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S.1 Supplementary Methods: Statistical Positioning (Nucleosome Lo-
cation and Its Variance)

Statistical positioning describes how the combination of (1) barriers confining nucleosome movement and
(2) inter-nucleosomal steric hindrance affects the distribution of densely packed nucleosomes. In this
framework, the nucleosomes are modeled as one-dimensional gas, with N non-overlapping finite-sized
particles distributed at random in a finite region of length w, where all valid configurations are given equal
probability. The effective size d of the particles, determining how tightly they can be packed, parametrizes
the effect of steric constraints. Because of the discrete nature of the genomic sequence, all quantities take
integer values. Let Xk denote the center location of the k-th nucleosome (numbered sequentially from left
to right; see figure below). The primary goal of this section is to calculate E[Xk] and Var[Xk].
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An equivalent problem that can be easily solved is to examine the distribution of the gaps between
nucleosomes. Let Lk denote the length of the gap to the left of the k-th nucleosome, and let LN+1 be the
length of the gap between the N -th nucleosome and the right barrier. Any configuration can be uniquely
specified in terms of these gaps, and the position of the k-th nucleosome is

Xk = (k − 1/2)d+ Yk, (S1)

where Yk =
∑k

i=1 Li is the partial sum of gap lengths to the left of the k-th nucleosome. Because all
configurations have the same total gap length, i.e.

L1 + L2 + ...+ LN+1 = w −Nd ≡ L,

there is a one-to-one map between the set of valid configurations and the set of weak compositions of L
into N + 1 ordered non-negative integers. Thus, there are

(
L+N
N

)
distinct configurations in total. Noting

that the number of configuration with Yk = y is equal to the number weak compositions of y into k parts
times the number of weak compositions of (L− y) into N − k + 1 parts, the probability of Yk is

P (Yk = y) =

(
y+k−1
k−1

)(
L−y+N−k

N−k
)(

L+N
N

) . (S2)
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S.1.1 Statistical Positioning with a Single Barrier

Before calculating Var[Xk] for double barriers, we give a simplified derivation of the most important result:
Var[Xk] increases linearly in k at the rate `(` + 1) away from a single barrier, where ` is the mean gap
length between nucleosomes. This relation is true even if the barrier is not firm, but merely imposes a
partial restriction on a nucleosome. The linear scaling further generalizes to a broader class of models
where nucleosomes interact through some interaction potential V , although how fast variance changes
between nucleosomes may be different. (In the case of statistical positioning, this potential vanishes unless
the nucleosomes overlap, in which case it is infinite.)

To prove the linear scaling, note that

Xk = Xk−1 + Lk + d,

where Lk is the length of the gap between the two nucleosomes. We now assume that a restriction is
imposed on the 0’th nucleosome, causing Var[X0] to be finite. We further assume that all subsequent
nucleosomes are allowed to move freely, except for steric interactions with immediate neighbors. If the
array of nucleosomes continues indefinitely, the gap length Lk becomes independent of the position Xk−1
of the nucleosome to the left; note that this independence does not hold for a finite nucleosome array
confined to a finite region delimited by two barriers. Using that Xk is the sum of two independent random
variables then gives

Var[Xk] = Var[Xk−1] + Var[Lk]. (S3)

Furthermore, for k ≥ 1, E[Lk] is independent of k for a semi-infinite array, giving

E[Xk] = E[X0] + kE[Lk] + kd, Var[Xk] = Var[X0] + kVar[Lk].

Thus, the variance increases linearly in this class of models, and the variance gradient, defined as Var[Xk+1]−
Var[Xk], corresponds to the “wiggle room” that the interaction allows.

In the case of statistical positioning, Var[Lk] can be evaluated by noting that P (Lk = y) = P (Y1 = y).
In the limit L→∞ with the ratio L/N = ` kept fixed, P (Y1 = y) in Eq. S2 becomes

P (Lk = y) = P (Y1 = y)→ `y

(`+ 1)y+1
. (S4)

It is then straightforward to show that E[Lk] = ` and Var[Lk] = `(`+ 1), yielding

Var[Xk] = Var[X0] + k`(`+ 1)
E[Xk] = E[X0] + k(`+ d)

. (S5)

S.1.2 Statistical Positioning with a Pair of Fixed Barriers

Next, we evaluate E[Xk] and Var[Xk] in the case of a pair of fixed barriers. This is is simplified by
expressing E[Yk] and Var[Yk] in terms of un-normalized moments Sa defined as

Sa =

L∑
y=0

ya
(
y + k − 1

k − 1

)(
L− y +N − k

N − k

)
.

Using Eq. S2, we can express E[Yk] and Var[Yk] as

E[Yk] =
S1
S0
, and

Var[Yk] = E[Y 2
k ]− E[Yk]

2 =
S2
S0
− S2

1

S2
0

.
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One practical method for evaluating these sums is to use the generalized binomial expansion

1

(1− z)k
=

∞∑
y=0

(
y + k − 1

k − 1

)
zy. (S6)

By acting on this equation with (z d
dz )a and multiplying by 1

(1−z)N−k+1 , it is straightforward to show that

∞∑
y=0

ya
(
y + k − 1

k − 1

)
zy ×

∞∑
j=0

(
j +N − k
N − k

)
zj

=

((
z
d

dz

)a 1

(1− z)k

)
× 1

(1− z)N−k+1
.

Because the moment Sa is the L’th order term in the z-expansion of left-hand side, it can be evaluated by
algebraically simplifying the right-hand side and extracting the L’th order term using Eq. S6. For example,
to evaluate S0 we set a = 0 and expand the right hand side using Eq. S6:

1

(1− z)k
1

(1− z)N−k+1
=

∞∑
j=0

(
j +N

N

)
zj .

Extracting the L’th order term gives S0 =
(
L+N
N

)
, proving that the probability in Eq. S2 is correctly

normalized.
Next, to calculate S1, we extract the L’th order term from(

z
d

dz

1

(1− z)k

)
× 1

(1− z)N−k+1
=

∞∑
j=0

k

(
j +N

N + 1

)
zj ,

yielding S1 = k
(
N+L
N+1

)
. We thus get

E[Yk] =
S1
S0

=
k
(
N+L
N+1

)(
N+L
N

) =
kL

N + 1
= k`, (S7)

where ` = L
N+1 is the average gap length. Using Eq. S1 and Eq. S7, the expectation value of Xk is

E[Xk] = k(`+ d)− d/2 .

Similarly, S2 is evaluated by extracting the L’th order term from(
z
d

dz
z
d

dz

1

(1− z)k

)
× 1

(1− z)N−k+1
=
kz(1 + kz)

(1− z)N+3

=

∞∑
j=0

[
k

(
j +N + 1

N + 2

)
+ k2

(
j +N

N + 2

)]
zj ,

giving

E[Y 2
k ] =

S2
S0

=
k
(
L+N+1
N+2

)
+ k2

(
L+N
N+2

)(
N+L
N

) =
kL(1 + k(L− 1) + L+N)

(N + 1)(N + 2)
.

The variance of Yk is then

Var[Yk] = E[Y 2
k ]− E[Yk]

2 =
kL(N + 1− k)(L+N + 1)

(N + 1)2(N + 2)
.
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Since Xk and Yk differ only by a constant, we have

Var[Xk] = Var[Yk] = `(`+ 1)
k(N + 1− k)

N + 2
. (S8)

In the limit of large N with ` kept fixed, this expression reduces to

Var[Xk]→ k`(`+ 1) , (S9)

which is Eq. S5 with Var[X0] = 0. Note that this linear scaling also holds near the boundaries of a long
confining interval.

S.1.3 Single Barrier Limit of the Grand Canonical Ensemble

It is well known in statistical physics that the Grand Canonical Ensemble (GCE) and the Canonical
Ensemble (CE) are equivalent in the thermodynamic limit of large N with fixed density w/N . The N -
nucleosome term in the GCE partition function is ZN =

(
w−Nd+N

N

)
eNµ, where w is the length of the interval

bounding the nucleosomes and µ the chemical potential. To see the equivalence of the two distributions in
the thermodynamic limit, initially assume that w is fixed and find N that maximizes ZN , or equivalently,
logZN . For large N ,

logZN ≈ Nµ−N log

(
N

w −Nd+N

)
− (w −Nd) log

(
w −Nd

w −Nd+N

)
.

Thus,
d logZN
dN

≈ µ− log

(
N

w −Nd+N

)
+ d log

(
w −Nd

w −Nd+N

)
,

and N∗ that maximizes ZN thus satisfies

µ ≈ log

(
N∗

w −N∗d+N∗

)
− d log

(
w −N∗d

w −N∗d+N∗

)
.

Then, in the thermodynamic limit of N∗ � 1 and w = (N∗ + 1)`+N∗d, we get

µ→ log

(
(`+ 1)d−1

`d

)
. (S10)

The size of the fluctuation δN = N−N∗ can be estimated using the saddle-point method and the expression

d2 logZN
dN2

≈ − w2

N(w −N(d− 1))(w −Nd)
→ −(d+ `)2

`(`+ 1)

1

N
,

giving Var[N ] ∝ N∗. The fractional fluctuation in particle number thus behaves like δN/N∗ ∝ 1/
√
N∗ and

is negligible for N∗ � 1. A GCE with the chemical potential µ in Eq. S10 is thus equivalent to a CE of
N∗ nucleosomes with mean gap length `.

S.1.4 Statistical Positioning with Dynamic Barriers

The previous section described statistical positioning in its original form, corresponding to non-overlapping
nucleosomes distributed between two fixed barriers. The assumption of fixed barriers, however, may not
be realized in nature, and we are led to consider a more general model with dynamic barriers: we here
consider the statistical positioning of N free nucleosomes (indexed sequentially as 1, ..., N) flanked by
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two partially restricted nucleosomes (indexed as 0 and N + 1) that function as moving barriers. For
example, the restricted nucleosomes could be subjected to chromatin remodeling or a free energy barrier
caused by a Poly(dA:dT) stretch. Let Xk denote the center location of the k-th nucleosome. The effect
of restrictions on the flanking nucleosomes is encoded in the marginal distribution P (X0, XN+1). The
in-between nucleosomes are then positioned according to statistical positioning conditioned on X0 and
XN+1. The goal of this section is to express Var[Xk] in terms of P (X0, XN+1) and compare the resulting
expression to the fixed barrier case in Eq. S8.

The evaluation of Var[Xk] is facilitated by first conditioning on X0 and XN+1. For example, consider
any quantity Q(X0, XN+1, Y1, . . . , YN+1), where as defined in the previous section, Yk denotes the partial
sum of gap lengths to the left of the k-th nucleosomes. Then, we can compute the expectation of Q as

E[Q] = EX0,XN+1
EY |X0,XN+1

[Q].

Because the flanking nucleosomes can be thought of as barriers delimiting the N in-between nucleosomes,
the first step of computing the conditional expectation uses the fixed barrier results from the previous
section with

L = XN+1 −X0 − (N + 1)d.

To average over the free nucleosomes, we use Xk = X0 + kd+ Yk to expand

Var[Xk] = Var[X0] + Var[Yk] + 2 Cov[X0, Yk]. (S11)

Here only the last two terms depend on the in-between nucleosomes through Yk. To evaluate Var[Yk], we
rewrite

E[(Yk − E[Yk])
2] = EX0,XN+1

EY |X0,XN+1
[Y 2
k ]−

(
EX0,XN+1

EY |X0,XN+1
[Yk]

)2
. (S12)

Using the fixed barrier results in Eq. S7 and Eq. S8, we get

EX0,XN+1
EY |X0,XN+1

[Yk] = EX0,XN+1

[
kL

N + 1

]
=
kE[L]

N + 1

EX0,XN+1
EY |X0,XN+1

[Y 2
k ] = EX0,XN+1

[
k(N + 1− k)L(L+N + 1)

(N + 1)2(N + 2)
+

(
kL

N + 1

)2
]

=
k(N + 1− k)E[L(L+N + 1)]

(N + 1)2(N + 2)
+

k2E[L2]

(N + 1)2
.

Substituting these expressions into Eq. S12, we get

Var[Yk] =
k(N + 1− k)E[L](E[L] +N + 1)

(N + 1)2(N + 2)
+

k(k + 1)Var[L]

(N + 1)(N + 2)
.

The last term in Eq. S11 is similarly simplified using the results from the previous section:

2 Cov[X0, Yk] = 2EX0,XN+1
[(X0 − E[X0])(EYk|X0,XN+1

[Yk]− E[Yk])]

=
2k

N + 1
Cov[X0, XN+1 −X0]

=
k(Var[XN+1]−Var[X0]−Var[L])

N + 1
. (S13)

Putting everything together finally gives

Var[Xk] =
k(N + 1− k)

N + 2

(
E[`](E[`] + 1)− (N + 1)Var[`]

)
+

(N + 1− k)Var[X0] + kVar[XN+1]

N + 1
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where we defined ` = L/(N + 1), so that E[`] is the mean gap length. In the limit of large N with E[`]
and Var[L] kept fixed, this expression reduces to

Var[Xk]→ Var[X0] + kE[`](E[`] + 1) , (S14)

which is just Eq. S5, with ` replaced by its expectation. In this limit, the only effect of replacing the fixed
barriers with partially constrained flanking nucleosomes is a constant offset to the fixed barrier formula in
Eq. S9. As a result, the variance gradient is again constant in the semi-infinite limit or near the boundaries
of a long confining interval.

S.1.5 Directionally Packed Nucleosomes

To model packing, we here reformulate statistical positioning in terms of an isothermal-isobaric ensemble
and then generalize the case by adding packing forces. Statistical positioning models nucleosomes as dense
bidirectional fluid, where movement is restricted only by steric constraints and barriers. Because the
nucleosomes are assumed to be free, they are on average evenly spaced. Alternatively, ATP-dependent
directional packing could increase nucleosome density near one of the barriers. We will thus model such
packing as position-independent, but nucleosome-specific, forces acting on the nucleosomes and derive the
variance profile in Eq. (4-6).

The probability distribution of fixed-barrier statistical positioning is, in the language of statistical
physics, the canonical ensemble (CE) with zero and infinite energy for non-overlapping and overlapping
nucleosomes, respectively. The single barrier case can be equivalently expressed in terms of the isothermal-
isobaric ensemble (IIE). In this distribution, the region length w is allowed to fluctuate and the weight of an
allowed configuration is e−wP , where P is the pressure (we here set the temperature T = 1 for convenience).
The single barrier case is retrieved in the thermodynamic limit w,N,L� 1 with ` = L/N kept fixed. The
IIE and the CE are equivalent near the barrier in this limit, and their respective parameters are related
through P = ln `+1

` .
We now model packing as constant (i.e. position-independent) and nucleosome-specific forces fk pulling

the nucleosomes towards a single barrier. In terms of the IIE, each allowed configuration has weight
e−Pw−

∑
k fkXk , where the second term in the exponent is the work done by the forces. To calculate

P (Lk|Xk−1), note that incrementing Lk by a suppresses the weight of a state by

P (L1, ...Lk−1, Lk + a, Lk+1, .., w + a)

P (L1, ...Lk−1, Lk, Lk+1, .., w)
= e−pka, pk = P +

∞∑
k′=k

fk′ ,

where pk is a nucleosome-specific pressure. Normalizing gives the geometric distribution

P (Lk|Xk−1) = (1− e−pk)e−pkLk .

Using this distribution, and noting that Xk−1 and Lk are independent, gives

Var[Lk] = E[Lk](E[Lk] + 1), e−pk =
E[Lk]

E[Lk] + 1
. (S15)

The independence of Xk−1 and Lk also implies that Eq. S3 is true for this type of packing forces, finally
giving

Var[Xk] = Var[Xk−1] + E[Lk](E[Lk] + 1). (S16)

Thus, the effect of constant packing forces is to modulate the nucleosome pressure pk. While this modu-
lation in turn changes the nucleosome spacing and variance gradient, the relationship between the two is
the same as in statistical positioning.
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S.2 Supplementary Methods: Enrichment Analysis

The enrichment analysis considers an ordered set of N genes and tests whether a fixed subset preferentially
contains either high-ranking or low-ranking genes. To assess statistical significance, the N genes are first
ranked between 0 and 1 as i/(N − 1), i = 0, . . . , N − 1, according to their associated data values. Then,
the median rank x of the n genes in the fixed subset is calculated.

More precisely, consider a data set Ω = {y0, y1, . . . , yN−1} of N distinct values, sorted such that
y0 < y1 < · · · < yN−1. The rank of yi is thus i. To get a measure of rank that is independent of the
size of the data set, we define the rescaled rank of yi to be ri = i/(N − 1), so that 0 ≤ ri ≤ 1. Let
S = {yi1 , . . . , yin} ⊂ Ω be a subset of n elements, where yi1 < yi2 < . . . < yin , and define the median rank
of S to be median{ri1 , . . . , rin}. We will develop an enrichment analysis that tests whether S preferentially
contains either high-ranking or low-ranking values by comparing its observed median rank with the null
distribution of the median rank of all possible distinct subsets of size n, where each distinct subset has

uniform probability
(
N
n

)−1
of being sampled.

If n = |S| is odd, then the median rank of S is equal to x = ri(n+1)/2
. Note that x(N − 1) = i(n+1)/2 is

an integer. The probability of x is thus

P (x) =

(
(N − 1)x

(n− 1)/2

)(
(N − 1)(1− x)

(n− 1)/2

)/(
N

n

)
,

where the numerator gives the total number of ways of picking (n − 1)/2 values less than yi(n+1)/2
and

(n− 1)/2 values greater than yi(n+1)/2
.

If n = |S| is even, then the median rank x of S is

x =
rin/2

+ ri1+n/2

2
=
in/2 + i1+n/2

2(N − 1)
.

Thus, x is an integer multiple of 1
2(N−1) , and the possible values of x(N − 1) are n−1

2 , n2 ,
n+1
2 , . . . , N − n+1

2 .

Defining k = x(N − 1), it can be shown that the probability of x is given by

P (x) =

(
N

n

)−1 M∑
m=0

(
dk − 1e −m
n/2− 1

)(
N − 1− (bkc+m+ 1)

n/2− 1

)
,

where M = min(dk − 1e+ 1− n/2, N − n/2− bkc − 1), bzc is the greatest integer less than or equal to z,
and dze is the smallest integer greater than or equal to z.

Two-sided p-values were calculated from these probability functions.
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S.3 Supplementary Figures
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Figure S1: Properties of statistical positioning and the grand canonical ensemble (GCE). (A)
Probability of most likely nucleosome count (i.e. maxNP (N) where P (N) ∝ eµN

(
w−Nd+N

N

)
) as a function

of region length w and chemical potential µ, using d = 147. Red, blue and green dots correspond to values
of µ and w used in (B), (D) and (E) respectively. (B) Example of a nucleosome distribution (solid) that
is a mixture of two values of N (N = 4 dashed and N = 5 dotted). The length w was chosen such that
P (N = 4) = P (N = 5) = 0.5. (C) Fraction of w-values (in the range [200, 1000]) for which one value
of N dominates the GCE (maxNP (N) > 0.9) as a function of µ. (D) Values of Var[Xk] calculated from
theoretical nucleosome distribution using peak calling (solid blue) or Eq. (7) (dashed), using µ = 2 and
varying w. The nine w-values where chosen such that P (N = 5) > 0.9. Var[Xk] is truncated at 1200bp2,
as described in Methods. (E) Same as in (D) but with µ = 8.
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Figure S2: Modeled effect of nucleosome overlap on variance estimate. (A) The sampling density
of reads associated with nucleosomes (dashed lines) are represented by an array of Gaussians, offset by w
and with variance σ2 (here set to w2/24, which is half the variance of a uniform random variable defined
on [0, w]). In practice, only the marginal read distribution (solid line) is observed. Reads are assigned
to the closest nucleosome peak (e.g. blue filled region for the middle nucleosome). (B) Solid line shows
the estimated variance σ2observed of the reads in the shaded region in (A), for varying values of the actual
variance σ2 of the middle peak in (A). For σ2 . w2/24, the observed variance agrees well with the true
value of σ2 (dashed line), but it deviates from the true value for larger σ2. This analysis justifies our choice
of w2/24 as a maximal cutoff σ2max for calling positioned nucleosomes whose variance we can confidently
estimate.
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Figure S3: Principal component analysis of the fuzziness profiles of 8 nucleosomes in the 5’-
and 3’-ends of long genes. Left: Cumulative variance explained as a function of principal components.
Right: Distribution of fuzziness in the first two principal components. Genes are grouped based on the
quartiles of the first principal component. The groups A and A’ correspond to the first quartile, B and B’
to the two central quartiles, and C and C’ to the last quartile.
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statistical positioning. The chemical potential was calculated from the formula eµ = (`+1)d−1/`d, using
that `+ d = 167bp is the mean nucleosomes spacing. This relation is derived in Supplementary Methods
by taking the thermodynamic limit of the grand canonical ensemble.
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Figure S5: Plot of variance gradient vs. goodness-of-fit R2 of statistical positioning for long
genes. Scatter plots show the distribution of variance gradient (x-axis) and R2-fit (y-axis) calculated
from 8 nucleosomes in the 5’-end and 3’-end of long genes (16 or more nucleosomes). Solid lines indicate
the marginal distributions. Dashed lines show the marginal distributions obtained by randomly permuting
nucleosomes 10 times and refitting. Vertical lines in the top marginal plots indicate the theoretical variance
gradient in a single-barrier statistical positioning model for two different values of d, using an inter-
nucleosome distance of 168bp.
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TSS of the nearest downstream gene. The colored lines correspond to genes with fuzziness of the last
nucleosome Var[X−1] in the intervals [0, 400) (blue), [400, 800) (purple), [800, 1200) (yellow), and [1200,∞)
(green). This figure shows that well-positioned last nucleosomes tend to be near the TSS of an adjacent
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Figure S7: Nucleosome fuzziness and spacing for short- and medium-long genes. (A) Thin
lines show median nucleosome fuzziness σ2k of the k-th nucleosome for genes with 2 ≤ N̂ ≤ 15 nucleosomes,

|ŵ − ŵN̂ | ≤ 40bp and σ2+1, σ
2
−1 < 1200bp2. The extrapolation ŵN̂ = −164 + 169N̂ was used for N̂ > 9.

Dashed lines correspond to the double-barrier model in Figure 5D. Solid red line corresponds single barrier
prediction with ` = 9bp . (B) Variance calculated as in (A), but without the constraint σ+1, σ−1 < σmax.
(C) Median variance σ2k for genes in (A). (D) Spacing beween nucleosomes in genes in (B). (E) Double-
barrier model from Figure 5D.
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