinerhizokium melilofi 1021

Agrobacterium witis S4
Agrobacterium tumefaciens str Csg
Agrobacterium sp. H13.3

Rhizobium leguminosarum bv.viciae 3841
Rhizobium etli CFN 42

Rhizobium efli CIAT §52

Agrobacterium radicbacter Ka4
Azorhizoblum caulinedans ORS 571

Hyphoricrabium sp. MC1
Hyphomeonas neptunium ATCC 15444

— Dinoroseobacter shibae DFL 12
Rhodobacter sphaeraides 2.4.1
Rhodobacter capsulatus SB 1003
Ruegeria pomeroyi DSS 3
Rosecbacter denitrificans Och 114

Methylobacterium extorguens DM4
:Me‘rhyloboc‘rerium extorguens AM|1

Oligotropha carboxidovorans OMS
Bradyrhizobium sp. ORS278
Bradyrhizobiurm sp. BTAI1
Bradyrhizobium japonicum USDA 110

Phenylobacterium zucineum HLK1
Caulobacter crescentus NA1000
Sphingobium japonicum UT245

Rhodospirillum cenfenum SW
Azospirillum sp. Bs1

Acidiphilium multiverum AlUsot

Candidatus Pelagibacter ubique HTCC 1082

Figure 15: The 16s rRNA tree extracted from the Ribosomal Database

Project.

19



Crientia tsutsugamushi Boryong
Rickettsia typhi str. Wilmingfton
Rickettsia felis URRWXCal2
Rickettsia massiliae MTUs
Rickettsia africae ESF 5
Rickettsia conoril str. Malish 7
Rickettsia belii RML3s C
Sphingobium japonicum UT265

Qligotropha carboxidovorans CM5
_l [ Bradyrhizobium japonicurm USDA 110

Bradyrhizokium sp. BTAI1

|—Brodyrhizobium sp. ORS278

Bartonella clarridgeice 73
Bartonella bacilifarmis KCs83
Bartonella fribocorum CIP 105476
Bartonella grahamii asdaup
Barfonella quintana str. Toulouse
Azorhizoblum caulinodans ORS 571
—Methylobacterium extorguens DM4
—  Methylobacterium extorquens AM1
Hyphoricrabium sp. MC1
Sinerhizobium melilofi 1021

Rhizobium leguminosarum bv.viciae 3841

4|_:Rhizobium offi CFN 42

Rhizobium efli CIAT 52
Agrobacterium witis S4
Agrobacterium sp. H13.3

Agrobacterium tumefaciens str. Cs8

_:AgrobocTerium radiobacter K84
J Brucella suis ATCC 23445
Brucella canis ATCC 23345
Brucella ovis ATCC 25840
Brucella abortus by 1 str. 9.941

I Caulobacter crescentus NA1000
1 Phenylobacterium zucineum HLK1
Azospirillum sp. Bst
[ i Rhodospirillum cenfenum SW

Acidiphilium muttivorum AlU301
Dinorosecbacter shibae DFL 12
Rhodobacter capsulatus SB 1003
1 Rhodobacter sphaeroides 2.4.1
Ruegeria pomeroyi DSS 3
Roseobacter denitrificans Och 114
Hyphomonas neptunium ATCC 15444

Candidatus Pelagibacter ubique HTCC 1062

o8

Figure 16: The Tree of Life built using iTOL
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Figure 17: The bootstrap trees contain only edges with more the 80% values

a. 16S bootstrap tree b. SI bootstrap tree
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