Supplementary Information

Contents:

Supplementary Methods

Supplementary Figures

- Figure S1. Control experiments for bacterial selection system and new negative selection component.
- Figure S2. Cleavage data for each newly selected endonuclease collected with *in vitro* assays.
- Figure S3. Examples of the strong hydrogen bonds in selected and designed I-AniI variants with high specificity.
- Figure S4. Computational specificity prediction for the I-AniI wild-type endonuclease.
- Figure S5. Detailed comparison of experimental and fixed-backbone computational specificities for the I-AniI wild-type endonuclease.
- Figure S6. Specificity prediction and recovery of engineered amino acids for selected I-AniI variants targeting single base-pair substitutions.
- Figure S7. Two computationally derived endonucleases targeting single base-pair changes can be combined without further optimization.
- Figure S8. Cleavage data for endonucleases targeting multiple base-pair pockets and full sites in genes of interest.
- Figure S9. Endonucleases targeting the (+) half-site changes in two mosquito sites show activity in human cells.
- Figure S10. Evidence for a role of C-terminal loop 190-199 in formation of the groundstate reaction complex.
- Figure S11. Mutations from I-AniI homologues that alter catalysis and binding.

Supplementary Discussion A. Rosetta computational predictions of experimental data.

Supplementary Discussion B. Improving the binding affinity of I-AniI.

Supplementary Tables

- Table S1. Activities, specificities, starting libraries, bacterial survivals, and computational predictions for all I-AniI variants shown in Figure S2 that target single base-pair substitutions.
- Table S2. Activities, specificities, starting libraries, and bacterial survivals for enzymes cleaving multiple base-pair pockets and full sites in genes of interest.

Supplementary Methods

Example target site primers with NheI and SacII sticky ends for building the pCcdB vector for single base-pair substitution selection:

Top primer, two copies of wild-type I-AniI LIB4 site: ctagcTGAGGAGGTTaCTCTGTtAAgatacTGAGGAGGTTaCTCTGTtAAccgc Bottom primer, two copies of wild-type I-AniI LIB4 site: ggTTaACAGAGtAACCTCCTCAgtatcTTaACAGAGtAACCTCCTCAg Top primer, -6C substitution: ctagcTGAGcAGGTTaCTCTGTtAAgatacTGAGcAGGTTaCTCTGTtAAccgc

Primers used for amplifying the pCcdB plasmid to generate substrates for enzyme assays and for sequencing from pCcdB and pENDO-HE:

pEndo-SEQ-REV, AATGCTCTGCCAGTGTTACAACCA pEndo-SEQ-FWD, CGGCGTCACACTTTGCTATG pCcdB-SEQ-REV, TGCTGAAGCCAGTTACCTTCG pCcdB-SEQ-FWD, CGAAGTGATCTTCCGTCACAGG pCcdB-AMP-REV, CCCGACAGGACTATAAAGATACCAGGC pCcdB-AMP-FWD, GAATTCCGGATGAGCATTCATCAGGC

Target site arrays:

Array containing a multiple base-pair substitution from the CPK2 (-) half-site, CPK2 (+) half-site:

TGAGGAGGTTTCatTGTAAA GCG TGAGctGcTTTCTCTGTAAA TAGT TGAGGAGGTTaCTggGTAAA CCCAG TGAGccctTTTCTCTGTAAA AGT TGAGGAGGTTTCTCacaAAA CTTATG TGAGtAtGTTgCTCTGTAAA GGCAGG TGAGGAGGTTTCTtTccAcA GCTC TGAGttGGTTTCTCTGTAAA ATCCA TGAGGAGGTTgCcCacaAAA TTAGC TGAGcAtGTTTCTCTGTAAA GTCT TGAGGAGGTTTCTCTccAAA GGTG TGAGGccaTTgCTCTGTAAA CTTCTC TGAGGAGGTTgCTtctTtcc AACG gctGGAGGTTTCTCTGTAAA ACACGG TGAGGAGGTTctTCTGaccA GAA TGAGtctGTTaCTCTGTAAA

Array containing CPK2 (-) half-site, a multiple base-pair substitution region from the FAH1313 (+) half-site, CPK2 (+) half-site, and FAH1313 (+) half-site:

TGAGGAGGTTTCTCccTAAAGCGccAGtAtGTTGCTCTGTAAATAGTTGAGGAGGTTTCcCccTAgcCCCAGTGAGCAtGGTaCTCGTAAAAGTTGAGGAGGTTaCTGGGACCCTTATGcGtGGccaTTgCTCTGTAAAGGCAGGTGAGGAGGTTGCCCTGGACAGCTCgctGctGcTTTCTCTGTAAAATCCATGAGGAGGTTTCTCTGGaccATTAGC

TGAGGAGGTTaCTaTGTttA GTCT gGtGGttGcTTCTCTGTAAA GGTG TGAGGAGagTTCTCTGTAAA CTTCTC aGtGttGcTTTCTCTGTAAA AACG TGAGGAGGTTTCatTGccAA ACACGG TGAGGttGcTTCTCTGTAAA GAA TGAGGAGGTTgCTtctTAAA

Array containing the CPK2 and FAH1313 full target sites:

TCCCtCTTATTCAACCTTTT GCG TGAGccctTTcCcCccTAgc TAGT TGAGcAtGgTaCTggGgAcc CCCAG TTCCACTTATTCctgCagcT AGT gctGctGcTTctTCTGaccA CTTATG TGAGtctGTTaCTaTGTttA GGCAGG qGtGGttGcTTCTtTccAcA GCTC aGtGGtGGTTgCTtctTtcc ATCCA TTCCACTTATTCAACCagcT TTAGC gGtGGgtGcTaCTCctaAtg GTCT TGAGGAGGTTaCTCctaAtg GGTG gGtGGgtGcTaCTCTGTAAA CTTCTC TcCCtCTTATTCctgCagcT AACG cGtGGccaTTgCcCTGgAcA ACACGG aGtGttGcTTTCatTGccAA GAA TTCCACTTATTCctgCTTTT

Two arrays containing AGAP half- and full- sites:

aGAGGcGGTTTCTCgcTAcg ACGT qGcGGAcGTTTCTCTGTAAA TATCG TGAGGAGGTTTCTaTGcAAA CGAT TGqGGtGcTTcCTtcGTAAt GTACA TGAGGAGGTTcCcCaGTAgc GATC gGtGGcGGTTTCatTcTctA AACTG aGtGGcGtcTTCTaaGTaAA ATCG gGAGGtGaTTgCcCTGTAcA TACGC TGAGGAGGTTTCatTcTAgg GATC aGAGGAtGcTTCTaTGcAgg TACGT TGAGGAGGTTgCgCTGTtgA ATAC cGAGGAGGcTTCaCTtTcAt CGATA cGqGGqcGTTTCTCTGTAAA GATC cGAGGcGcgTTCTCTGTAAA TAGAA TGAGGAGGTTTCTgaGTtgc GCGAT cGAGGtGGaTTCTCTGTAAA

```
cGaGGacGTTaCaCTGTtaA ACGT
cGAGGcGcgTTCTaTGcAAA TATCG
TGqGGtGcTTTCTCTGTAAA CGAT
gGcGGAcGTTTCTgaGTtgc GTACA
gGAGGAGaTTcCcCaGTAgc GATC
gGAGGtGaTTTCTCTGTAAA AACTG
TGAGGAGGTTTCTggGTgAA ATCG
cGAGGtGGaTTCatTcTAgg TACGC
aGAGGAtGcTTCTCTGTAAA GATC
TGAGGAGGTTTCaCTtTcAt TACGT
TGAGGAGGTTTCTaTGcAgg ATAC
TGAGGAGGTTTCatTcTctA CGATA
TGAGGAGGTTcCTtcGTAAt GATC
gGtGGcGtcTTCTCTGTAAA TAGAA
TGAGGAGGTTTCTCqcTAcq GCGAT
TGAGGAGGTTgCcCTGTAcA
```

Sequences of vectors:

pENDO-HE, containing wild-type I-AniI sequence between NcoI and NotI sites:

GTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATG ${\tt CATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATC$ AAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCTTAATAAGATG ATCTTCTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGAAAAACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTCTCTGAGCTACC AACTCTTTTGAACCGAGGTAACTGGCTTGGAGGAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAGACTAACT ${\tt cctctaaatcaattaccagtggctgctgccagtggtgcttttgcatgtctttccgggttggactcaagacgatagttaccggataaggcgcagcggt$ CGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAGCGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCATA GAGCGAGGAAGCGGAATATATCCTGTATCACATATTCTGCTGACGCACCGGTGCAGCCTTTTTTCTCCTGCCACATGAAGCACTTCACTGACACCCT ${\tt CATCAGTGCCAACATAGTAAGCCAGTATACACTCCGCTAGCGCTGAGGTCTGCCTCGTGAAGAAGGTGTTGCTGACTCATACCAGGCCTGAATCGCC$ CCATCATCCAGCCAGAAAGTGAGGGAGCCACGGTTGATGAGAGGCTTTGTTGTTGGTGGACCAGTTGGTGATTTTGAACTTTTGCCTTTGCCACGGAACGGTCTGCGTTGTCGGCATGCGCATAATGTGCCTGTCAAATGGACGAAGCAGGGATTCTGCAAACCCTATGCTACTCCGTCAAGCCGTCAATTGTCTG TGATACGTTGGTCCTCGCGCCAGCTTAAGACGCTAATCCCTAACTGCTGGCGGAAAAGATGTGACAGACGCGACGGCGACAAGCAAACATGCTGTGC ${\tt TTAATCGCTTCCATGCGCCGCAGTAACAATTGCTCAAGCAGATTTATCGCCAGCAGCTCCGAATAGCGCCCTTCCCCTTGCCCGGCGTTAATGATTT$ GCCCAAACAGGTCGCTGAAATGCGGCTGGTGCGCCTTCATCCGGGCGAAAGAACCCCGTATTGGCAAATATTGACGGCCAGTTAAGCCATTCATGCCA GTAGGCGCGCGCACGAAAGTAAACCCACTGGTGATACCATTCGCGAGCCTCCGGATGACGACCGTAGTGAATCTCTCCCTGGCGGGAACAGCAAA ATATCACCCGGTCGGCAAACAAATTCTCGTCCCTGATTTTTCACCACCCCTGACCGCGAATGGTGAGATTGAGAATATAACCTTTCATTCCCAGCG ${\tt GTCGGTCGATAAAAAAATCGAGATAACCGTTGGCCTCAATCGGCGTTAAACCCGCCACCAGATGGGCATTAAACGAGTATCCCGGCAGCAGGGGATC$ ATTTTGCGCCTTCAGCCATACTTTTCATACTCCCGCCATTCAGAGAAGAAACCAATTGTCCATATTGCATCAGACATTGCCGTCACTGCGTCTTTTAC TGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCATTCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTG ${\tt TCTATAATCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAGATTAGCGGATCCTAC$ CTGACGCTTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCGTTTTTTTGGGCTAGAAATAATTTTGTTTAACAACTTTAAGAAGGAGAAATATACCCCATG ${\tt GTATTGAGCTGTCAATTAAGGATGTACAATTGATTTACAAGATCAAGAAGATTCTGGGAATTGGTATTGTAAGTTTTCGCAAACGCAATGAGATCGA$ GATGGTAGCCCTGCGCATCCGCGACAAGAACCATCTGAAAAGTAAAATTCTGCCTATCTTTGAGAAAATATCCCATGTTCTCTAATAAGCAATATGAC TATCTGCGCTTTCGCAATGCACTGCTTTCAGGTATTATTTCTCTGGAAGATCTGCCTGATTATACTCGCAGTGATGAGCCTCTGAATTCTATCGAGT ${\tt CGATTATCAACACATCTTACTTCTCTCCCTGGCTGGTAGGCTTTATCGAAGCTGAAGGTTGTTTCAGCGTTTACAAACTGAACAAAGATGATGATTA$ ${\tt CCTGATCGCTAGTTTTGATATTGCTCAACGCGATGGGGATATTCTGATCTCAGCCATCCGTAAATACCTGTCTTTCACTACTAAAGTTTACCTGGAT$ AAAACTAACTGTTCAAAGCTGAAAGTTACAAGTGTACGCTCAGTAGAGAACATCATTAAGTTCCTGCAAAACGCACCTGTAAAACTGCTGGGTAACA AGAAGCTGCAATACCTGAAGTGGCTGAAACAGCTGCGTAAGATCTCTCGCTACTCAGAAAAGATCCAAGATCCCTTCAAACTACTAAGCGGCCGCTCA ${\tt GAATTGGTTAATTGGTTGAACACTGGCAGAGCATTACGCTGACTTGACGGGGCGGCGTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGA$ CGTGGCTCCCTCACTTTCTGGCTGGATGATGGGGGCGATTCAGGCCTGGTATGAGTCAGCAACACCTTCTTCACGAGGCAGACCTCAGCGCTCAAAGA TGCAGGGGTAAAAGCTAACCGCATCTTTACCGACAAGGCATCCGGCAGTTCAACAGATCGGGAAGGGCTGGATTTGCTGAGGATGAAGGTGGAGGAG ${\tt GGTGATGTCATTCTGGTGAAGAAGCTCGACCGTCTTGGCCGCGACACCGCCGACATGATCCAACTGATAAAAGAGTTTGATGCTCAGGGTGTAGCGG$ TTCGGTTTATTGACGACGGGATCAGTACCGACGGTGATATGGGGGCAAATGGTGGTCACCATCCTGTCGGCTGTGGCACAGGCTGAACGCCGGAGGAT ${\tt cctagagcgcacgaatgagggccgacaggaagcaaagctgaaaggaatcaaatttggccgcaggcgtaccgtggacaggaacgtcgtgccgcacgctt$ ${\tt catcagaagggcactggtgcaacggaaattgctcatcagctcagtattgcccgctccacggtttataaaattcttgaagacgaaagggcctcgtgat$ ACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTA TTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAAC ATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCA GTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCCGAAGAACGTTTTCCAATGATGAGCACT TTTAAAG

pCcdB, containing wild-type I-AniI target site between NheI and SacII:

 ${\tt GTATGTTGTGGGAATTGTGAGCGAATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTATTTAGGTGACACTATAGAATACT$ CGAGCATGCATCTAGAGGGCCCCAATTCGCCCTATTCGAAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGC GTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCA GCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAAAGCTGG CGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAAACGCCA ${\tt TTAACCTGATGTTCTGGGGAATATAAGGCGCGCCTTTACAAAAATCAGATAAACGTGTAGATCTCGGATCAAACGCCATGAGCGGCCTCATTTCTTA$ ${\tt TTCTGAGTTACAACAGTCCGCACCGCTGTCCGGTAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATC$ ATGCAACTCGTAGGACAGGTGCCGGCAGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCCCTGCACCATTA TGTTCCGGATCTGCATCGCAGGATGCTGCTGCCTGCGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTAACCGTTTTTATCAGGCTCTGGGAG GCAGAATAAATGATCATATCGTCAATTATTACCTCCACGGGAGAGCCTGAGCAAACTGGCCTCAGGCATTTGAGAAGCACACGGTCACACTGCTTC CTGCCATTCATCCGCTTATTATCACTTATTCAGGCGTAGCACCAGGCGTTTAAGGGCACCAATAACTGCCTTAAAAAAATTACGCCCCGCCCTGCCA CTCATCGCAGTACTGTTGTAATTCATTAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATGATGAACCTGAATCGCCAGCGGCATCAGCACC ${\tt TTGTCGCCTTGCGTATAATATTTGCCCATGGTGAAAACGGGGGGCGAAGAAGTTGTCCATATTGGCCACGTTTAAATCAAAACTGGTGAAAACTCACCC$ AGGGATTGGCTGAGAGAGAGAAAAACATATTCTCAATAAACCCTTTAGGGGAAATAGGCCAGGTTTTCACCGCTAACACCCCCACATCTTGCCGAATATATGTG ${\tt TAGAAACTGCCGGAAATCGTCGTGGTATTCACTCCAGAGCGATGAAAACGTTTCAGTTTGCTCATGGAAAAACGGTGTAACAAGGGTGAACACTATCC$ ${\tt CATATCACCAGCTCACCGTCTTTCATTGCCATACGGAATTCCGGATGAGCATTCATCAGGCGGGCAAGAATGTGAATAAAGGCCGGATAAAACTTGT$ ATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCAACGTCTCATTTTCGCCAAAAGTTGGCCCAGGGCTTCCCGGTATCAACAGGGACAC GATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTATCAGCTGTCCCTGTTCAGCTACTGACGGGGTGGTGCGTAACGGCAAAAGCACCGC CGGACATCAGCGCTAGCTGAGGAGGTTTCTCTGTAATGAGGAGGTTTCTCTGTAACCGCGGAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG ATAATCTCATGACCAAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGAATCCTTTTTT TCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTA ACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACC TCGCTCTGCTAATCCTGTTACCAGTGGCTGCCGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA GCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGC GCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGGGGGCACCAGGGGGGAAACGCCT GGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG

pET15-HE, ORFs were inserted between NcoI and NotI sites:

AATGCGCTCATCGTCATCCTCGGCACCGTCACCCTGGATGCTGTAGGCATAGGCTTGGTTATGCCGGTACTGCCGGGCCTCTTGCGGGATATCCCGGA TATAGTTCCTCCTTTCAGCAAAAAACCCCCTCAAGACCCGTTTAGAGGCCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGCAGCCAACTCA GCTATGATGATGATGATGATGGCTGCTGCCATAGTATATCTCCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTCACAA TTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGG ${\tt TTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCCTTGTTTCGGCGTGGGTATGGTGGCAGG$ CTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAG AGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACC AGGCCAGCCACGTTTCTGCGAAAAACGCGGGAAAAAGTGGAAGCGGCGGAGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGG CAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTG GGTGCCAGCGTGGTGGTGGTGGTGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGA GGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGG $\tt CCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCCAGGGCCAGGCGGTGAAGGGCAATC$ AGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCT ${\tt CTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGCAACTCGTATGCAACTCGTATGCAACTCGTAGCAACTCGTATGCAACTCGTAGCAACTCGTATGCAACTCGTAGCAACTCGTATGCAACTCGTAGCAACTCGTAGCAACTCGTAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTCGTAGCAACTGA$ GGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCT TGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCGACGCGCTGGG TCACGGCGATTTATGCCGCCTCGGCGAGCACATGGAACGGGTTGGCATGGATTGTAGGCGCCCCCTATACCTTGTCTGCCTCCCCGCGTTGCGTCG ${\tt CGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGCTGCTGCTGCGAACACCTACATCTGTATTAACGAAGCG$ CTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCA TCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCCATGAACAGAAATCCCCCCTTACACGGAGGCATCAGTGACCAAAC AGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGA CATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCCCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACAACATGCAGCTC ${\tt TGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAA$ GGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGG AACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAAGTCAGAGGTGGCGAAACC CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTT TCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA $\tt CCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTG$ GTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTAT AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG TTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAG ATAACTACGATACGGGGGGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACC TATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATT ${\tt CTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATT$ ${\tt GGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCAT}$ ${\tt CTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCAT$ ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGG GTTCCGCGCACATTTCCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCT TTCGTCTTCAAGAA

Specificity prediction

Specificity was calculated with the publicly available application rosettaDNA (26, 61). For these calculations, the variant sequence (or wild-type sequence) was modeled with each of the four possible nucleotides at the DNA position of interest and the total energy of the complex was computed. Residues in a 6 Å region (defined by the z_cutoff flag in the command line arguments) surrounding the target base-pair were allowed to repack, meaning they could change in conformation but not in sequence. A total of 56 models were predicted for each nucleotide, and the average energy over all 56 was used in the specificity calculation. Specificity was defined for the computational models by the Boltzmann weight of the specific complex, as follows and as in previous work (21, 26, 61):

Specificity_n = $[e^{(-(E_n-E_{target}) / k_BT)}] / \Sigma[e^{(-(E_n-E_{target}) / k_BT)}]$, where the sum is over the quantity in the numerator for all four bases. The value of k_BT was set to 1 based on previous work correlating Rosetta Energy Units (REUs) with kcal/mol (62).

For example, the predicted energies of the models for a single run of the -8G_P1 variant are -727.782 for an adenine substitution, -725.740 for cytosine, -729.516 for guanine, -713.981 for thymine. The calculation of specificity for adenine is as follows:

Specificity_{ade} = $[e^{(-(-727.782 + 729.516) / 1)}] / ([e^{(-(-727.782 + 729.516) / 1)}] + [e^{(-(-725.740 + 729.516) / 1)}] + [e^{(-(-729.516 + 729.516) / 1)}] + [e^{(-(-727.713.981 + 729.516) / 1)}])$ = 0.147 for adenine (and if the calculation is repeated for the other bases: 0.019 for cytosine, 0.8336 for guanine, and 1.49E-07 for thymine)

Design calculation

In order to assess whether the computational design methods could recover selected amino acids, design was completed for all single base-pair substitutions in the I-AniI target site. The designed amino acids were compared to the amino acids derived from selection for the same base-pair substitutions. The motif-biased design data were collected with the motif_dna_packer_design application (33). However, this version of the protocol is written with trunk Rosetta and includes some minor changes over the trunk version previously described (33) improved the results, making them more closely resemble the optimal results achieved with the protocol used for the majority of the previous work (33). For example, an orientation-dependent desolvation term that has been described (33, 63) is included in the energy function used in this work, whereas it was previously not available in trunk Rosetta.

Calculations were carried out using the structures 2qoj and chain A of 3eh8 as starting scaffolds. Residues in a 6 Å region surrounding the target base-pair were allowed to design. As in past work, if the variant amino acid was in the top three amino acids by frequency in the set of 56 repeated design runs, then the position was considered successfully redesigned (33). For the few variants with loop length changes the predictions did not incorporate loop-modeling steps, and

instead the sequence of the region was aligned and only the relevant interface positions were allowed to design or were substituted to generate the model used in specificity prediction.

Energy function and command lines used for design and specificity prediction, all flags are described in detail in reference 33:

Energy function:

```
Weight set:
METHOD WEIGHTS ref -0.3 -0.7 -0.75 -0.51 0.95 -0.2 0.8 -0.7 -1.1 -0.65 -0.9
-0.8 -0.5 -0.6 -0.45 -0.9 -1.0 -0.7 2.3 1.1
special rot 1.0
fa atr 0.95
fa rep 0.44
fa sol 0.65
fa intra rep 0.004
hack elec 0.5
fa plane 0
fa dun 0.56
ref 1
hbond lr bb 1.17
hbond sr bb 1.17
hbond bb sc 1.17
hbond sc 1.17
1k ball 0.325
lk ball iso -0.325
p aa pp 0.64
dslf_ss_dst 0.5
dslf_cs_ang 2
dslf ss dih 5
dslf ca dih 5
pro close 1.0
```

To go with this optimized weight set, the atom_properties and lys.params files are modified exactly as described in the supplement of previous work on protein-DNA design (33). These modifications to the atom_properties (more important than lysine changes) are as follows:

Phos	P	2.1500	0.5850	-4.1000	3.5000	14.7000
Narg	Ν	1.7500	0.2384	-10.0000	6.0000	11.2000 DONOR ORBITALS
NH2O	Ν	1.7500	0.2384	-7.8000	3.5000	11.2000 DONOR ORBITALS
Nlys	Ν	1.7500	0.2384	-16.0000	6.0000	11.2000 DONOR
ONH2	0	1.5500	0.1591	-5.8500	3.5000	10.8000 ACCEPTOR SP2_HYBRID ORBITALS

Command line arguments used for design with motif dna packer design application:

```
-dna::specificity::exclude_dna_dna false
-mute all
-run_motifs
-dtest 2.0
-z1 0.97
-r1 1.0
-z2 0.97
-r2 1.0
-motifs::rotlevel 8
-motifs::list_motifs /work/sthyme/list_August2011Motifs_noduplication_IAniI
-motifs::output_file ./XXXX.motifs
-packing::max_rotbump_energy 10.0
```

```
-patch selectors SPECIAL ROT
-probe_specificity 3
-binding
-score:output residue energies
-run:output hbond info
-run:min type dfpmin armijo
-run:min_tolerance 0.0001
-ndruns 1
-dna::design::z_cutoff 6.0
-score::weights /work/sthyme/weights/trunk lkball.wts
-file:s /work/sthyme/INPUTPDBS ANII/2Q0J.pdb
-dna::design::dna_defs X.408.ADE
-in:ignore unrecognized res
-database /work/sthyme/trunk rosetta 2012/rosetta database/
-ex1
-ex2
-exlaro::level 6
-ex2aro::level 6
-exdna::level 4
-extrachi cutoff 0
-jd2:dd_parser
-overwrite
```

Command line arguments used for modeling fixed sequences and calculating energies for specificity prediction with the rosettaDNA application:

```
-dna::specificity::exclude_dna_dna false
-mute all
-packing::max rotbump energy 10.0
-dna:design:repack only true
-patch selectors SPECIAL ROT
-score:output residue energies
-run:output hbond info
-run:min type dfpmin armijo
-run:min tolerance 0.0001
-ndruns 1
-dna::design::z_cutoff 6.0
-score::weights /work/sthyme/weights/trunk lkball.wts
-file:s /work/sthyme/INPUTPDBS ANII/2Q0J.pdb
-dna::design::dna_defs X.408.ADE
-in:ignore unrecognized res
-database /work/sthyme/trunk_rosetta_2012/rosetta_database/
-ex1
-ex2
-ex3
-ex4
-exlaro::level 6
-ex2aro::level 6
-exdna::level 4
-extrachi cutoff 0
-jd2:dd_parser
-parser:protocol ../xml
-overwrite
```

Corresponding XML file for using the rosettaDNA application:

```
<dock_design>
<TASKOPERATIONS>
<InitializeFromCommandline name=IFC/>
<IncludeCurrent name=IC/>
<RestrictDesignToProteinDNAInterface name=DnaInt z_cutoff=6.0 dna_defs=X.408.ADE/>
<OperateOnCertainResidues name=AUTOprot>
<AddBehaviorRLT behavior=AUTO/>
<ResidueHasProperty property=PROTEIN/>
</OperateOnCertainResidues>
<OperateOnCertainResidues name=ProtNoDes>
<RestrictToRepackingRLT/>
<ResidueHasProperty property=PROTEIN/>
</OperateOnCertainResidues>
```

```
<OperateOnCertainResidues name=DnaNoPack>
     <PreventRepackingRLT/>
     <ResidueHasProperty property=DNA/>
    </OperateOnCertainResidues>
 </TASKOPERATIONS>
 <SCOREFXNS>
   <LKB weights=trunk lkball/>
  </SCOREFXNS>
 <FILTERS>
    <FalseFilter name=falsefilter/>
 </FILTERS>
 <MOVERS>
   <DesignProteinBackboneAroundDNA name=bb lk scorefxn=LKB
task operations=IFC,IC,AUTOprot,ProtNoDes,DnaInt type=ccd gapspan=4 spread=3
cycles_outer=3 cycles_inner=1 temp_initial=2 temp_final=0.6/>
    <DnaInterfacePacker name=DnaPack scorefxn=LKB</pre>
task operations=IFC,IC,AUTOprot,ProtNoDes,DnaInt probe specificity=1 binding=1/>
 </MOVERS>
 <PROTOCOLS>
   <Add mover name=DnaPack/>
 </PROTOCOLS>
</dock design>
```

When predicting the specificity of variants, the sequence of the starting scaffold PDB was changed with a script and the exact same protocol was used as for specificity prediction with the wild-type endonuclease sequence. Scripts for are available upon request for generating these variant PDBs, setting up organized directories for large-scale specificity prediction of many variants, and analyzing both design and specificity prediction data. The majority of the arguments in the command lines for both protocols are described in more detail in the supplementary material of the publication that details the motif-based design method (33).

Example PSSM file used for I-AniI target site searches:

Colors: Wild-Type, Tolerated Substitution, Engineered Variant Substitution Values used are based on specificity data for I-AniI (12)

Supplementary Figures

Figure S1. a) A comparison between survivals in the standard bacterial selection system (19) and kinetic data (12) for several single base-pair substitutions in the I-AniI target site. In this experiment, the target site is on the pCcdB plasmid and the M5 variant (32) of I-AniI is on the pEndo. The M5 or M4 variants (Figure 1) were used for all selection experiments in this work because they survive significantly better against single or double (tandem, not on opposite sides of the plasmid) wild-type target sites than the Y2 variant (9% for Y2 with two sites versus 44% with M5, completed side-by-side). High survival indicates cutting of the pCcdB plasmid and should correlate with a high k_{cat}/K_M. The selection system displays a wide dynamic range and survival closely matches the kinetic data for these single base-pair substitutions. b) A comparison between survivals with the new negative selection component of the bacterial selection system and kinetic data for several single base-pair substitutions in the I-AniI target site. In this experiment, the varying target site is on the pEndo plasmid and the pCcdB plasmid contains the wild-type target site. High levels of survival indicate that the M5 enzyme does not cleave the target site on the pEndo plasmid and that the pCcdB plasmid with the wild-type site is cleaved. This modified selection system also displays a wide dynamic range and the survival negatively correlates with the kinetic data.

Figure S2. Cleavage data for selected endonucleases with each of the four bases at the targeted position. The activity level of the Y2 variant (32) of I-AniI with the wild-type target is shown in the first panel for comparison with these engineered enzymes. The second panel shows the high level of reproducibility for these cleavage experiments. The selection experiments all included a negative selection component against the wild-type I-AniI site. Thus it is expected that these enzymes will show high levels of cleavage of the targeted single base-pair substitution and reduced levels of wild-type site cleavage. This data is summarized in Table S1 as $EC_{1/2max}$ and specificity values.

Figure S3. Computational models of motif interactions for single base-pair substitutions in the I-AniI (2qoj) target site show that the most specific I-AniI variants contain at least one strong, direct hydrogen-bonding contact. The presence of these contacts was the inspiration for the development of motif-biased design procedures (33), which enrich for native-like protein-DNA interactions. Each of the residues shown in the structures in this figure is classified as a motif contact by the computational methods. The lynchpin residue in the -6C and -3C variants was identified by previous computational methods (12), and libraries that combined the computational information with randomization of the surrounding residues increased both the activity and specificity of these two enzymes. The +3C and +3G variants both came from screens of fully randomized libraries using the modified directed evolution system that selects for specificity. a) The highly specific -6C C1 variant contains two contacts, the computationally derived E31R and the R70E mutation that was identified by a selection with E31R fixed. b) The -3C C1 and -3C C2 variants contain the designed mutation E35K, and selection was used to alter the sequence and length of a neighboring loop for significantly enhanced activity and specificity. The selected loop sequences contain multiple potential strong contacts, included R61E and R61D (Table S1). c) The +3G S1 variant contains A170K and was identified from a library of four fully randomized amino acids. d) The +3C S1 variant contains A170E and was identified from a library of four fully randomized amino acids.

Figure S4. a) Fixed backbone calculations of specificity for each wild-type base in the I-AniI target site were compared to the experimentally-measured specificity. The calculated specificity was averaged across four starting structures (2qoj, and 3eh8, chains a, b, and c) and compared to the specificity predicted for the single 3eh8 structure (chain a) and the single 2qoj structure with and without the addition of crystal structure rotamers. The dashed black line represents y equals x, corresponding to perfect prediction. **b)** The crystal structure DNA nucleotide (blue sticks) at position +3T in the I-AniI target site is not included in the set of available DNA rotamers (gray lines). **c)** Comparison of fixed and flexible protein backbone predictions, where a lower Euclidean distance indicates that the prediction better matches the experimental data. Specificity calculations using the average over the 56 runs (ave) and also using the lowest energy structure of the 56 (low) are compared.

Experimental 2qoj AVE 3eh8_a AVE 3eh8_b AVE 3eh8_c AVE

Position and Wild-Type Base 1.0 0.9 0.8 0.7 0.6 0.6 0.5 0.4 Specificity 0.3 0.2 0.1 d' GUA 2 Single Base-Pair Substitution in I-Anil Target

Figure S5. Specificity predictions compared with experimental specificity data (12) for each position in the I-AniI target site. The y-axis displays specificity, and low values mean the basepair is poorly cut. Predictions were collected on four I-AniI structures. Highly specific positions, such as -4, were successfully predicted with all four structures. The most common cause of mis-predicted specificity is clashes that are not resolved

with the fixed backbone model, such as in the case of +5A. Experimentally, +5A is similar to the other base-pairs at position +5. However, in the computational models the methyl group of the thymine paired with +5A clashes with the I-AniI protein in all four starting structures.

Figure S6. a) The variants are the same enzymes shown in Figure 3b and both color and shape correspond to the nucleotide type being targeted. The specificity predictions are averaged from the specificity values completed using two crystal structures, 2qoj and chain a of 3eh8 (separate values in Table S1). The dashed black line represents y equals x, corresponding to perfect prediction. b) Recovery of selected amino acids with computational design – without motif rotamers included in the design process, with motif rotamers, and with motif rotamers that have an energetic weight (-1.25 REUs) – using the crystal structures 2qoj and chain a of 3eh8.

Figure S7. Two computationally derived endonuclease variants (12) can be combined without using selection for further sequence optimization. The -6C_C1 and -8G_P1 I-AniI variants are separated by only the -8G position. The main contact to -7G (R72) is maintained, maintaining the high specificity at -7 while successfully switching the specificity at -6 and -8. The variant with all five mutations targeting the two base-pair switches shows specific cleavage of the intended site.

Figure S8. Cleavage data for endonucleases targeting multiple base-pair pockets and full sites.

Figure S9. Endonucleases targeting the (+) half-site changes in two mosquito sites show activity in human cells. The level of cleavage of these two variants is comparable to cleavage by the M5 and Y2 variants of the I-AniI endonuclease (32) with the wild-type target site. An unsuccessful variant for the full AGAP004671 site, containing mutations known to abrogate cleavage on the site, is included to demonstrate the level of background in this assay. The two C-terminal variants were built on the M5 background. The assay was completed as previously described (42, 46).

Figure S10. Evidence for a role of C-terminal loop 190-199 in formation of the ground-state reaction complex. **a)** Differences in binding affinity (K_M*) between I-AniI (Y2) with the wild-type I-AniI target and each possible single base-pair substitution (12). I-AniI has decreased binding affinity (increased K_M*) with +6A compared to the wild-type +6G. **b)** Activity (EC_{1/2max}) data for a hybrid enzyme built by transferring mutations at positions 172, 196, and 197 to the I-AniI scaffold (34). The enzyme is more active than the comparable I-AniI-F13Y starting scaffold (F13Y mutation only in base enzyme) with sites containing single base-pair substitutions near the transplanted mutations. **c)** Visualization of the mutations in this hybrid enzyme. T196Y may be increasing the hydrophobic interactions in the interface and be responsible for the better activity of the hybrid. **d)** Preliminary kinetic data for the hybrid variant compared to the I-AniI-F13Y starting scaffold with the same target site indicates that the improvement is likely due to increasing binding affinity (decreasing K_M*).

Figure S11. Mutations from I-AniI homologues that alter catalysis and binding. a) The loop containing Y192I and T196, another mutation implicated in ground state complex formation (Figure S10), is shown in green. The methyl group of the thymine on the DNA strand opposite to +6A may be destabilizing the loop and ground state complex. b) Kinetic analysis of the Y2 (WT) I-AniI endonuclease and a Y2-based variant with the Y192I mutation identified in homologous enzymes (34). Substitutions in the (+) half of the I-AniI target site mainly modulate k_{cat}^* and not K_M^* . The adenine substitution at position +6 is an exception, with a much higher K_M^* than any other substitution in the (+) half-site (Figure S10). The Y192I substitution alters the binding of +6 substitutions, significantly lowering the K_M^* for +6A. c) All homologues with over approximately 50% identity to I-AniI (34) were analyzed and the mutations in the loop from K190 to S199 and supporting residues from R172 to I181 were used to design limited libraries. The amino acid variation included in these libraries is shown on the structure. Not every mutation observed in the set of analyzed homologues was included in the libraries, and the frequencies that each type was seen are also shown (ie, D175:13E indicates that there were 13 glutamates seen at position 175). One library was built for the loop from R172 to D175 (purple), and a second was built with the remaining region spanning I176 to S199 (green). These libraries were screened against the -6C single base-pair substitution that significantly decreases binding affinity without altering catalysis. The sequences identified with the selection process are shown as alignments. d) Additional libraries were built from mutations identified in homologues in the N-terminal region from positions 73-75. This region is one of only a small number of regions that contact the DNA backbone and not the bases, making it a good candidate for modulation of non-specific interactions. The sequences included in the libraries are shown below the image of the area. The library was also screened against the -6C substitution and the sequence converged completely to D73R, K74K, and N75K.

Supplementary Discussion A. Rosetta computational predictions of experimental data.

The single base-pair specificity switches we describe in this paper provide a valuable benchmark for evaluating and guiding the improvement of computational design methods. Both specificity prediction and sequence design calculations were carried out for these I-AniI variants, as well as for all positions in the wild-type I-AniI interface, and compared to experimental data to assess the accuracy of the computational model. For the specificity calculations, the base in the crystal structure DNA targeted by the variant enzyme was substituted with each of the four possible nucleotides at the position and the energies of the four complexes were compared. The protein positions surrounding this position were kept fixed in sequence, either the sequence of the evolved variant or the wild-type protein sequence, for specificity calculations, but allowed to vary in design calculations.

We compared the experimentally determined specificity of I-AniI to specificity predicted for 1) four single I-AniI structures, 2) the average of the four, and 3) with and without inclusion of sidechain and base conformations from the starting crystal structure (Figure S4a, Figure S5). The predictions were most accurate for positions with high specificity and direct contacts, while there was significantly less agreement for positions with lower specificity. Supplementation of the standard rotamer libraries used to model sidechain (69) and base conformations (63) with conformations from the starting crystal structures caused an inaccurate bias for the crystal structure base-pair (Figure S4a). In calculations including DNA base conformations, the crystal structure nucleotide was almost always incorporated at one or both strands of the targeted position, resulting in inaccurately high specificity prediction. At the one target site position that benefited from inclusion of the crystal structure rotamer, none of the Rosetta-generated DNA rotamers was similar enough to produce the low energy interactions with the +3 base-pair that correspond to high specificity (Figure S4b). These results indicate that the DNA rotamers generated are not sufficient for accurate modeling of specificity, and it will be important to improve these rotamers for future work.

The average specificity value calculated over the four structures matched the experimental data better than the single structure, suggesting the protein backbone of the starting structure also biases this calculation (Figure S4a). The bias observed here can in principle be resolved by incorporating backbone flexibility (64–67) but this is complicated as the levels of structural movement must be enough to resolve clashes that erroneously penalize tolerated sequence changes, but not so much that the specificity signal is lost in the energetic noise of these movements or that inaccurate energetic minima are favored. Flexible backbone calculations performed much worse than did fixed backbone calculations for recapitulation of I-AniI wild-type specificity data (Figure S4c).

Calculations employing the wild-type I-AniI crystal structures were less successful in recapitulating the cleavage specificities (Figure S6a, Table S1) and amino acid sequences (Figure S6b) of the engineered variants, likely also because of changes in either the protein or DNA backbone positions not modeled in the calculations. The recently introduced motif-biased design approach (33), in which motif rotamers are incorporated into the Rosetta rotamer library and given an energy bonus, was more successful in recovering the sequences of the variants given their cleavage specificities than design without motifs. The majority of motif interactions are

direct, hydrogen-bonding contacts, and the model more accurately identifies these interactions than indirect contacts. However, even with the motifs, the recapitulation of this experimental benchmark was significantly less successful than in similar calculations recovering the sequences of crystal structures (33).

A key issue in computational modeling and design of new protein sequences starting from a static crystal structure is how to add enough flexibility to resolve small incompatibilities that are normally tolerated by dynamic proteins, but not allow so much that inaccurate minima are found for repulsive interactions that should not be tolerated. The minimal movement used in this work, only rotamers on both sides of the interface, was not enough to resolve clashes in some cases, particularly when attempted to recapitulate the specificity of engineered variants. Our finding that the different I-AniI structures can produce significantly different results (Figure 4a, Figure 5) indicates that combining information from multiple experimentally determined backbones would be more successful than using a single starting point. Multiple starting crystal structures are rarely available, so an algorithm that produces multiple experimentally relevant backbones based on the original electron density would be very useful (68). Since the repulsive interactions that need to be resolved are often arising between backbone and side-chain atoms, another potential option would be to eliminate the repulsive interaction energy term only between backbone side-chain atoms during fixed backbone modeling stages.

Supplementary Discussion B. Improving the binding affinity of I-Anil.

Selections to improve the overall activity of I-AniI (without changing the target sequence) have been successful in the past (32). The Y2 (S111Y, F13Y) and M5 (Y2 with I55V, F91I, S92T) variants of I-AniI that were used in all of the assays and libraries screened in this work were identified using the original version of the bacterial selection system that only screens for activity (19, 32). Before I-AniI was improved with these mutations, it showed essentially no survival in the bacterial system, even when four copies of its target site were included on pCcdB. The enzyme that was engineered to cleave the full CPK2 site has poor binding affinity compared to its wild-type precursor (Figure 6c). Selections to improve activity and binding for the wild-type endonuclease have the potential to identify mutations that can be incorporated into engineered enzymes like this one. The previously identified Y2 mutations, S111Y and F13Y, are both in the N-terminal domain that is associated with substrate binding and ground state complex formation (12). These findings indicated that the most promising regions for improving these same characteristics were other N-terminal areas that are near the DNA backbone, since the goal is non-specific affinity rather than direct base contacts. However, it was noticed I-AniI showed decreased binding affinity (K_M^*) when the +6 position in its target sequence was mutated from guanine to adenine (Figure S10a). This result is surprising because DNA substitutions in the rest of (+) half of I-AniI interface do not affect K_M^* or formation of the ground state complex (12). Therefore, it might be possible to modulate K_M* through mutations in the C- terminal domain of the complex. Further support for this insight came from examining a homologue-derived hybrid enzyme with mutations at positions 172, 196, and 197, all in the C-terminal domain (34). This variant showed increased activity over the wild-type I-AniI and preliminary kinetic data indicated the improvement was due to decreasing K_M^* (Figure S10). A key feature of this enzyme was the mutation of T196 to a tyrosine, significantly increasing hydrophobic interaction between the protein and DNA on the (+) half of the target site (Figure S10c).

While it is unclear exactly how the +6A mutation decreases binding affinity, one potential result of the base substitution is an increase in ground state repulsive interactions between the protein and the methyl group of the thymine paired with +6A. This methyl group is near residue Y192, which is on the same loop as the T196 substitution in the homologue-derived variant with increased activity (Figure S10). Position Y192 is mutated to an isoleucine in homologous endonucleases with a +5A single base-pair substitution (34), which also places a methyl group near this protein position. To further explore the role of this C-terminal loop from position 190 to 199, kinetic analysis was completed with the Y192I variant and all four base-pairs at position +6. If the thymine methyl is disrupting the interaction of Y192 in the ground state complex, then the isoleucine mutant should not display the high K_M^* seen for the tyrosine with the +6A substitution. While the pattern of k_{cat}* remained relatively similar for the Y192I endonuclease, albeit slightly reduced for all bases, the pattern of K_M* shifted dramatically. The Y192I mutation does result in significantly tighter binding of the +6A substitution, while affinity for the wildtype nucleotide remained relatively similar (Figure S11). This result provides evidence that a region of the I-AniI C-terminal domain is involved in interactions in the ground state complex, in contrast to the rest of the domain that was shown to play a role in forming the transition state complex.

Even though the previously identified I-AniI activating mutations (M5 and Y2) are all in the Nterminal domain, our results indicate that it is possible to improve binding affinity through mutations in one region of the C-terminal domain. After selection was used to identify the M5 and Y2, it was observed that some of these activating mutations were in I-AniI homologues. With the goal of further improving the binding affinity of I-AniI variants, homologues with over 50% identity to I-AniI were analyzed in the N-terminal domain and the C-terminal region that has been implicated in ground state complex formation. Three libraries were built and screened for activity using bacterial cells containing a site with the -6C substitution. This particular substitution is known to substantially reduce I-AniI binding affinity in enzyme assays (12) and the most active I-AniI variant (M5) was shown to have effectively no survival in these cells (Figure S1). Thus, variants with increased binding affinity greater than M5 will be selected from these libraries. The amino acids included in the starting libraries are shown in Figures S11c and S11d. The selected enzymes from the N-terminal library and the smaller C-terminal library (172:175) showed survivals of approximately 100% against the -6C cell line that previously was not cleaved by M5. The other C-terminal library also showed improved survival, albeit not as significantly as the smaller libraries. The sequences of these high-surviving variants are also shown in Figures S11c and S11d. The N-terminal library converged completely to positively charged amino acids. The C-terminal libraries did not converge to specific sequences, but they showed trends for particular positions such as the mutation of R172 to a threonine. While these particular mutations may not provide exactly what is needed to increase the binding affinity of the CPK2 variant, screening libraries based on homologous enzymes did significantly improve I-AniI (M5) activity against the -6C containing substrate.

Table S1. Data for all single base-pair I-AniI variants described in this paper. Cleavage data is from the graphs in Figure S2. Endonucleases are named according to the position and base-pair of intended cleavage and the method used to engineer their new specificities (see further description of naming system below and in Figure 1). The "_P" or "previously published" enzymes that have k_{cat}/K_M activity data (highlighted in green) are from Thyme, S. B. *et al.* **Nature** (2009) (12) and the other published enzymes are from Szeto, M. D. *et al.* **JBC** (2011) (34). Sequences of variants that were selected, but not expressed and tested with cleavage assays, are also included in this table.

Targeted Position in the I-Anil Site and Selected Variant Name	Starting Library, X = all 20 Aas (either <i>NNN</i> or <i>NNS</i>)	Library Survival (0 - 1), round 2	Target Site	EC _{1/2max} (nM), or k _{cat} /K _M for some _P enzymes		Cleavage Specificity; see methods for calculation	Predicted Specificity Showing Data for 2qoj / 3eh8_a; see supplemental methods
Selected variants, S =	selected from random lib	rary, C =	selected f	rom computation:	ally guided libra	ry, P = previously	y published
-9C_S1, K23R, K24A,	K23X, K24X, G25X,	0.17	Target	388 ± 119	~1	0.42	0.31/0.31
T29I	T29X		-9C A		~1	0.23	0.17/0.32
			G T		0.41	0.11 0.25	0.38/0.37 0.14/4E-2
Untested -9C variants,	residue numbers in alignm	nent: 23, 24,	Ĩ	$\frac{648 \pm 412}{\text{wt K K G T}}$	~1	0.25	0.14/4E-2
same library as -9C_S1				3of5			
Untested -9T variants	K23X, K24X, G25X, T29X	0.04	23, 24, 25	5, 29 wt KKG Zof15 RAG 2of15 RAG 1of15 RAG	T 1of15 KAG V 1of15 SAG	V Q	
Untested -8C variants	K23X, K24H, G25X, T29X, L112X	0.34	23, 24, 25	2of8 1of8	RHHNL 1of(RH <mark>GT</mark> L 1of(8 <mark>SHGNA</mark> 8 GHGGA 8 AHGGA 8 RHRQA	
-8G_P1, K24N, T29K	NA, test of the method	0.50 for	Target	31 ± 5	0.89	0.92	0.82/0.02
		single	-8G A	1107 ± 195	~1	0.03	0.11/2E-3
		clone test	C		0.91 0.96	0.02	0.07/0.94
Untested -8G variants,	K24X, T29X, E31X,	0.35	T 24, 29, 31			0.03	2E-6/0.03
used as a control for selection method	R72X	0.55	24, 29, 51	5of17 3of17	SHER 1of12 NRER 1of12	7 NTER 1of1	7 NQTR 7 NTTR 7 NN <mark>E</mark> R
-8G_P2 K24N, L28V,	NA	NA	Target	24 ± 3	0.94	0.92	0.81/0.03
T29K			-8G A	692 ± 370	0.69	0.03	0.11/2E-3
			С	956 ± 300	~1	0.02	0.08/0.94
OT DI KOAL TOOO		27.4	Т	750 ± 170	~1	0.03	9E-7/0.04
-8T_P1, K24N, T29Q	NA, $EC_{1/2max}$ collected for	NA	Target	$5.3E-2 \pm 2E-2$	NA	0.61	1E-6/7E-3
	-8T only = 20 nM,		-8T A	$1E-3 \pm 9E-5$ $2E-3 \pm 2E-4$	NA NA	0.01 0.02	0.25/2E-4 0.10/0.99
	Thyme <i>et al</i> , 2009		G		NA	0.36	0.65/4E-3
-6C P1, T29S, E31R,	NA	<< 0.0001		$3.1E-2 \pm 9E-3$ 2.7E-2 ± 3E-3	NA	0.30	0.75/0.62
R70L		for single			NA	0.01	6E-7/3E-6
		clone	G	$1E-3 \pm 8E-5$	NA	0.03	0.20/0.36
			T		NA	0.03	0.05/0.03
-6C_C1, T22S, E31R,	S20X, T22X, E31X/R (2	0.46/0.15	Target	4 ± 0.3	0.98	0.96	0.62/0.19
R70E	libs), S57X, R70X	(round 2),	-6C A		-	0.02	7E-6/1E-4
		0.34/0.97	G		-	0.02	0.32/0.72
		(round 3)	Т	260 ± 25	0.18	0.02	0.06/0.09
Untested -6C variants, same libraries as -6C_C1	22, 31, 70 wt TER 15of20 SRE 2of20 SRT 1of20 ATT		of20 <mark>GT</mark> of20 <mark>T L</mark>				
-6T_P1, A68Y, L69F,	NA	NA	Target	135 ± 18	0.98	0.16	0.10/0.05
R70K, I71V			-6T A		0.31	0.12	4E-8/1E-6
			С		-	0.03	0.22/0.34
			G	31 ± 11	~1	0.69	0.68/0.62

-6T P2, P1 mutations +	NA	NA	Target	28 ± 4	0.99	0.44	6E-3/0.06
57-65 = GFRKRTLV			-6T A	208 ± 45	1	0.06	1E-8/2E-6
+SGVVS+ K			C	112 ± 21	1	0.11	0.03/0.31
			Ğ	32 ± 3	0.96	0.39	0.97/0.31
-5C_C1, Y18C, S20K,	Y18X, S20K, T22X,	0.62	Target	138 ± 33	~1	0.48	0.43/0.56
G33S	G33X, E31X	0.02	-5C A	1752 ± 1091	~1	0.04	9E-4/3E-11
0555	005M, 15 M		G	359 ± 183	~1	0.19	0.05/4E-5
			T	227 ± 79	~1	0.29	0.51/0.44
-5C C2, Y18S, S20M,	Y18X, S20X, G33R,	0.62	Target	146 ± 35	~1	0.29	0.73/0.98
		0.02					
G33R	E31X, A68X		-5C A	505 ± 282	~1	0.11	0.03/4E-8
			G	326 ± 87	~1	0.17	0.17/3E-5
			Т	~170	-	0.33	0.08/0.01
-5C_C3, Y18S, S20L,	Y18X, S20X, G33R,	0.62	Target	153 ± 33	~1	0.49	0.99/0.99
G33R, A68M	E31X, A68X		-5C A	395 ± 175	~1	0.19	6E-4/7E-7
			G	543 ± 400	~1	0.14	2E-3/4E-8
			Т	~395	-	0.19	8E-3/1E-3
-5C_S1, Y18S, S20M,	Y18X, S20X, G33X,	0.90	Target	125 ± 18	~1	0.10	0.77/0.99
G33S, S57Y, A68C	S57X, 59X, A68X		-5C A	113 ± 13	~1	0.11	0.09/3E-4
			G	17 ± 2	~1	0.77	0.07/2E-3
			Т	682 ± 192	~1	0.02	0.07/9E-8
Jntested -5C variants,	18, 20, 31, 33, 57, 68	wt	Y <mark>S E G S</mark> A	6of26 SMER	A 1of26 S	SCRSE	
ame libraries as above		2of3	SMESYC	4of26 SKDT 5	5 A		
5C selections		1of3	CMEASA	3of26 <mark>5 L E R</mark>	<mark>S</mark> M		
		9of26	YG <mark>E</mark> RSS	3of26 <mark>C K E S</mark>	S A		
Untested -5G variants	Y18X, S20X, E31X/wt,	0.65	18, 20, 31	wt YSEG	SA 1of6 TN	ESR 1of4 AQE	ASR 1of6 CVENTR
	G33X, S57X/wt, 59X,		33, 57, 59	68 20f6 AAEN		VSR 1of4 ASE	ISR 10f6 AMECHR
	A68X/R			1of6 SAEV		DSR 20f6 SLE	NSR 1of4 SSETSR
				1of6 CLEC		SSR 1of6 SAE	ASR 1of4 SHENSR
-5T_P1, Y18F, S20T,	NA	NA	Target	39 ± 10	0.97	0.50	0.28/0.50
I21V, T29A, A68S	NA	INA	-5T A	200 ± 9	~1	0.10	0.35/0.04
121 V, 129A, A005				73 ± 15	0.94	0.10	0.17/0.46
			C G	135 ± 4	~1		
		0.50		133 ± 4 64 ± 3		0.14	0.20/6E-4
-5T_S1, Y18C, S20M,	Y18X, S20X, G33X,	0.53	Target		0.94	0.16	0.54/0.43
G33S	S57X, 59X, A68X		-5T A	507 ± 327	~1	0.02	0.01/6E-5
			С	20 ± 1	~1	0.50	0.38/0.57
			G	30 ± 2	~1	0.33	0.07/1E-3
-4C_C1, Y18C, G33K,	Y18X, S20X, G33K,	0.46	Target	100 ± 14	~1	0.47	0.75/0.97
R59T, A68R	R59X, A68X		-4C A	2433 ± 4431	~1	0.02	6E-3/4E-4
			G	627 ± 267	~1	0.07	0.25/0.03
			Т	97 ± 22	~1	0.48	2E-8/7E-5
-4C C2, Y18C, G33K,	Y18X, S20X, G33K,	0.46	Target	126 ± 20	~1	0.55	0.62/0.94
	R59X, A68X		-4C A	876 ± 1130	~1	0.08	0.11/9E-3
			G	1078 ± 1434	~1	0.06	0.27/0.05
Intested -4C variants			Т	226 ± 55	~1	0.31	5E-7/7E-5
	18, 20, 33, 35, 59, 68			226 ± 55			5E-7/7E-5
	18, 20, 33, 35, 59, 68	Wi Zof2f		3of26 CS	CESR 10	26 C S K <mark>E</mark> S Q	5E-7/7E-5
ame library as -4C_C1	18, 20, 33, 35, 59, 68	7of26	t <mark>Y S G E R</mark> / 5 C S K <mark>E S</mark> /	A 3of26 C S A 2of26 M S R	CESR 1of RESA 30	26	5E-7/7E-5
ame library as -4C_C1	18, 20, 33, 35, 59, 68	7of26 6of26	t	A 3of26 C S A 2of26 M S F 2of26 M S F	C <mark>ESR</mark> 1of RESA 3a REQA 1a	26 C S K <mark>E</mark> S Q	5E-7/7E-5
ame library as -4C_C1 nd C2		7of20 6of20 4of20	t Y S G E R / 5 C S K E S / 5 T S K E T F 5 C S K E A /	A 3of26 C S A 2of26 M S C 2of26 M S A 2of26 M S A 1of26 Y G	K <mark>ESR</mark> 1of RESA 30 REQA 10 KESA	26 C SK E SQ 6f4 F SG A E R 6f4 F SR A E R	
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y,	Y18X, S20X, G33X,	7of26 6of26	t YSGER/ 5CSKES/ 5TSKETI 5CSKEA/ Target	3of26 C S 2of26 M S 2of26 M S 2of26 M S 1of26 Y C 993 ± 488	C <mark>ESR</mark> 1of CESA 3a CEQA 1a CESA ~1	26 C SK E SQ 64 F SG A E R 64 F SR A E R 0.35	4E-8/4E-5
ame library as -4C_C1 nd C2		7of20 6of20 4of20	t YSGER/ 5 CSKES/ 5 TSKETI 5 CSKEA/ Target -4T A	A 30f26 C S A 20f26 M S F 20f26 M S F 20f26 M S F 10f26 Y G 993 ± 488 >1605	ESR 101 ESA 30 EQA 10 ESA ~1 NA	26 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22	4E-8/4E-5 0.38/0.21
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y,	Y18X, S20X, G33X,	7of20 6of20 4of20	t YSGER/ 5 CSKES/ 5 TSKETI 5 CSKEA/ Target -4T A C	$\begin{array}{c c} 3 & 3 & 6726 \\ \hline & 2 & 6726 \\ \hline & 1 & 6726 \\ \hline & 993 \pm 488 \\ \hline & 993 \pm 488 \\ \hline & 993 \pm 488 \\ \hline & 51605 \\ \hline & 1605 \pm 1210 \\ \hline \end{array}$	Image: Constraint of the second sec	26 C S K E SQ 5f4 F S C A E R 5f4 F S R A E R 0.35 0.22 0.22	4E-8/4E-5 0.38/0.21 0.57/0.45
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R	Y18X, S20X, G33X, R59X, A68X	7of26 6of26 4of26 <0.01	Y S G R A 5 C S K E A 5 T S K E A 5 C S K E A 7 Target A C C G -4T A C G G G	$\begin{array}{c c} 3 & 3 & 0 & f & 2 \\ 2 & 0 & f & 2 \\ 1 & 0 & f & 2 \\ 2 & 0 & 0 & f \\ 2 & 0 & 0 & f \\ 2 & 0 & 0 & 0 \\ 1$	ESR lof ESA 3a EQA 1a CESA ~1 NA ~1 NA	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X,	7of20 6of20 4of20	t Y S G E R / 5 C S K E S / 5 T S K E T F 5 C S K E A / Target -4T A C G Target	$\begin{array}{c c} 3 & 3 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 \\ \hline$	CESR 10 CESA 32 CESA 10 CESA 1	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.31	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or	7of26 6of26 4of26 <0.01	t Y S C R / 5 C S K E /	$\begin{array}{c c} 3 & 3 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 \\ \hline$	(ESR 100 (ESA 32 (ESA 100 (ESA 100 (ESA 100 (ESA 100 (ESA 100) (ESA 100) (ES	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.31 0.23	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X,	7of26 6of26 4of26 <0.01	Target -4T A Target -4T A -3A C G	$\begin{array}{c c} 3 & 3 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 \\ \hline$	K E S.R. 1 of K E S.A. 3 cd K E G.A. 1 of NA ~1 NA ~1 NA ~1 0.99 ~1 0.1	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.31 0.23 0.26	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG-	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted	7of26 6of26 4of26 <0.01	Target -3A C	$\begin{array}{c c} 3 & 3 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 2 & 0 \\ 2 & 0 & f & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 \\ \hline & 0 & 0 & 0 & 0 \\ \hline$	(ESR 100 (ESA 32 (ESA 100 (ESA 100 (ESA 100 (ESA 100 (ESA 100) (ESA 100) (ES	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.31 0.23	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG-	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or	70726 60726 40726 <0.01	Target -4T -3A C G Target -3A C G T	$\begin{array}{c c} 3 & 3 & 6726 \\ \hline & 2 & 6726 \\ \hline & 993 \pm 488 \\ \hline & 1 & 6726 \\ \hline & 1 & 1 & 6726 \\ \hline & 1 & 1 & 1 \\ \hline & 1 &$	Image: Second state	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.23 0.26 0.21 1 W S Y R R H	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Jntested -3A variants,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted	70726 60726 40726 <0.01 >1 wt YEFR 6 WALR	t Y S C R F 5 C S K E F F F F F F F F F F F F F F F F F F F S F F F F F F S S S F S	$3of26$ C S $2of26$ M S $2of26$ M S $2of26$ M S $1of26$ Y C 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WGER M 1 WAVR	K E S.R. 1 of K E S.A. 3 cd K E G.A. 1 of NA ~1 NA ~1 NA ~1 0.99 ~1 0.1	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.23 0.26 0.21 1 W S Y R R H	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Jntested -3A variants,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted	70726 60726 40726 <0.01 >1 wt YEFR 6 WALR	t Y S C R F 5 C S K E F F F F F F F F F F F F F F F F F F F S F F F F F F S S S F S	$3of26$ C S $2of26$ M S $2of26$ M S $2of26$ M S $1of26$ Y C 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WGER M 1 WAVR	Image: Second state	226 C S K E SQ 574 F S C A E R 574 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.22 0.23 0.23 0.26 0.21	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Jntested -3A variants,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted	70726 60726 40726 <0.01 >1 wt Y E F R 6 WA L R 3 W S Y R	Y S C R J 5 C S K E J 5 T S K E T 5 C S K E A 7 Target -4T A C G 7 Target -3A C G T -3A C G T T K K N E I I	A 30f26 C S 20f26 M S F 20f26 M S F 20f26 M S F 10f26 Y C F 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WG E R M 1 WA V R P M 1 WA V R P	Image: Second	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.23 0.26 0.21 1 W S Y R R H	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Untested -3A variants, ame library as -3A_S1	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted 18, 35, 58-66	70726 60726 40726 <0.01 >1 wt Y E F R 6 WA L R 3 W S Y R 1 WA F R	Y S C R J 5 C S K E J 5 T S K E J 5 C S K E J 6 T S K E J 7 A C G G 7 -3A C G T 1 C A C G 0 T C G T 1 C C G T 1 C C G T 1 C C G T 1 C C C G 1 C C C T 1 C C C C 1 C C C C 1 C C C C 1 C C C C 1 C C C C <td>A 30f26 C S 20f26 M S F 20f26 M S F 10f26 Y G K 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WG E R 1 WA V R M 1 WA V R M 1 WA V R</td> <td>Image: Second second</td> <td>226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T</td> <td>4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20</td>	A 30f26 C S 20f26 M S F 20f26 M S F 10f26 Y G K 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WG E R 1 WA V R M 1 WA V R M 1 WA V R	Image: Second	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20
ame library as -4C_C1 and C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Untested -3A variants, ame library as -3A_S1 -3C_P1, Y18W, E35K,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted	70726 60726 40726 <0.01 >1 wt Y E F R 6 WA L R 3 W S Y R	Y S C R J 5 C S K E J 5 T S K E J 7 Target -4T A C G 7 Target -3A C G T -3A C G T T C G T K R N E I I C C G T C G G T C G T C G G T C G G T C G G T C G G T C G G T C G G T C G G T C G G T G <t< td=""><td>A 30726 C S 20726 M S F 20726 M S F 20726 M S F 10726 Y G F 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WC E R 1 WA V R M 1 WA V</td><td>Image: Second second</td><td>226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T 0.76</td><td>$\begin{array}{r} 4E-8/4E-5\\ 0.38/0.21\\ 0.57/0.45\\ 0.05/0.34\\ 5E-6/0.01\\ 0.02/0.25\\ 0.96/0.53\\ 0.02/0.20\\ \hline N=-M\\ S=-M\\ 0.75/0.85 \end{array}$</td></t<>	A 30726 C S 20726 M S F 20726 M S F 20726 M S F 10726 Y G F 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WC E R 1 WA V R M 1 WA V	Image: Second	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T 0.76	$\begin{array}{r} 4E-8/4E-5\\ 0.38/0.21\\ 0.57/0.45\\ 0.05/0.34\\ 5E-6/0.01\\ 0.02/0.25\\ 0.96/0.53\\ 0.02/0.20\\ \hline N=-M\\ S=-M\\ 0.75/0.85 \end{array}$
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Untested -3A variants, ame library as -3A_S1	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted 18, 35, 58-66	70726 60726 40726 <0.01 >1 wt Y E F R 6 WA L R 3 W S Y R 1 WA F R	Y S C R F 5 C S K E F 5 T S K E F 5 C S K E F 6 T S K E A 7 Target -4T A C G 7 Target -3A C G T 8 C G T T C G T 6 H G R C G T T C G T C G T C G T C G T C G T C G T C G T C G T C G T C G T C G T C G G T C G G T C G G T C G G G G G G	$\begin{array}{c c} 3of26 \ C \ S \\ 2of26 \ M \ S \\ 2of26 \ M \ S \\ 2of26 \ M \ S \\ 1of26 \ Y \ G \\ \hline \\ 0993 \pm 488 \\ >1605 \\ 1605 \pm 1210 \\ >1605 \\ 177 \pm 38 \\ 240 \pm 46 \\ 205 \pm 34 \\ 259 \pm 79 \\ \hline \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ V \ R \\ M \ 1 \ WA \ K \ R \\ H \ R \\ 1.2E-2 \pm 1E-4 \\ 2E-3 \pm 8E-5 \\ \end{array}$	Image: Second	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T 0.76 0.13	$\begin{array}{r} 4E-8/4E-5\\ 0.38/0.21\\ 0.57/0.45\\ 0.05/0.34\\ 5E-6/0.01\\ 0.02/0.25\\ 0.96/0.53\\ 0.02/0.20\\ \hline N=-M\\ S=-M\\ \hline 0.75/0.85\\ 1E-5/2E-3\\ \end{array}$
ame library as -4C_C1 nd C2 -4T_S1, Y18G, S20Y, G33S, R59A, A68R -3A_S1, Y18W, E35A, 58-65 = LRQHDRG- Untested -3A variants, ame library as -3A_S1 -3C_P1, Y18W, E35K,	Y18X, S20X, G33X, R59X, A68X Y18W, E35K, 58X, 60X, 61 <i>VAS</i> , 62-65 X or deleted 18, 35, 58-66	70726 60726 40726 <0.01 >1 wt Y E F R 6 WA L R 3 W S Y R 1 WA F R	Y S C R J 5 C S K E J 5 T S K E J 7 Target -4T A C G 7 Target -3A C G T -3A C G T T C G T K R N E I I C C G T C G G T C G T C G G T C G G T C G G T C G G T C G G T C G G T C G G T C G G T G <t< td=""><td>A 30726 C S 20726 M S F 20726 M S F 20726 M S F 10726 Y G F 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WC E R 1 WA V R M 1 WA V</td><td>Image: Second second</td><td>226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T 0.76</td><td>4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20 N = - M 0.75/0.85</td></t<>	A 30726 C S 20726 M S F 20726 M S F 20726 M S F 10726 Y G F 993 ± 488 >1605 1605 ± 1210 >1605 177 ± 38 240 ± 46 205 ± 34 259 ± 79 M 1 WC E R 1 WA V R M 1 WA V	Image: Second	226 C S K E SQ of 4 F S C A E R of 4 F S R A E R 0.35 0.22 0.22 0.22 0.22 0.23 0.26 0.21 1 W S Y R R H 1 W C M R V D T 0.76	4E-8/4E-5 0.38/0.21 0.57/0.45 0.05/0.34 5E-6/0.01 0.02/0.25 0.96/0.53 0.02/0.20 N = - M 0.75/0.85

-3C_C1, Y18W, E35K,	Y18W, E35K, 58X, 60X,	0.23	Target	t	24	0.95	0.90	0.83/0.83
(58-65) = YREQDG	61 <i>VAS</i> , 62-65 X or	(round 3),	-3C		476	~1	0.05	6E-6/2E-3
	deleted	0.72		G	1413	~1	0.02	0.16/0.08
		(round 4)		Т	>476	-	0.05	6E-3/0.09
-3C C2, Y18W, E35K,	Y18W, E35K, 58X, 60X,	0.28	Target	t	7	0.98	0.88	0.48/0.87
(58-65) = FRPDG	61 <i>VAS</i> , 62-65 X or	(round 3),	-3C	Α	82	~1	0.08	3E-5/1E-3
(deleted	0.81		G	259	~1	0.02	0.51/0.05
		(round 4)		T	331	~1	0.02	0.01/0.08
Untested -3C variants,	58-66 WT FRKRNEIEM	1 ERK	G	M 1		RKNDCM 1	FREECC MI	
same libraries as	3of10 F R P D G M	1 FRP	IG	M 1	IRDGGR M 1 Y	REHDA M1of2	FREDGGG-M1Y	RDEGRKGM 7 YRWECKRRM
-3C C1 and C2	1 <mark>R P E G</mark> M 1 V R K D G M		0	M 1	IRPHDG M 1 V	RSOFG = -M 1	VRPDCNC-M1	RTEGARDM
	$1 \overrightarrow{FRNDG} = M$	2of13 YRE		M 1	YRPNEG M1F	RRDDN M 1019	HRMEGGRGM 1 FRIERAGEM 1 V	
-3T S1, Y18W, E35S,	Y18W, E35K, 58X, 60X,	0.25	Target		254 ± 96	~1	0.36	0.02/0.20
58-65 = HRHDD	61 <i>VAS</i> , 62-65 X or	0.20	-3T	A	>448	-	0.21	9E-6/0.02
	deleted		51	C	448 ± 179	~1	0.21	0.05/0.25
				G	404 ± 163	~1	0.23	0.93/0.54
Untested -3T variants,	18, 35, 58-66 wt y	FRKRN			101 - 100		0120	
same library as -3T S1	8of11 WS			A				
	30f11 WA							
	50/11							
+3A S1, A170N,	C150X, A170X, D194X,	0.41	Target	t	189 ± 38	~1	0.42	0.03/0.13
D194A, K200C	K200X		+3A		454 ± 98	~1	0.17	0.77/0.57
				G	331 ± 129	0.77	0.24	0.03/0.12
				Т	>454	-	0.17	0.17/0.17
Untested +3A variants,	170, 192, 194, 200	wet A		1.	of 15 SYAV			
same library as +3A S1	, , ,	90f15 L			of 15 C S R S			
		20f15		-				
		2of15 (
+3C P1, I164V, K200N	NA	NA	Target	t	14 ± 6	0.93	0.28	0.49/0.37
			+3C		146 ± 5	0.85	0.03	0.03/0.10
				G	155 ± 13	0.67	0.03	0.05/0.07
				T	6 ± 0.3	0.98	0.55	0.43/0.46
+3C S1, A170E,	C150X, A170X, D194X,	0.59	Target	_	145 ± 33	~1	0.73	0.93/0.72
D194K, K200A	K200X	0.59	+3C	Α	>1407	-	0.08	0.03/0.14
DT) IR, RECONT	RECOM		130	G	888 ± ?	0.09	0.12	0.04/0.14
				T	1407 ± 931	0.58	0.08	0.01/8E-5
+3C S2, A170E,	C150X, A170X, D194X,	>1	Target	-	288 ± 68	0.97	0.64	0.66/0.10
D194G, K200R	K200X	~1	+3C		>1500	-	0.12	0.03/0.21
D1940, K200K	1120071		130	G	>1500		0.12	0.12/0.68
				T	>1500	-	0.12	0.12/0.08 0.19/3E-3
Untested +3C variants,	170, 192, 194, 200					1.612 7.4 6.1	0.12	0.19/5E-5
same library as $+3C_S1$	170, 192, 194, 200	wt P 2of13			of13 WY <mark>G</mark> A of13 <mark>E</mark> Y A V	1of13 <mark>TYCN</mark> 7of7 WRAV		
and S2		20/13 20f13			of13 EYSR	7017 WKAV		
and 52		2of13			of13 EYKA			
+3G_S1, A170K,	C150X, A170X, D194X,	_			240 ± 61	0.83	0.68	0.06/0.54
Y192G, K200V	K200X	0.02	+3G		>1500	0.05	0.08	0.02/0.43
11/20, 1200 1	N200/A		1,30	$\frac{\Lambda}{C}$	>1500		0.11	0.33/0.03
				Т	>1500	-	0.11	0.53/0.03 0.58/1E-9
+3G S2, A170V,	C150X, A170X, D194X,	0.40	Target	<u> </u>	1245 ± 1173	~1	~0.25	0.28/0.45
+30_32, A170V, D194S, K200R	K200X	0.40	+3G		>1318	~1	~0.25	0.03/0.07
D1775, K200K	K200A		1.30	A C	>1318	-	~0.25	0.40/0.07
				Т	1318 ± 1100	0.21	~0.25	0.29/0.41
+3G S3, A170V,	C150X, A170X, D194X,	0.82	Target		1318 ± 1100 697 ± 296	0.21	~0.25	0.29/0.41
+3G_S5, A170V, D194G, K200R	K200X	0.02	+3G		>686		~0.25	0.02/0.07
D_{1770} , K_{200}	K200A		730	A	>686	-	~0.25	0.41/0.08
,				Т	686 ± 158	0.24	~0.25	0.28/0.45
			1			0.24	~0.23	0.28/0.45
,	170 102 104 200		YDK					
Untested +3G variants,	170, 192, 194, 200			2	of22 K G D R			
Untested +3G variants, same library as +3G_S1-	170, 192, 194, 200	8of22 N			of22 VYCP			
Untested +3G variants, same library as +3G_S1-	170, 192, 194, 200	8of22 <mark>N</mark> 5of22 L	WDR		of22 VYGR			
Untested +3G variants, same library as +3G_S1- S3		8of22 N 5of22 L 3of22 K	W <mark>DR</mark> YAC	1		0.00	0.29	AE 2/2E 2
Untested +3G variants, same library as +3G_S1- S3 +4A_S1, C150S,	C150X, D168X, Y192X,	8of22 <mark>N</mark> 5of22 L	WDR YAC Target	1	35 ± 5	0.99	0.38	4E-3/2E-3
Untested +3G variants, same library as +3G_S1- S3		8of22 N 5of22 L 3of22 K	W <mark>DR</mark> YAC	1 t C	$\frac{35\pm5}{984\pm475}$	0.87	0.01	0.41/0.08
Untested +3G variants, same library as +3G_S1- S3 +4A_S1, C150S,	C150X, D168X, Y192X,	8of22 N 5of22 L 3of22 K	WDR YAC Target	1	35 ± 5			

+4A S2, D168S,	D168X, Y192X, D194X,	0.67	Target		115 ± 16	0.99	0.29	2E-3/9E-4
Y192V, D194M, K200I	K200X		+4A	С	492 ± 20	0.39	0.07	0.32/0.23
			1 1	G	79 ± 13	~1	0.43	0.58/0.34
			1 1	Т	159 ± 28	0.85	0.21	0.10/0.43
+4A S3, D168A,	C150X, D168X, Y192X,	0.53	Target		96 ± 10	~1	0.21	3E-3/1E-3
K190R, K200L	D194X, K200X		+4A	С	316 ± 31	0.83	0.07	0.28/0.20
,	,		1 1	G	77 ± 9	~1	0.27	0.58/0.44
				Т	45 ± 4	~1	0.46	0.14/0.36
Untested +4A variants, same libraries as +4A_S1-S3	150, 168, 192, 194, 200	20	wt CD of 18 CN of 18 CN of 18 CN of 18 CS	Y <mark>D</mark> A G A <mark>T</mark>	1of18 <mark>5 G</mark> 1of18 <mark>5 G</mark> 1of18 CA 1of18 CA 1of18 CA	(DY 1of18 (DR 1of18	CAGDL CNGCI CSAYL	
+4G S1, D168S,	D168X, Y192X, D194X,	0.31	Target		89 ± 23	~1	0.36	0.53/0.93
192G, D194G, K200Y	K200X		+4G	Α	140 ± 36	0.86	0.23	6E-3/2E-3
			1 1	С	147 ± 34	0.51	0.22	0.43/0.06
			1 1	Т	161 ± 52	0.64	0.21	0.03/7E-3
+4G S2, D168S,	D168X, Y192X, D194X,	0.31	Target		69 ± 17	~1	0.38	0.11/0.47
(192V, D194G, K200V	K200X		+4G	А	90 ± 18	~1	0.29	3E-3/2E-3
				C	165 ± 24	0.77	0.16	0.29/0.19
			1	T	100 = 21 144 ± 37	0.90	0.18	0.60/0.34
+4G S3, D168G,	D168X, Y192X, D194X,	0.31	Target	-	144 ± 37 278 ± 26	~1	0.43	0.40/0.53
+40_33, D1080, Y192G, K200R	K200X	0.51		А	$\frac{278 \pm 20}{440 \pm 66}$	0.97	0.43	3E-3/2E-3
11720, K200K	K200A		P#0	A C	$\frac{440\pm66}{837\pm84}$	0.97	0.27	0.20/0.26
			1	Т				
4C 84 D1604	D168X, Y192X, D194X,	0.29	Torrat	1	797 ± 147 177 ± 35	0.93	0.15	0.39/0.21 2E 2/2E 2
+4G_S4, D168A,	,, ,,	0.28	Target			0.76	0.19	2E-3/2E-3
Y192A, D194W,	K200X		+4G		216 ± 29	0.96	0.16	0.02/0.01
K200V			1	С	986 ± 282	0.20	0.03	0.71/0.77
				Т	55 ± 4	0.99	0.62	0.26/0.22
+4G_S5, D168N,	D168X, Y192X, D194X,	0.31	Target		55 ± 5	~1	0.50	0.35/0.72
Y192V, K200C	K200X		+4G		81 ± 33	~1	0.34	0.02/5E-3
			1 1	С	571 ± 188	~1	0.05	0.59/0.27
				Т	228 ± 19	~1	0.12	0.03/2E-5
+4G_S6, D168N,	D168X, Y192X, D194X,	0.28	Target		108 ± 14	0.99	0.37	0.49/0.72
192C, D194G, K200V	K200X		+4G	А	127 ± 8	0.88	0.31	0.02/2E-3
				C	227 + 59	0.25	0.12	0.48/0.28
				С	337 ± 58	0.25	0.12	0.10/0.20
	160, 100, 104, 200			Т	192 ± 55	0.23	0.21	0.03/3E-5
Untested +4G variants, ame libraries as -4G_S1-S6	168, 192, 194, 200	wt D 3of11 A 2of11 M 2of11 N	AWV Y <mark>dr</mark>	T 1of11 1of11 1of11		0.27		0.03/3E-5
ame libraries as 4G_S1-S6	168, 192, 194, 200 NA	3of11 A) 2of11 M	AWV Y <mark>dr</mark>	T 1of11 1of11 1of11	192 ± 55 S G G Y S V G V G G D R			0.03/3E-5 8E-3/8E-6
ame libraries as 4G_S1-S6		3of11 A) 2of11 M 2of11 N	AWV YDR CGV Target	T 1of11 1of11 1of11	192 ± 55 S G G Y S V G V G G D R N V D C	0.27 0.95 ~1	0.21	0.03/3E-5 8E-3/8E-6 9E-3/8E-4
the libraries as 4G_S1-S6 +4T_P1, K200R, also		3of11 A) 2of11 M 2of11 N	AWV YDR CGV Target +4T	T 1of11 1of11 1of11 1of11 A C	192 ± 55 S C C Y S V C V C C D R N V D C 17 ± 5	0.27	0.21	0.03/3E-5 8E-3/8E-6
Here and the second sec		3of11 A) 2of11 M 2of11 N	AWV YDR CGV Target +4T	T 1of11 1of11 1of11 1of11 A	192 ± 55 S C C Y S V C V C C D R N V D C 17 ± 5 118 ± 4	0.27 0.95 ~1	0.21 0.27 0.04	0.03/3E-5 8E-3/8E-6 9E-3/8E-4
Here libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A,	NA D168X, Y192X, D194X,	3of11 A) 2of11 M 2of11 N	AWV YDR CGV Target +4T	T 1of11 1of11 1of11 1of11 A C	192 ± 55 S C G Y S V G V G G D R N V D C 17 ± 5 118 ± 4 7 ± 1	0.27 0.95 ~1 0.98	0.21 0.27 0.04 0.64	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54
Here libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A,	NA D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N 2of11 N	AWV Y DR C G V +4T	T 1of11 1of11 1of11 1of11 A C G	192 ± 55 5 C C Y 5 V C V 6 C D R N V D C 17 \pm 5 118 \pm 4 7 \pm 1 115 \pm 9	0.27 0.95 ~1 0.98 ~1	0.21 0.27 0.04 0.64 0.04	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A,	NA D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N 2of11 N	AWV YDR CGV Target +4T Target	T 1of11 1of11 1of11 1of11 A C G	192 ± 55 5 C C Y 5 V C V 6 C D R N V D C 17 \pm 5 118 \pm 4 7 \pm 1 115 \pm 9 161 \pm 16	$0.27 \\ 0.95 \\ -1 \\ 0.98 \\ -1 \\ 0.97$	0.21 0.27 0.04 0.64 0.04 0.58	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A,	NA D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N 2of11 N	AWV YDR CGV Target +4T Target	T 1of11 1of11 1of11 1of11 A C G A	192 ± 55 5 C C Y 5 V C V C C D R N V D C 17 \pm 5 118 \pm 4 7 \pm 1 115 \pm 9 161 \pm 16 401 \pm 63	$\begin{array}{c} 0.27 \\ \hline 0.95 \\ \sim 1 \\ 0.98 \\ \sim 1 \\ 0.97 \\ 0.96 \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A,	NA D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N 2of11 N	AWV YDR CGV Target +4T Target	T 1of11 1of11 1of11 A C G A C	192 ± 55 5 C C Y 5 V C V C C D R N V D C 17 \pm 5 118 \pm 4 7 \pm 1 115 \pm 9 161 \pm 16 401 \pm 63 1016 \pm 122	$\begin{array}{c} 0.27 \\ \hline 0.95 \\ \sim 1 \\ 0.98 \\ \sim 1 \\ 0.97 \\ \hline 0.96 \\ 0.34 \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23 0.09	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F	NA D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34	AWV DR C G V Target +4T Target +4T Target Target Target	T 1of11 1of11 1of11 A C G A C	192 ± 55 5 C C Y 5 V C V 6 C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ \hline 0.96\\ 0.34\\ \hline 0.67\\ \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23 0.09 0.10	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31
the libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 7192T, D194A, K200F +4T_S2, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34	AWV DR C G V Target +4T Target +4T Target Target Target	T 1of11 1of11 1of11 1of11 C G A C G G	192 ± 55 5 C C Y 5 V C V C G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23 0.09 0.10 0.40	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34	AWV DR CGV Target +4T Target +4T Target +4T Target +4T	T 1of11 1of11 1of11 A C G A C G A A	192 ± 55 5 C C Y 5 V C V C G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67	$\begin{array}{c} 0.27 \\ \hline 0.95 \\ \sim 1 \\ 0.98 \\ \sim 1 \\ 0.97 \\ 0.96 \\ 0.34 \\ 0.67 \\ \sim 1 \\ \sim 1 \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23 0.09 0.10 0.40 0.23	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, Y192T, D194A, K200F +4T_S2, D168A, Y192S, K200F	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34	AWV C G V Target +4T Target +4T Target +4T Target +4T	T 1of11 1of11 1of11 A C G G A C G A C	192 ± 55 5 C C Y 5 V C V C G D R N V D C 17 \pm 5 118 \pm 4 7 \pm 1 115 \pm 9 161 \pm 16 401 \pm 63 1016 \pm 122 903 \pm 403 100 \pm 19 173 \pm 48 478 \pm 67 135 \pm 27	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ \end{array}$	0.21 0.27 0.04 0.64 0.04 0.58 0.23 0.09 0.10 0.40 0.23 0.08 0.29	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target Target	T 10f11 10f11 10f11 10f11 C 0 G 0 G 0 A 0 C 0 G 0 A 0 C 0 G 0 G 0	192 ± 55 5 G C Y 5 V C V 6 G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 87 ± 11 100 ± 19 100 ± 10 100 ± 19 100 ± 122 100 ± 19 100 ±	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ \hline 0.98\\ \sim 1\\ \hline 0.97\\ \hline 0.96\\ \hline 0.34\\ \hline 0.67\\ \sim 1\\ \sim 1\\ \hline \sim 1\\ \hline 0.80\\ \sim 1\\ \hline 0.98\\ \end{array}$	$\begin{array}{c} 0.21 \\ \hline 0.27 \\ 0.04 \\ \hline 0.64 \\ 0.04 \\ \hline 0.58 \\ 0.23 \\ \hline 0.09 \\ 0.10 \\ \hline 0.40 \\ 0.23 \\ \hline 0.08 \\ \hline 0.29 \\ \hline 0.65 \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A, Y192S, K200F	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34	AWV C G V Target +4T Target +4T Target +4T Target +4T	T 10f11 10f11 10f11 10f11 C 0 G	192 ± 55 5 G C Y 5 V C V C G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ \hline 0.96\\ 0.34\\ \hline 0.67\\ \sim 1\\ \sim 1\\ \hline \sim 1\\ 0.80\\ \sim 1\\ \hline 0.98\\ 0.97\\ \end{array}$	$\begin{array}{c} 0.21 \\ \hline 0.27 \\ 0.04 \\ \hline 0.64 \\ 0.04 \\ \hline 0.58 \\ 0.23 \\ \hline 0.09 \\ 0.10 \\ \hline 0.40 \\ 0.23 \\ \hline 0.08 \\ \hline 0.29 \\ \hline 0.65 \\ \hline 0.13 \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target Target	T 10f11 10f11 10f11 10f11 10f11 C 0 G 0 C 0 G 0 C 0 G 0 C 0 G 0 C 0 G 0 C	192 ± 55 S C G Y S V G V G G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ 0.98\\ 0.97\\ 0.37\\ \end{array}$	$\begin{array}{c} 0.21 \\ \hline 0.27 \\ 0.04 \\ \hline 0.64 \\ 0.04 \\ \hline 0.58 \\ 0.23 \\ \hline 0.09 \\ 0.10 \\ \hline 0.40 \\ 0.23 \\ \hline 0.08 \\ \hline 0.29 \\ \hline 0.65 \\ \hline 0.13 \\ \hline 0.12 \\ \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target +4T	T 10f11 10f11 10f11 10f11 C 0 G	192 ± 55 S C G Y S V G V G G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ 0.98\\ 0.97\\ 0.37\\ 0.72\\ \end{array}$	$\begin{array}{c} 0.21 \\ \hline 0.27 \\ \hline 0.04 \\ \hline 0.64 \\ \hline 0.04 \\ \hline 0.58 \\ \hline 0.23 \\ \hline 0.09 \\ \hline 0.10 \\ \hline 0.40 \\ \hline 0.23 \\ \hline 0.08 \\ \hline 0.29 \\ \hline 0.65 \\ \hline 0.13 \\ \hline 0.12 \\ \hline 0.11 \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, 192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 A C C G G 0 A 0 C 0 G 0 A 0 C 0 G 0 A 0 C 0 G 0 C 0 G 0 G 0 C 0 G 0 G 0 C 0 G	192 ± 55 S C C Y S V C V G C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ 0.98\\ 0.97\\ 0.37\\ 0.72\\ \sim 1\\ \end{array}$	$\begin{array}{c} 0.21 \\ \hline 0.27 \\ \hline 0.04 \\ \hline 0.64 \\ \hline 0.04 \\ \hline 0.58 \\ \hline 0.23 \\ \hline 0.09 \\ \hline 0.10 \\ \hline 0.40 \\ \hline 0.23 \\ \hline 0.08 \\ \hline 0.29 \\ \hline 0.65 \\ \hline 0.13 \\ \hline 0.12 \\ \hline 0.11 \\ \hline 0.54 \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38 0.25/0.56
me libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, Y192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G, Y192W, D194A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 A C G G G G G G G G G G G G G G G G G G	192 ± 55 S C C Y S V C V G C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ 0.98\\ 0.97\\ 0.37\\ 0.72\\ \sim 1\\ \sim 1\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38 0.25/0.56 6E-3/7E-5
ame libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, Y192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X,	3of11 A 2of11 M 2of11 N NA 0.34 0.34	AWV YDR CGV Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 A C G 0 G 0 A 0 C	192 ± 55 S C C Y S V C V G C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58 480 ± 76	$\begin{array}{c} 0.27\\ \hline 0.95\\ \sim 1\\ 0.98\\ \sim 1\\ 0.97\\ 0.96\\ 0.34\\ 0.67\\ \sim 1\\ \sim 1\\ 0.80\\ \sim 1\\ 0.98\\ 0.97\\ 0.37\\ 0.72\\ \sim 1\\ \sim 1\\ \sim 1\\ 0.71\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \hline 0.06\\ \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38 0.25/0.56 6E-3/7E-5 0.41/0.29
ame libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, Y192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G, Y192W, D194A, K200Y	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34 0.34	AWV DR CGV Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 A C G G G G G G G G G G G G G G G G G G	192 ± 55 S C C Y S V C V G C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58 480 ± 76 109 ± 19	$\begin{array}{c} 0.27\\ \hline 0.95\\ \hline \sim 1\\ 0.98\\ \hline \sim 1\\ 0.97\\ \hline 0.96\\ \hline 0.34\\ \hline 0.67\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.80\\ \hline \sim 1\\ \hline 0.98\\ \hline 0.97\\ \hline 0.97\\ \hline 0.37\\ \hline 0.72\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.71\\ \hline \sim 1\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \hline 0.06\\ \hline 0.26\\ \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38 0.25/0.56 6E-3/7E-5 0.41/0.29 0.34/0.15
ame libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, (192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G, Y192W, D194A, K200Y +4T_S5, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34	AWV DR CGV Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 10111 A C G 0 A C G 0 A 0 C 0 G 0 A 0 C 0 G 0 A 0 C 0 G	192 ± 55 S C G Y S V G V G G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58 480 ± 76 109 ± 19 83 ± 6	$\begin{array}{c} 0.27\\ \hline 0.95\\ \hline \sim 1\\ 0.98\\ \hline \sim 1\\ 0.97\\ \hline 0.96\\ \hline 0.34\\ \hline 0.67\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.80\\ \hline \sim 1\\ \hline 0.98\\ \hline 0.97\\ \hline 0.37\\ \hline 0.72\\ \hline \sim 1\\ \hline \sim 1\\ 0.71\\ \hline \sim 1\\ 0.97\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \hline 0.06\\ \hline 0.26\\ \hline 0.56\\ \end{array}$	$\begin{array}{c} 0.03/3E-5\\ \hline 8E-3/8E-6\\ 9E-3/8E-4\\ 0.69/0.56\\ 0.29/0.44\\ 0.65/0.54\\ \hline 2E-3/1E-3\\ 0.26/0.15\\ 0.09/0.31\\ 0.67/0.52\\ \hline 3E-3/2E-3\\ 0.25/0.14\\ 0.09/0.34\\ 0.57/0.43\\ \hline 3E-3/1E-3\\ 0.29/0.19\\ 0.14/0.38\\ \hline 0.25/0.56\\ \hline 6E-3/7E-5\\ 0.41/0.29\\ \hline 0.34/0.15\\ \hline 0.61/0.40\\ \hline \end{array}$
ame libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, (192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G, Y192W, D194A, K200Y +4T_S5, D168A,	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34 0.34	AWV DR CGV Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 10111 A C G 0 G 0 G 0 G 0 G 0 G 0 G 0 G 0 G 0 G 0	192 ± 55 S C G Y S V G V G G D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58 480 ± 76 109 ± 19 83 ± 6 229 ± 19	$\begin{array}{c} 0.27\\ \hline 0.95\\ \hline \sim 1\\ 0.98\\ \hline \sim 1\\ 0.97\\ \hline 0.96\\ \hline 0.34\\ \hline 0.67\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.80\\ \hline \sim 1\\ \hline 0.98\\ \hline 0.97\\ \hline 0.97\\ \hline 0.37\\ \hline 0.72\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.71\\ \hline \hline \sim 1\\ \hline 0.97\\ \hline 0.96\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \hline 0.06\\ \hline 0.26\\ \hline 0.56\\ \hline 0.20\\ \end{array}$	$\begin{array}{c} 0.03/3E-5\\ \hline 8E-3/8E-6\\ 9E-3/8E-4\\ \hline 0.69/0.56\\ \hline 0.29/0.44\\ \hline 0.65/0.54\\ \hline 2E-3/1E-3\\ \hline 0.26/0.15\\ \hline 0.09/0.31\\ \hline 0.67/0.52\\ \hline 3E-3/2E-3\\ \hline 0.25/0.14\\ \hline 0.09/0.34\\ \hline 0.57/0.43\\ \hline 3E-3/1E-3\\ \hline 0.29/0.19\\ \hline 0.14/0.38\\ \hline 0.25/0.56\\ \hline 6E-3/7E-5\\ \hline 0.41/0.29\\ \hline 0.34/0.15\\ \hline 0.61/0.40\\ \hline 3E-3/2E-3\\ \end{array}$
ame libraries as 4G_S1-S6 +4T_P1, K200R, also increases activity on +3G +4T_S1, D168A, Y192T, D194A, K200F +4T_S2, D168A, Y192S, K200F +4T_S3, D168A, Y192H, K200L +4T_S4, D168G, Y192W, D194A, K200Y	NA D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X D168X, Y192X, D194X, K200X	3of11 A 2of11 M 2of11 N NA 0.34 0.34 0.34	AWV DR CGV Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T Target +4T	T 10111 10111 10111 10111 A C G 0 A C G 0 A 0 C 0 G 0 A 0 C 0 G 0 A 0 C 0 G	192 ± 55 S C C Y S V C V G C D R N V D C 17 ± 5 118 ± 4 7 ± 1 115 ± 9 161 ± 16 401 ± 63 1016 ± 122 903 ± 403 100 ± 19 173 ± 48 478 ± 67 135 ± 27 87 ± 11 421 ± 326 485 ± 135 525 ± 111 51 ± 6 193 ± 58 480 ± 76 109 ± 19 83 ± 6	$\begin{array}{c} 0.27\\ \hline 0.95\\ \hline \sim 1\\ 0.98\\ \hline \sim 1\\ 0.97\\ \hline 0.96\\ \hline 0.34\\ \hline 0.67\\ \hline \sim 1\\ \hline \sim 1\\ \hline 0.80\\ \hline \sim 1\\ \hline 0.98\\ \hline 0.97\\ \hline 0.37\\ \hline 0.72\\ \hline \sim 1\\ \hline \sim 1\\ 0.71\\ \hline \sim 1\\ 0.97\\ \end{array}$	$\begin{array}{c} 0.21\\ \hline 0.27\\ \hline 0.04\\ \hline 0.64\\ \hline 0.04\\ \hline 0.58\\ \hline 0.23\\ \hline 0.09\\ \hline 0.10\\ \hline 0.40\\ \hline 0.23\\ \hline 0.08\\ \hline 0.29\\ \hline 0.65\\ \hline 0.13\\ \hline 0.12\\ \hline 0.11\\ \hline 0.54\\ \hline 0.14\\ \hline 0.06\\ \hline 0.26\\ \hline 0.56\\ \end{array}$	0.03/3E-5 8E-3/8E-6 9E-3/8E-4 0.69/0.56 0.29/0.44 0.65/0.54 2E-3/1E-3 0.26/0.15 0.09/0.31 0.67/0.52 3E-3/2E-3 0.25/0.14 0.09/0.34 0.57/0.43 3E-3/1E-3 0.29/0.19 0.14/0.38 0.25/0.56 6E-3/7E-5 0.41/0.29 0.34/0.15 0.61/0.40

+4T_S6, D168A	C150X, D168X, Y192X,	0.50	Target	30 ± 2	0.99	0.41	0.43/0.42
	D194X, K200X		+4T		~1	0.13	5E-3/2E-3
				$C = 57 \pm 8$	0.94	0.22	0.51/0.40
	160, 100, 104, 200			G 49 ± 5	0.96	0.25	0.06/0.18
Jntested +4T variants,	168, 192, 194, 200		wt DY D		1of15 GWAY	3of6 K L DH	
ame libraries as			15 A Y D 15 A C L (1of15 CCLC 1of15 A <mark>GD</mark> L		
-4T_S1-S6				L 1of15 AVAF	3of6 KADH		
+5A C1, S152G,	S152X, Y154X, S166X,	0.11	Target	668 ± 320	~1	0.15	2E-16/1E-11
S166A, D168Q	D168Q, K202X	0.11	+5A		0.57	0.10	0.34/0.04
510071, D100Q	D100Q, R202R			$G = 165 \pm 20$	~1	0.60	0.50/0.94
				$T = 644 \pm 191$	0.93	0.15	0.16/0.02
+5A C2, S166A,	S166X, D168X, T189X,	0.38	Target	249 ± 64	0.94	0.25	1E-16/5E-12
D168S, T189P, K202Q	T204X, K202Q	0.50		C 229 ± 52	0.94	0.27	0.63/0.35
510005, 11051, 12022	120 111, 112022			G >375	-	0.17	0.12/0.31
				$\Gamma = 203 \pm 52$	0.91	0.31	0.26/0.35
+5A S1, D168Q	S152X, D168X, Y192X,	0.47	Target	$\frac{1}{85 \pm 8}$	~1	0.19	7E-17/4E-11
	K202X	0117	+5A		0.71	0.05	0.31/0.05
				G 24 ± 1	0.98	0.67	0.60/0.94
				$T = 179 \pm 42$	~1	0.09	0.09/0.02
+5A_S2, S152C,	S152X, D168X, Y192X,	0.47	Target	539 ± 93	0.61	0.04	1E-16/6E-12
D168E, N226S	K202X			C 26 ± 4	0.95	0.77	0.44/0.24
,	· ·			$G = 115 \pm 15$	~1	0.17	0.48/0.75
				$T = 1056 \pm 318$	0.55	0.02	0.08/7E-3
+5A S3, S152I, D168E	S152X, D168X, Y192X,	0.27	Target	597 ± 243	0.89	0.02	5E-17/1E-10
_ , , ,	K202X		+5A		0.98	0.58	0.31/0.05
				G 28 ± 3	0.97	0.39	0.69/0.95
				T 1008 ± 281	0.75	0.01	2E-4/1E-6
+5A S4, D168E	S152X, D168X, Y192X,	0.47	Target	674 ± 335	~1	0.02	5E-16/3E-11
	K202X		+5A	C 20 ± 2	0.97	0.61	0.41/0.17
				G 35 ± 6	0.95	0.35	0.47/0.80
			[7	T 611 ± 115	0.81	0.02	0.13/0.03
Untested +5A variants,	152, 166, 168, 189, 202, 20)4	wt S	SDTKT 2of11	CAQTKT	1of5 SASPQT	1of14 CSETKT
same libraries as all					TSQTKT	1of 5 <mark>5 A A P Q T</mark>	1of14 V S E T K T
+5A variants					GHQTKT	8of14 <mark>SE</mark> TKT	1of14 <mark>5 5 E T K T</mark>
			2of11 (AQTKT 3of5	SASPQA	2of14	1of14 L <mark>SETKT</mark>
+5C_C1, S152T,	S152X, S166X, D168X,	0.51	Target	116 ± 18	0.97	0.48	0.39/0.18
D168E, Y192R	Y192R/K (2 libraries)		+5C	A 436 ± 325	0.41	0.13	2E-3/2E-14
			•	$G \qquad 164 \pm 48$	0.90	0.34	0.61/0.82
			'	$\Gamma \qquad 1042 \pm 798$	~1	0.05	1E-4/5E-4
Untested +5C variants,	152, 166, 168, 192		CCDV		1of20 C C D K	1of20 G F D K	
same library as +5C_C1			S S D Y	2of20 SER			
			P S E Y	20f20 T S E R	1of20 GYDK	1of20 55 EY	
		1of16	P S E Y S S E Y	2of20 <mark>T S E R</mark> 2of20 <mark>T A E R</mark>	1of20 <mark>GY</mark> DK 1of20 <mark>CAE</mark> K	1of20 <mark>5 5 E</mark> Y	
		1of16 7of20	PSEY SSEY CVDK	2of20 <mark>T S E</mark> R 2of20 <mark>T A E R</mark> 1of20 V C <mark>D K</mark>	1of20 GYDK 1of20 CAEK 1of20 <mark>SSE</mark> R		
+5G_C1, S152C,	S152X, S166K, D168X,	1of16 7of20	PSEY SSEY CVDK Target	2of20 T S E R 2of20 T A E R 1of20 V C D K 232 ± 43	1of20 GYDK 1of20 CAEK 1of20 <mark>SSE</mark> R 0.98	0.39	0.91/0.21
		1of16 7of20	PSEY SSEY CVDK	2of20 T S E R 2of20 T A E R 1of20 V C D K 232 ± 43 A 451 ± 168	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96	0.39 0.20	5E-10/1E-10
		1of16 7of20	PSEY SSEY CVDK Target +5G	$\begin{array}{c} 2of20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1	0.39 0.20 0.25	5E-10/1E-10 0.09/0.79
S166K, Y192H, K202S	Y192X, K202X	1of16 7of20 >1	PSEY SSEY CVDK Target +5G	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \\ 232 \pm 43 \\ \mbox{A 451 \pm 168} \\ \mbox{C 362 \pm 89} \\ \mbox{T 569 \pm 204} \end{array}$	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98	0.39 0.20 0.25 0.16	5E-10/1E-10 0.09/0.79 2E-3/4E-3
	Y192X, K202X S152X, D168X, Y192X,	1of16 7of20	PISEY 5SEY CVDK Target +5G Target	20f20 T S E R 20f20 T A E R 10f20 V C D K 232 \pm 43 A 451 \pm 168 C 362 \pm 89 T 569 \pm 204 11 \pm 0.5	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99	0.39 0.20 0.25 0.16 0.55	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93
S166K, Y192H, K202S	Y192X, K202X	1of16 7of20 >1	P S E Y S S E Y C V D K Target +5G Target +5G	20f20 T S E R 20f20 T A E R 10f20 V C D K 232 \pm 43 A 451 \pm 168 C 362 \pm 89 T 569 \pm 204 11 \pm 0.5 A 25 \pm 1	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 0.99 ~1	0.39 0.20 0.25 0.16 0.55 0.24	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12
S166K, Y192H, K202S	Y192X, K202X S152X, D168X, Y192X,	1of16 7of20 >1	P S E Y S S E Y C V D K Target +5G Target +5G	20f20 T S E R 20f20 T A E R 10f20 V C D K 232 \pm 43 A 451 \pm 168 C 362 \pm 89 T 569 \pm 204 11 \pm 0.5 A 25 \pm 1 C 59 \pm 6	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1	0.39 0.20 0.25 0.16 0.55 0.24 0.10	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08
S166K, Y192H, K202S +5G_S1, S152L	Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39	P S E Y S S E Y C V D K +5G Target +5G	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \end{array}$ $\begin{array}{c} 232 \pm 43 \\ A \ \ \mbox{451} \pm 168 \\ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ∼1 0.98 0.99 ~1 ~1 ~1 ~1	0.39 0.20 0.25 0.16 0.55 0.24 0.10 0.10	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15
\$166K, Y192H, K202S +5G_S1, S152L +5G_S2, S152C,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X,	1of16 7of20 >1	P S EY S S EY C V D K +5G 4 Target +5G 4 7 Target	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \end{array}$ $\begin{array}{c} 232 \pm 43 \\ A \ \ \mbox{451} \pm 168 \\ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ∼1 0.98 0.99 ~1 ~1 ~1 ~1 ~1 ~1 0.98	0.39 0.20 0.25 0.16 0.55 0.24 0.10 0.10 0.64	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95
S166K, Y192H, K202S +5G_S1, S152L	Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39	P S E Y S S E Y C V D K +5G Target +5G	20f20 T S E R 20f20 T A E R 10f20 V C D K 232 \pm 43 A 451 \pm 168 C 362 \pm 89 T 569 \pm 204 11 \pm 0.5 A 25 \pm 1 C 59 \pm 6 T 60 \pm 6 39 \pm 4 A 150 \pm 12	1of20 GY DK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 ~1 0.99 ~1 0.99 ~1 0.99 ~1 0.98 0.98 0.99	0.39 0.20 0.25 0.16 0.55 0.24 0.10 0.10 0.64 0.17	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11
\$166K, Y192H, K202S +5G_\$1, \$152L +5G_\$2, \$152C,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X,	1of16 7of20 >1 0.39	P S EY S S EY C V D K +5G 4 Target +5G 4 7 Target	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \end{array}$ $\begin{array}{c} 232 \pm 43 \\ A \ \ \mbox{451} \pm 168 \\ C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GY DK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 0.98 0.99 ~1 0.98 0.98 0.99 ~1 ~1 ~1 ~1 0.98 0.84 0.40 0.40	0.39 0.20 0.25 0.16 0.55 0.24 0.10 0.10 0.64 0.17 0.06	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05
S166K, Y192H, K202S +5G_S1, S152L +5G_S2, S152C, D168Q	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39 >1	P S E Y S S E Y C V D K +5G Target +5G Target +5G Target +5G 7 7	20f20 T S E R 20f20 T A E R 10f20 V C D K 232 \pm 43 A 451 \pm 168 C 362 \pm 89 T 569 \pm 204 11 \pm 0.5 A 25 \pm 1 C 59 \pm 6 T 60 \pm 6 39 \pm 4 A 150 \pm 12 C 387 \pm 54 T 182 \pm 11	1of20 GY DK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.98 0.99 ~1 ~1 0.98 0.84 0.40 0.79	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3
S166K, Y192H, K202S +5G_S1, S152L +5G_S2, S152C, D168Q +5G_S3, S152T,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X,	1of16 7of20 >1 0.39	P S EY S S EY C V D K 	$\begin{array}{c} 2of20 \ \ T \ S \ E \ R \\ 2of20 \ \ T \ S \ E \ R \\ 2of20 \ \ T \ S \ E \ R \\ 2of20 \ \ T \ S \ E \ R \\ 1of20 \ \ \ T \ S \ R \\ 1of20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GY DK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 0.98 0.99 ~1 0.98 0.98 0.99 ~1 ~1 ~1 0.98 0.84 0.40 0.79 0.97	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78
\$166K, Y192H, K202S +5G_\$1, \$152L +5G_\$2, \$152C, D168Q	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39 >1	P S EY S S EY C V D K 	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \end{array}$ $\begin{array}{c} 232 \pm 43 \\ 4 \ \mbox{451} \pm 168 \\ C \ \ \mbox{362} \pm 89 \\ \hline \end{array}$ $\begin{array}{c} 569 \pm 204 \\ 11 \pm 0.5 \\ A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1of20 GY DK 1of20 CA EK 1of20 S S ER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.84 0.40 0.79 0.97 0.97	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11
S166K, Y192H, K202S +5G_S1, S152L +5G_S2, S152C, D168Q +5G_S3, S152T,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X,	1of16 7of20 >1 0.39 >1	P S EY S S EY C V D K 	$\begin{array}{c c} 2of20 & T & S & E \\ \hline 2of20 & T & A & E \\ \hline 2of20 & T & A & E \\ \hline 1of20 & V & C & D \\ K \\ \hline 232 \pm 43 \\ A & 451 \pm 168 \\ \mathbb{C} & 362 \pm 89 \\ \hline \mathbf{T} & 569 \pm 204 \\ \hline 11 \pm 0.5 \\ A & 25 \pm 1 \\ \mathbb{C} & 59 \pm 6 \\ T & 60 \pm 6 \\ \hline 39 \pm 4 \\ A & 150 \pm 12 \\ \mathbb{C} & 387 \pm 54 \\ T & 182 \pm 11 \\ \hline 28 \pm 2 \\ A & 157 \pm 12 \\ \mathbb{C} & 207 \pm 37 \end{array}$	1of20 GYDK 1of20 CAEK 1of20 SSER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 0.98 0.84 0.40 0.79 0.97 0.97	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22
S166K, Y192H, K202S +5G_S1, S152L +5G_S2, S152C, D168Q +5G_S3, S152T, D168N	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39 >1 >1	P S E Y S S E Y C V D K +5G 2 0	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \end{array}$ $\begin{array}{c} 232 \pm 43 \\ A \ \ 451 \pm 168 \\ C \ \ 362 \pm 89 \\ T \ \ 569 \pm 204 \\ \hline 11 \pm 0.5 \\ A \ \ 25 \pm 1 \\ C \ \ 59 \pm 6 \\ T \ \ 60 \pm 6 \\ \hline T \ \ 60 \pm 6 \\ \hline T \ \ 60 \pm 6 \\ \hline 39 \pm 4 \\ A \ \ 150 \pm 12 \\ C \ \ 387 \pm 54 \\ \hline T \ \ 182 \pm 11 \\ \hline \ \ 28 \pm 2 \\ A \ \ \ 157 \pm 12 \\ C \ \ \ 207 \pm 37 \\ \hline T \ \ \ \ 151 \pm 17 \end{array}$	10f20 GY DK 10f20 CA EK 10f20 S S ER 0.98 0.96 ~1 0.98 0.99 ~1 ~1 ~1 0.98 0.84 0.40 0.79 0.97 0.97 0.97 0.93	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ 0.12\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22 9E-5/2E-2
\$166K, Y192H, K202S +5G_\$1, \$152L +5G_\$2, \$152C, D168Q +5G_\$3, \$152T, D168N +5G_\$4, \$152T,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, S152X, D168X, Y192X,	1of16 7of20 >1 0.39 >1	P S E Y S S E Y C V D X +5G 2 7 7 Target Y S S E Y C V D X<	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \\ 232 \pm 43 \\ A \\ 451 \pm 168 \\ C \\ 362 \pm 89 \\ T \\ 569 \pm 204 \\ \hline \\ 11 \pm 0.5 \\ A \\ 25 \pm 1 \\ C \\ 59 \pm 6 \\ T \\ 60 \pm 6 \\ \hline \\ 39 \pm 4 \\ A \\ 150 \pm 12 \\ C \\ 387 \pm 54 \\ T \\ 182 \pm 11 \\ 28 \pm 2 \\ A \\ 157 \pm 12 \\ C \\ 207 \pm 37 \\ T \\ 151 \pm 17 \\ 35 \\ \end{array}$	1of20 GY D K 1of20 CA E K 1of20 S S E R 0.98 0.96 ~1 0.98 0.99 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.98 0.84 0.40 0.79 0.97 0.97 0.93 0.89	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ 0.12\\ 0.77\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22 9E-5/2E-2 0.62/0.92
\$166K, ¥192H, K202S +5G_\$1, \$152L +5G_\$2, \$152C, D168Q +5G_\$3, \$152T, D168N	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X	1of16 7of20 >1 0.39 >1 >1	P S E Y S S E Y C Target +5G 2 7 +5G 2 7 7 Target +5G 2 7 +5G 2 7 7 Target +5G 2 7 Target +5G 2 7 Target +5G 2 7 Target +5G 2 7 <td>$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \\ 232 \pm 43 \\ A \ \mbox{451} \pm 168 \\ C \ \mbox{362} \pm 89 \\ T \ \mbox{569} \pm 204 \\ \hline \\ 11 \pm 0.5 \\ A \ \mbox{25} \pm 1 \\ C \ \mbox{59} \pm 6 \\ T \ \mbox{60} \pm 6 \\ \hline \\ T \ \mbox{60} \pm 6 \\ T \ \mbox{60} \pm 12 \\ C \ \mbox{387} \pm 54 \\ T \ \mbox{182} \pm 11 \\ \mbox{28} \pm 2 \\ A \ \mbox{157} \pm 12 \\ C \ \mbox{207} \pm 37 \\ T \ \mbox{151} \pm 17 \\ \mbox{35} \\ A \ \mbox{247} \\ \hline \end{array}$</td> <td>1of20 GY D K 1of20 CA E K 1of20 S S E R 0.98 0.96 ~1 0.98 0.99 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.98 0.84 0.40 0.79 0.97 0.97 0.93 0.89 0.37 0.37</td> <td>$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ 0.12\\ 0.77\\ 0.11\\ \end{array}$</td> <td>5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22 9E-5/2E-2 0.62/0.92 3E-16/7E-11</td>	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \\ 232 \pm 43 \\ A \ \mbox{451} \pm 168 \\ C \ \mbox{362} \pm 89 \\ T \ \mbox{569} \pm 204 \\ \hline \\ 11 \pm 0.5 \\ A \ \mbox{25} \pm 1 \\ C \ \mbox{59} \pm 6 \\ T \ \mbox{60} \pm 6 \\ \hline \\ T \ \mbox{60} \pm 6 \\ T \ \mbox{60} \pm 12 \\ C \ \mbox{387} \pm 54 \\ T \ \mbox{182} \pm 11 \\ \mbox{28} \pm 2 \\ A \ \mbox{157} \pm 12 \\ C \ \mbox{207} \pm 37 \\ T \ \mbox{151} \pm 17 \\ \mbox{35} \\ A \ \mbox{247} \\ \hline \end{array}$	1of20 GY D K 1of20 CA E K 1of20 S S E R 0.98 0.96 ~1 0.98 0.99 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.98 0.84 0.40 0.79 0.97 0.97 0.93 0.89 0.37 0.37	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ 0.12\\ 0.77\\ 0.11\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22 9E-5/2E-2 0.62/0.92 3E-16/7E-11
\$166K, Y192H, K202S +5G_\$1, \$152L +5G_\$2, \$152C, D168Q +5G_\$3, \$152T, D168N +5G_\$4, \$152T,	Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, K202X S152X, D168X, Y192X, S152X, D168X, Y192X,	1of16 7of20 >1 0.39 >1 >1	S E Y S S E Y S S E Y Target +5G 2 7	$\begin{array}{c} 2of20 \ \mbox{T S E R} \\ 2of20 \ \mbox{T A E R} \\ 1of20 \ \mbox{V C D K} \\ \hline \\ 232 \pm 43 \\ A \\ 451 \pm 168 \\ C \\ 362 \pm 89 \\ T \\ 569 \pm 204 \\ \hline \\ 11 \pm 0.5 \\ A \\ 25 \pm 1 \\ C \\ 59 \pm 6 \\ T \\ 60 \pm 6 \\ \hline \\ 39 \pm 4 \\ A \\ 150 \pm 12 \\ C \\ 387 \pm 54 \\ T \\ 182 \pm 11 \\ 28 \pm 2 \\ A \\ 157 \pm 12 \\ C \\ 207 \pm 37 \\ T \\ 151 \pm 17 \\ 35 \\ \end{array}$	1of20 GY D K 1of20 CA E K 1of20 S S E R 0.98 0.96 ~1 0.98 0.99 ~1 ~1 0.98 0.99 ~1 ~1 0.98 0.98 0.84 0.40 0.79 0.97 0.97 0.93 0.89	$\begin{array}{c} 0.39\\ 0.20\\ 0.25\\ 0.16\\ 0.55\\ 0.24\\ 0.10\\ 0.10\\ 0.64\\ 0.17\\ 0.06\\ 0.14\\ 0.67\\ 0.12\\ 0.09\\ 0.12\\ 0.77\\ \end{array}$	5E-10/1E-10 0.09/0.79 2E-3/4E-3 0.89/0.93 2E-16/6E-12 0.08/0.08 1E-12/6E-15 0.48/0.95 2E-16/9E-11 0.45/0.05 0.08/6E-3 0.55/0.78 5E-19/1E-11 0.45/0.22 9E-5/2E-2 0.62/0.92

Untested +5G variants, same libraries as all +5G variants	152, 166, 168, 192, 202		C C D V V	1.613 C K M A	D 1of12 CK	DHS 4of11 L	
		201	wt <mark>S S D Y K</mark> f12 C K Q E G	1of12 CKNA 1of12 CKDV			
		101	F12 T K DW S	1of12 CKDG	A 1of12 CK	DQA 2of11 T	SEY K
		10	f12 <mark>C K D G</mark> A	1of12 CKDA.	A 1of12 SK	DCA 1of11 T	SQ Y K
+6C_C1, Y154W,	Y154X, S166X, T189X,	>1	Target	59 ± 4	~1	0.76	0.88/1E-3
S166G, Y192R, K202Q	Y192R, K202X		+6C A	403 ± ?	0.39	0.11	0.02/5E-3
			G	>691	-	0.07	0.11/0.99
		0.60	Т	691 ± 180	0.64	0.07	2E-6/2E-45
+6C_\$1, \$152C, Y154W, \$166A, L234Q	S152X, Y154X, S166X, K202X	0.60	Target	303 ± 64	0.91	0.64	9E-3/1E-3 4E-3/0.02
1 154 W, S100A, L254Q	K202A		+6C A G	>1585 >1585	-	0.12	0.99/0.98
			T	1585	0.43	0.12	5E-12/8E-12
Untested +6C variants,	152, 154, 166, 192, 202		wt SYSTY				4of7 CWATYK
same libraries as all	,,,		17 SWGPR				2of7 CWSTYK
+6C variants		3of	17 SWGAR	Q 1of17 SYC	RRQ 1of17	SYAPRA	1of7 SWGTYK
		2of	17 <mark>SWGQ</mark> R		PRQ 1of17	SWAPRQ	
+6T_S1, S152A,	S152X, Y154X, S166X,	< 0.001	Target	437 ± 247	~1	0.43	0.25/0.23
Y154A, S166I, T189P,	T189X, K202X		+6T A	989 ± 944	0.47	0.19	0.10/0.02
K202H			С	>989	-	0.19	0.27/0.68
			G	968 ± 751	0.62	0.19	0.38/0.07
+7A_P1, mutations +	NA	NA	Target	8 ± 2	1	0.47	2E-5/0.10
extended loop 153-164			+7A C	74 ± 4	0.97	0.05	0.35/0.52
			G T	$\frac{328 \pm 23}{8 \pm 1}$	~1	0.01	0.08/0.05 0.57/0.33
+7A P2, mutations +	NA	NA	Target	8 ± 1 20 ± 7	0.98	0.47	2E-5/0.10
shorter loop 155-163	INA	INA	+7A C	588 ± 151	~1	0.03	0.31/0.58
shorter loop 155-165			G	459 ± 190	0.75	0.03	0.07/0.07
			T	$\frac{139 \pm 190}{86 \pm 30}$	0.94	0.18	0.62/0.24
+7C S1, T189V, T204R	Y154X, L156X, T189X,	0.30	Target	242 ± 57	~1	0.75	0.31/0.75
	T204X		+7C A	2111 ± ?	0.47	0.09	4E-5/0.14
			G	>2111	-	0.09	0.06/0.09
						0.00	0 (2/0 02
Untested +7C variants, same library as +7C S1	189, 204 wt T T 4of 11 P R		Т	>2111	-	0.09	0.63/0.02
same library as +7C_S1 Untested +7G	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt,	0.51		>2111 57, 164, 166, 202		ISKT 10f6 YR	RRSKE 10f8 RVNRSQT
same library as +7C_S1 Untested +7G variants, several motif- based libraries	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X		154, 156, 1	57, 164, 166, 202	2of6 RKA 1of6 YWR 1of6 RKT	I SKT 1of6 YR I SKA 1of6 YR R SKE 7of7 RL I SKA 5of8 GV	R R S K E 10f8 R V N R SQ T R I S K E 10f8 R L N R SQ A N R SQ A 10f8 S V N R R Q G N R R EG
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X L156X, N157X, 1164X, T189X, T204X	0.53	154, 156, 1 156, 157, 1	57, 164, 166, 202 64, 189, 204 40f1 10f1 10f1	20f6 RKA 10f6 YWR 10f6 RKT rt LNITT 101 6 QPSTS 101 6 HAATS 101 6 QPSTS 101 6 QPSTS 101	ISKT 1of6 YR ISKA 1of6 YR RSKE 7of7 RL ISKA 5of8 GV f16 GRITG 1of1 f16 VRLTQ 1of1 f16 PVATA 1of1 f16 PCTTN 1of1	RRSKE 10f8 RVNRSQT RISKE 10f8 RLNRSQA NRSQA 10f8 SVNRRQG NRREG 6 LATPN 10f16 VALAA 6 LAATC 10f16 GAATT 6 SATGA 6 GAVTV
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants +8C_P1, L156Q,	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X L156X, N157X, 1164X, T189X, T204X NA, EC _{1/2max} collected for		154, 156, 1 156, 157, 1 Target	57, 164, 166, 202 64, 189, 204 40f1 10f1 1.2E-1 ± 4E-3	2016 R K A 1016 YWR 1016 R K T 1016 R K A 1016 R K A 1017 R K	I SKT 1of6 YR I SKA 1of6 YR R SKE 7of7 R L I SKA 5of8 GV f16 GR I TG 1of1 f16 VR L TQ 1of1 f16 P VATA 1of1 f16 P CTTN 1of1 0.78	RRSKE 10f8 RVNRSQT RISKE 10f8 RLNRSQA NRSQA 10f8 SVNRRQG NRREG 6 LATPN 10f16 VALAA 6 LAATC 10f16 GAATT 6 SATGA 6 GAVTV 0.92/0.87
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X L156X, N157X, 1164X, T189X, T204X NA, EC _{1/2max} collected for +8C only = 2.9 nM,	0.53	154, 156, 1 156, 157, 1 Target +8C A	57, 164, 166, 202 64, 189, 204 40f1 10f1 1.2E-1 ± 4E-3 7E-3 ± 1E-3	2016 R K A 1016 YWR 1016 R K T 1016 R K A 1016 R K	I SKT 10f6 YR I SKA 10f6 YR R SKE 70f7 R L I SKA 50f8 GV f16 GR I TG 10f1 f16 VR L TQ 10f1 f16 P VATA 10f1 f16 P CTTN 10f1 0.78 0.05	RRSKE 10f8 RVNRSQT RISKE 10f8 RLNRSQA NRSQA 10f8 SVNRRQC NRREG 6 LATPN 10f16 VALAA 6 LAATC 10f16 GAATT 6 SATGA 6 GAVTV 0.92/0.87 1E-4/5E-3
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants +8C_P1, L156Q,	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X L156X, N157X, 1164X, T189X, T204X NA, EC _{1/2max} collected for	0.53	154, 156, 1 156, 157, 1 Target +8C A G	57, 164, 166, 202 64, 189, 204 4of1 1of1 1.2E-1 ± 4E-3 7E-3 ± 1E-3 1.8E-2 ± 9E-3	2016 R K A 1016 YWR 1016 R K T 1016 R K T 1017 R K	I SKT 10f6 YR I SKA 10f6 YR R SKE 70f7 R L I SKA 50f8 GV f16 GR I TG 10f1 f16 VR L TQ 10f1 f16 P VATA 10f1 f16 P CTTN 10f1 0.78 0.05 0.12	R R S K E 10f8 R V N R SQ T R I S K E 10f8 R L N R SQ A 10f8 S V N R R Q G N R R E G 6 L A T P N 10f16 V A L A A 6 L A A T C 10f16 C A A T T 6 S A T C A 6 G A V T V 0.92/0.87 1E-4/5E-3 0.01/0.04
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants +8C_P1, L156Q, I164R, T204S	$\frac{4of11}{3of11} \mathbf{PR} \\ \frac{4of11}{3of11} \mathbf{R} \\ 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X \\ 1156X, N157X, 1164X, T189X, T204X \\ 1156X, N157X, 1164X, T189X, T204X \\ 1156X, 01157X, 01164X, T189X, 01164X, T180X, 01164X, T180X, 01164X, T180X, 01164X, 0$	0.53 NA	154, 156, 1 156, 157, 1 Target +8C A G T	57, 164, 166, 202 64, 189, 204 4of1 1of1 1.2E-1 ± 4E-3 7E-3 ± 1E-3 1.8E-2 ± 9E-3 9E-3 ± 7E-4	2066 R K A 1066 YWR 1066 R K T rt LNITT 100 6 0 P S T S 100 6 H A A T S 100 6 0 P S T S 100 NA NA NA NA NA NA	I SKT 1of6 YR I SKA 1of6 YR R SKE 7of7 R L I SKA 5of8 GV f16 GR I TG 1of1 f16 VR L TQ 1of1 f16 P VATA 1of1 f16 P CTTN 1of1 0.78 0.05 0.12 0.06	R R S K E 10f8 R V N R SQ T R I S K E 10f8 R L N R SQ A 10f8 S V N R Q G N R R E G 6 L A T P N 10f16 V A L A A 6 L A A T C 10f16 G A A T T 6 S A T G A 6 G A V T V 0.92/0.87 1E-4/5E-3 0.01/0.04 0.07/0.09
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants +8C_P1, L156Q,	4of11 P R 4of11 V R 3of11 T R 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X L156X, N157X, 1164X, T189X, T204X NA, EC _{1/2max} collected for +8C only = 2.9 nM,	0.53	154, 156, 1 156, 157, 1 Target +8C A G	57, 164, 166, 202 64, 189, 204 4of1 1of1 1.2E-1 ± 4E-3 7E-3 ± 1E-3 1.8E-2 ± 9E-3 9E-3 ± 7E-4	2016 R K A 1016 YWR 1016 R K T 1016 R K T 1017 R K	I SKT 10f6 YR I SKA 10f6 YR R SKE 70f7 R L I SKA 50f8 GV f16 GR I TG 10f1 f16 VR L TQ 10f1 f16 P VATA 10f1 f16 P CTTN 10f1 0.78 0.05 0.12	R R S K E 10f8 R V N R SQ T R I S K E 10f8 R L N R SQ A 10f8 S V N R R Q G N R R E G 6 L A T P N 10f16 V A L A A 6 L A A T C 10f16 C A A T T 6 S A T C A 6 G A V T V 0.92/0.87 1E-4/5E-3 0.01/0.04
same library as +7C_S1 Untested +7G variants, several motif- based libraries Untested +8A variants +8C_P1, L156Q, I164R, T204S Untested +8C variants, used as a control for	$\frac{4of11}{3of11} \mathbf{PR} \\ \frac{4of11}{3of11} \mathbf{R} \\ 154X/R, 156X, 157X/wt, 166X/wt, 164X/R, 202X/wt, 204X \\ 1156X, N157X, 1164X, T189X, T204X \\ 1156X, N157X, 1164X, T189X, T204X \\ 1156X, 01157X, 01164X, T189X, 01164X, T180X, 01164X, T180X, 01164X, T180X, 01164X, 0$	0.53 NA	154, 156, 1 156, 157, 1 Target +8C A G T 156, 164, 2 156, 157, 1	57, 164, 166, 202 64, 189, 204 4of1 1of1 1of1 $1.2E-1 \pm 4E-3$ $7E-3 \pm 1E-3$ $1.8E-2 \pm 9E-3$ $9E-3 \pm 7E-4$ 04 wt L I T 5of27 C R S 4of27 Q R S 64, 189, 204 wf 3of1 1of1 1of2 4of27 Q R S 64, 189, 204 3of1 1of2 6f27 Q R S 6f4, 189, 204 3of1 1of1	2076 R K A 1076 YWR 1076 R K T rt LNITT 107 6 Q P S T S 107 6 HAATS 107 6 Q P S T S 107 NA NA NA NA NA NA 30727 P S A 20727 T R S 20727 V S N	I SKT 1076 YR I SKA 1076 YR R SKE 7077 RL I SKA 5078 GV F16 GR I TG 1071 F16 VR L TQ 1071 F16 P VATA 1071 F16 P GTTN 1071 0.78 0.05 0.12 0.06 10727 PCH 10727 PCH 10727 NVL F15 VGSTH 1071 F15 SLSTH 1071	R R S K E 10f8 R V N R SQ T R I S K E 10f8 R L N R SQ A 10f8 S V N R R Q G N R R E G 6 L A T P N 10f16 V A L A A 6 L A A T C 10f16 G A A T T 6 S A T G A 6 G A V T V 0.92/0.87 1E-4/5E-3 0.01/0.04 0.07/0.09 10f27 S A C

Table S2. Data and notes on all the multiple base-pair I-AniI variants described in this paper. The related graphs of cleavage data is in Figure S8. The data includes $k_{cat}K_M$, % cleavage, and $EC_{1/2max}$. Sequences of variants that were not selected are also included, as well as starting libraries and corresponding survivals.

Selected Variant Name and Tested Sequence	Starting Library Examples, X = all 20 AAs (either <i>NNN</i> or <i>NNS</i>), and other codons use the accepted code for degerate base-pairs to define the amino acids included in the library. Example results from these different libraries are shown.	Library Survival (0 - 1), round 2 or round 3	Targe Site	t EC _{1/2max} (nM), % cleavage, or k _{cat} /K _M for some enzymes	Cleavage Plateau (f _{max}), NA for % cleavage or k _{cat} /K _M
CPK2_N Y18C, T22S, G33K, S57T, R59T, A68H, R70E, enzyme expressed extremely poorly, so values in columns for activity data are percent cleavage with two concentrations, the highest possible and then 1/4 of that - corresponding to approximately 1,700 nM for the	1) Y18C, S20X, T22S, E31R, G33 <i>MAG</i> , R59T, M66X, A68X, R70E 2) Y18C, T22S, E31R, G33MAG, S57X, R59X, A68X, R70E 3) Y18C, T22S, E31R, G33K, S57WCC, R59ASS, M66T, A68SWC, R70E left: 18, 20, 22, 31, 33, 57, 59, 66, 68, 70 from libraries 1 and 2 mixed right: 18, 22, 31, 33, 57, 59, 66, 68, 70 from library 3 2of10 C L S R K S T T L E 2of10 C L S R K S T T L E 2of10 C S S R K S T ND E 1of10 C S S R K S T ND E 1of10 C S S R K S T ND E 1of10 C S S R K S MM V E 1of10 C S S R K S MM V E 1of10 C S S R K A RM L E 1of10 C S S R Q G S MA E	0.11 for R2 of libraries 1 and 2 mixed	Target -5A -4T -4T Target -2G Target +1A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NA NA NA NA NA NA NA NA NA NA NA NA NA N
lower value. CPK2_Cgg, +4G and +5G pocket, untested		0.29 for R2 of all three libraries mixed	NA	T 0.72, 0.23	NA
CPK2_C1, S152C, K155R, L156K, Y162H, I164V, S166K, D168A, T189S, Y192G, K200R, K202D	The following three libraries are some of the first based on the Cgg pocket library results and expanding to try and target the full C half- 1) S152C, L156X, I164X, S166K, D168A, Y192 <i>GDG</i> , K200R, K202 <i>BWS</i> , T204X 2) S152C, I164X, S166K, D168A, T189X, Y192 <i>GDG</i> , K200R, K202 <i>BWS</i> , T204X 3) S152C, K155X, L156X, I164X, S166K, D168A, Y192 <i>GDG</i> , K200R, K202 <i>BWS</i> , T204X 152, 155, 156, 164, 166, 168, 189, 192, 200, 202, 204 30724 CK LRKAFGRLV 20724 CK LRKAFGRLV 20724 CK LWKATGRLI 10724 CK LWKATGRLI 10724 CK LWKAGGRLA 10724 CK LWKATGRLI 10724 CK LWKATGRLI 10724 CK LWKAFGRLY 10724 CK LWKAFGRLY 10724 CK LWKAFGRLA 10724 CK	Survivals for these initial libraries (1-5) was lower than 0.01	+1A Target +4G Target +5G Target +7G Target +9C Target +10C	$ \begin{array}{c c} G & NA \\ T & 135 \\ & 44 \\ A & >750 \\ C & >750 \\ T & 50 \\ & 44 \\ A & >750 \\ C & >750 \\ C & >750 \\ T & 10 \\ & 44 \\ A & 32 \\ C & 15 \\ T & 10 \\ & 44 \\ A & 62 \\ G & 32 \\ T & 49 \\ & 44 \\ \end{array} $	0.54 0.49 NA 0.20 0.54 NA NA 0.61 0.54 NA NA NA 0.54 0.73 0.86 0.83 0.54 0.45 0.75 0.56 0.54 NA

CDV2 C2	CONTRACT VICEN ALCON VICAN ALCON OLCON DICON TINON	T 1 (TT (1.4	0.01
CPK2_C2,	6) S152C, K155R, L156X, Y162H, I164X, S166K, D168A, T189S, Y192G, K200R, K202E, T204X	Library 6	Target +1A	C	14	0.91
S152C, K155R, L156K, Y162H,		had survival of	±1A	C	13 NA	0.88 NA
1164V, S166K,	7) S152C, K155R, L156K, Y162H, I164V, S166X, D168X, T189S,	0.03		G T		NA 0.84
, , ,	Y192G, K200R, K202X, T204A	/	T.	4	18	0.84
D168A, T189S,	8) S152X, K155R, L156K, Y162H, I164V, S166K, D168A, T189S,		Target	_	14	0.91
7192G, K200R,	Y192G, K200R, K202X, T204X	had a	+4G		45	0.65
K202D, T204A	Library 6 results, Library 7 results, Library 8 results (positions above)	survival of		С	124	0.20
	Library 7	0.47, and		Т	14	0.94
	Library 6 10of16 CRKHVKSSGRDA	library 8	Target		14	0.91
	2of8 CRDHPKASGRES 4of16 CRKHVKGSGRDA	had a	+5G	А	31	0.78
	2of8 CRSHRKASGREK 1of16 CRKHVKASGRDA	survival of		С	120	0.43
	1of 8 C R D H P K A S G R E T 1of 16 C R K H V K M S G R D A	0.36		T	227	0.88
	10f8 CRAHVKAS GRET 12of14 CRKHVKAS GRDA Library 8		Townst	-	14	
			Target			0.91
	1of8 CRNHEKASGRED 1of14 CRKHVKASGRDT		+7G		13	0.89
				С	12	0.90
	Libraries 6-8 showed the extreme importance of K202D, D168S, and			Т	10	0.88
	T204A for high survival		Target		14	0.91
			+9C	Α	21	0.86
	9) S152C, K155R, L156K, N157X, D158X, D160X, D161X, Y162H,			G	49	0.82
	1164V, S166K, D168S, T189S, Y192G, K200R, K202D, T204A	Library 9		T	20	0.84
	10) S152C, K155R, L156K, Y162H, I164V, S166K, D168S, A170X,	had a	Target	Ĥ	14	0.91
	T189S, Y192G, D194X, T196X, C198X, K200R, K202D, T204A	survival of		٨		
			+10C		NA	NA
	11) S152C, K155R, L156K, Y162H, I164V, S166K, D168S, T189S,	0.67, and		G	61	0.91
	Y192X, D194X, K200X, K202D, T204A	library 10		Т	38	0.86
CPK2_C3,	Library 9 results, Library 10 results, Library 11 result (positions above)		Target		9	0.94
152C, K155R,	Library 10	survival	+1A	С	8	0.90
156K, Y162H,	Library 9 3of7 CRKHVKSGSGEPFRDA	of 0.29		G	NA	NA
164V, S166K,	1614 CRESSET CHVKSSCR DA 1077 CRKHVKSASGEPLRDA			Т	9	0.87
168S, T189S,	1 of 1 C D V C D D C D U V V C C C D D A 1077 C R K H V K S A S G S D L R D A		Target	-	9	0.94
192G, K200R,	1. CIACD K CD PHALINK CCCDDA 101/ KNEWN NUMBER A		+4G	Δ	7	0.84
202D, T204A	1of14 CRKCPETGHVKSSGRDA ^{1of7} CRKHVKSGSGEGFRDA		UT U	C	29	0.75
202D, 1204A	10f14 CRKSIENCHVKSSCRDA			Т		
	10f14 CRKAIESEHVKSSGRDA 7of24 CRKHVKSSTDRDA		The second se	_	9	0.96
	10/14 CKNALESKOVNSSUKUA		Target		9	0.94
	10/14 CKNAVESKAVESKAVA 2-624 CPKHVKCKVDDDA		+5G		11	0.89
	10/14 CKKAP CSCHVKSSGKVA			С	15	0.83
	10/14 CKKSLCSSHVKSSCKWA			Т	10	0.93
	10/14 CKKSKESSHVKSSGKMA		Target		9	0.94
	1of14 CRKSVEVSHVKSSGRDA 1of24 CRKHVKSSVDKDA 1of14 CRKALESHHVKSSGRDA 1of24 CRKHVKSSYMRDA		+7G	А	8	0.91
	10f14 CRKALESHHVKSSGRDA 10f24 CRKHVKSSQDRDA			С	8	0.92
	10/14 CRKHVKSSYCRDA			Т	6	0.88
	Libraries 9-11 showed the importance of keeping K200R and D194D		Target	-	9	0.00
	(Library 11), that A170 should be A or G and C198 should be		+9C		9	0.91
			+9C		-	
	hydrophobic (Library 10), and that there is a preferred sequence for $157 + 161 + 167 + 100$			G	11	0.91
	loop 157-161 (Library 9)			Т	8	0.86
			Target		9	0.94
	The tested proteins C_1 to C_3 were from libraries 6-8.		+10C	А	NA	NA
				G	33	0.88
				Т	20	0.84
AH1313_Ccc,	S152DYC, Y154TRS, S166GBC, D168GAS, T189MCC, T192MRG,	Survival	Target		117	0.80
+5C and +6C	K200 <i>HWG</i>	for one	+3C	А	NA	NA
ocket, S152T,		selection		G	85	0.95
166G, T189P,		was 0.33,		U T		
		· · · ·	т.		15	0.84
192K, K202L		for the	Target		117	0.80
		other it	+5C		>750	NA
		was 0.48.		G	>750	NA
	152, 166, 189, 192, 200 (154 and 168 stayed wild-type, Y and D)	They were		Т	>750	NA
		both from	Target		117	0.80
	4of9 TGPRL 1of9 SGPRL 2of4 TGPKL	the same	+6C	Α	>750	NA
	2of9 TAPKL 1of9 TSPKL 2of4 TGPRL	library.		G	>750	NA
	1of9 AGPRL			T		
					>750	NA
	1019 AUT NL				117	0.80
	1019 ANT NL		Target			
	1019 ANT NL			А	27	0.87
	1019 ANT NL					

+3C S1 with	Substrates are labeled 1-4. 1=+3C, 2=+1G/+3C, 3=+3C/+5G, and		I	1 178		~1
$+3C_31$ with +1/+3/+5	4=+1G/+3C/+5G This data is associated with Figure 5. The kinetics so	ection is	2			~1
substrates	shown as k_{cat}/K_M values to show the individual components of the mea					0.56
	F		4			~1
+3C_S2 with	1			1 324	i	~1
+1/+3/+5			2	2 75		~1
substrates			3	432		0.36
			4	585		0.39
+3C_S1 kinetics	1			1 1.1/29)4	NA
with +1/+3/+5			2			NA
substrates			3			NA
			4	0.18/2		NA
Y2 kinetics with				1 0.11/3		NA
+1/+3/+5			2			NA
substrates						NA
CL	40 01 M190 022K D50T A (9D		4T	0.14/8 97	34	NA
SV SV2	-4C C1: Y18C, G33K, R59T, A68R -4C C2: Y18C, G33K, R59S		-4T -4T	226/5	0	~1 ~1/~1
SV2 SV	-4C C2: 118C, G35K, K595 -4C C1: Y18C, G33K, R59T, A68R	AGAP004		220/3		~1/~1
SV2	-4C C2: Y18C, G33K, R59S	AGAP004		1392/18		~1/~1
Untested	These loop libraries were built in the context of SV2, which we know		()		t_23to27 -	
AGAP004671 (-)	the (-) half-site. These sequences should be retested in the context of t	5	/ 1			QRSKA
half-site variants	The survival was $<1\%$ against the entire (-) half-site. These loops wer			_ ^	3of14 <mark>C</mark>	Q R <mark>G</mark> K A
	the context of E63E/I64N/E65R from a loop library over the -2 position				2of14 5 2of14 D	
	sequence of this loop should also be further randomized.	,	0			HDRKA
HV	S152V, D168S, T189V, K200H, T204R	AGAP004	671 (+)	50/43	_	0.96/0.94
	L156D, D168S, T189V, K200H, T204R	AGAP004		NA		NA
Notes on	The sequence used in enzyme assays (Figure 6) was selected for the h			3225 (+) half	-site. The s	equence specific
AC A DOD 4(71 (1)						
AGAP0046/1 (+)	to AGAP004671 (+) is the version that was tested in human cells (Fig	uic 59, and so	ee above i		JII Sui vivai	
AGAP0046/1 (+)	to AGAP0046/1 (+) is the version that was tested in human cells (Fig	ure 59, and se	ee above i	iow). Sciectic	Sil vival	
SV	+3G S1: A170K, Y192G, K200V	ure 59, and se	+3G	240/42		0.83/0.73
		AGAP009	+3G	,	20	
SV	+3G S1: A170K, Y192G, K200V		+3G 607 (+) -3A	240/42	20	0.83/0.73
SV SV SV SV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A	AGAP009	+3G 607 (+) -3A +3C	240/42 197/17 177 145/15	20 75 53	0.83/0.73 0.82/0.82
SV SV SV SV SV SV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A		+3G 607 (+) -3A +3C 0417 (+)	240/42 197/17 177 145/15 318/29	20 75 53 98	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77
SV SV SV SV SV SV SV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG	AGAP009 AGAP010	+3G 607 (+) -3A +3C 417 (+) -3C	240/42 197/17 177 145/15 318/29 6.6/4.	20 75 53 98 6	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1
SV SV SV SV SV SV SV SV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG	AGAP009 AGAP010 AGAP003	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-)	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7.	20 75 53 98 6 3	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1
SV SV SV SV SV SV SV HV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R	AGAP009 AGAP010 AGAP003 AGAP003	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+)	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20	20 75 53 98 6 3 0	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91
SV SV SV SV SV SV SV SV HV Human Cells HV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+)	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20 NA	20 75 53 98 6 3 0	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA
SV SV SV SV SV SV SV SV HV Human Cells HV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T204R	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+) 225 (+) EC _{1/2max}	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20	20 75 53 98 6 3 0	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91
SV SV SV SV SV SV SV SV HV Human Cells HV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y,	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V,	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+) 225 (+) EC _{1/2max}	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20 NA	20 75 53 98 6 3 0	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, 155V, S79N, 181L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V,	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+) EC _{1/2max}	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14	20 75 53 98 6 3 0 41	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93
SV SV SV SV SV SV SV SV HV Human Cells HV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168:	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V,	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+) EC _{1/2max}	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12	20 75 53 98 6 3 0 41 204	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V,	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (-) 225 (+) EC _{1/2max}	240/42 197/17 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14	20 75 53 98 6 3 0 41 204	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D,	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5	20 75 53 98 6 3 0 41 204 00	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} K _M K _M	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I	20 75 53 98 6 3 0 41 204 00 K24N, T29	0.83/0.73 0.82/0.82 ~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} K _M K _M k _{eat} mutations except -10	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I	20 75 53 98 6 3 0 41 204 90 41 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8	0.83/0.73 0.82/0.82 ~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling.
SV SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} K _M K _M k _{eat} mutations except -10	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I	20 75 53 98 6 3 0 41 204 90 41 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 204 90 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8	0.83/0.73 0.82/0.82 ~1 0.82/0.77 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling.
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. 	AGAP009 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _{sta} k _{sta} mutations succept -10 his sequer	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3.00 >5 for -8G_P1 (I C, requiring I cce was A170	20 75 53 98 6 3 0 41 41 204 00 K24N, T29 loop remod K, D194A,	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling. C198A,
SV SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F911, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} K _M K _M k _{cut} mutations except -10 his sequer base alor	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I nce was A170 e. This is surgered	20 75 53 98 6 3 0 41 204 10 K24N, T29 loop remod 0K, D194A, prising bec	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling. C198A,
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T204R Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly 	AGAP009 AGAP010 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C	+3G 607 (+) -3A +3C 417 (+) -3C 225 (-) 225 (+) 225 (+) EC _{1/2max} K _M K _M k _{cut} mutations except -10 his sequer base alor	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I nce was A170 e. This is surgered	20 75 53 98 6 3 0 41 204 10 K24N, T29 loop remod 0K, D194A, prising bec	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling. C198A,
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 	AGAP009 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th than the +3C erefore, good ions for -8T_	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M mutations ixcept -10 his sequer base alor cleavage P1 (K24N	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ice was A170 e. This is surj of this half-s	20 75 53 98 6 3 0 41 204 100 K24N, T29 loop remod WK, D194A, prising bec site likely d to be com	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling. C198A, ause we also
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV notes on AGAP009607 (-) notes on AGAP009607 (+) notes on	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C.	AGAP009 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th than the +3C erefore, good ions for -8T_	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M mutations ixcept -10 his sequer base alor cleavage P1 (K24N	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ice was A170 e. This is surj of this half-s	20 75 53 98 6 3 0 41 204 100 K24N, T29 loop remod WK, D194A, prising bec site likely d to be com	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA NA K) need to be eling. C198A, ause we also
SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e val of 32%. Th than the +3C terefore, good	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M mutations x:cept -10 his sequer base alor cleavage P1 (K24N G, requiri	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (1 C, requiring 1 ice was A170 e. This is sur of this half-s	20 75 53 98 6 3 0 41 204 10 K, D194A, prising bec site likely d to be com deling.	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the -
SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP010417 notes on AGAP008878 (-)	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th than the +3C terefore, good ions for -8T_1 except for -100 e. It is cleaved	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} EC _{1/2max} K _M mutations ixcept -10 his sequer base alor cleavage P1 (K24N G, requiri d with 50-	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ice was A170 e. This is sur of this half-s I, T29Q) neecong loop remo 100% surviva	20 75 53 98 6 3 0 41 204 10 K24N, T29 100 K24N, T29 K24N, T29	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the -
SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP010417 notes on AGAP010417 notes on	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, I164F, S166K, D168G, Y192V, K200R, K202D	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th than the +3C terefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} EC _{1/2max} K _M mutations ixcept -10 his sequer base alor cleavage P1 (K24N G, requiri d with 50- h the CPK	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3.00 >5 for -8G_P1 (I C, requiring I ice was A170 ie. This is surf of this half-s I, T29Q) neecong loop remo 100% surviva 2 information	20 75 53 98 6 3 0 41 204 10 K24N, T29 loop remod K, D194A, prising bec site likely d to be com deling. al by variat n is:	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the
SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP010417 notes on AGAP010417 notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, I53V, , K202D, C. Then the n ubstitutions e /al of 32%. Th than the +3C terefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} EC _{1/2max} K _M mutations ixcept -10 his sequer base alor cleavage P1 (K24N G, requiri d with 50- h the CPK	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3.00 >5 for -8G_P1 (I C, requiring I ice was A170 ie. This is surf of this half-s I, T29Q) neecong loop remo 100% surviva 2 information	20 75 53 98 6 3 0 41 204 10 K24N, T29 loop remod K, D194A, prising bec site likely d to be com deling. al by variat n is:	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP010417 notes on AGAP008878 (-) notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, I164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a the wild-type nucleotide at position -5. 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C erefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on ctive variant f	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _{ad} K _{ad} k _{out} base alor cleavage P1 (K24N G, requiri d with 50- n the CPK for this er	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 e. This is surp of this half-s I, T29Q) neecong loop remo 100% surviva 2 information	20 75 53 98 6 3 0 41 204 00 K24N, T29 100 remod K, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP008878 (-) notes on	+3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substition, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, 1164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C erefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on ctive variant f	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _{ad} K _{ad} k _{out} base alor cleavage P1 (K24N G, requiri d with 50- n the CPK for this er	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 e. This is surp of this half-s I, T29Q) neecong loop remo 100% surviva 2 information	20 75 53 98 6 3 0 41 204 00 K24N, T29 100 remod K, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP008878 (-) notes on AGAP008878 (+) notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substitution, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, I164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a the wild-type nucleotide at position -5. Need to determine whether any of the variants the cleave +4T can tole result in unexpected specificity preferences. 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C erefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on ctive variant f erate +5C. Ad	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _{ad} K _{ad} k _{out} base alor cleavage P1 (K24N G, requiri d with 50- n the CPK for this er	240/42 197/17 177 145/12 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 e. This is surp of this half-s I, T29Q) neecong loop remo 100% surviva 2 information	20 75 53 98 6 3 0 41 204 00 K24N, T29 100 remod K, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP008878 (-) notes on AGAP008878 (+) notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substitution, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, I164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a the wild-type nucleotide at position -5. Need to determine whether any of the variants the cleave +4T can tole result in unexpected specificity preferences. This data is associated with Figures S10 and S11 and Supplementary 1 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e ral of 32%. Th than the +3C erefore, good ions for -8T_1 except for -100 e. It is cleaved aries based on ctive variant f erate +5C. Ad Discussion	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M k _{ost} EC _{1/2max} k _{ost} EC _{1/2max} kost cept -10 his sequer base alorr cleavage P1 (K24N G, requiri d with 50- the CPK for this er ditionally Target	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 ince was A170 ince this is sur- of this half-s I, T29Q) neecong loop remo 100% surviva 2 information tire half-site, the +1C cen 0.049/2	20 75 53 6 3 0 41 204 00 K24N, T29 100 remod 0K, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/1 0.91/0.91 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP008878 (-) notes on AGAP008878 (+) notes on AGAP002800 (-) notes on	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, 155V, S79N, 181L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substitution, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, 1164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a the wild-type nucleotide at position -5. Need to determine whether any of the variants the cleave +4T can tole result in unexpected specificity preferences. This data is associated with Figures S10 and S11 and Supplementary 1B. The kinetics section is shown as kcat/KM values to show the individual stab. 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e val of 32%. Th than the +3C terefore, good ions for -8T_1 except for -100 . It is cleaved aries based or ctive variant for erate +5C. Ad Discussion idual	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M k _{ost} EC _{1/2max} k _{ost} EC _{1/2max} kost base alor: a cleavage P1 (K24N G, requiri d with 50- the CPK for this er ditionally Target +6A	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 ince was A170 ince this is surj of this half-s ince the stress of the stress information 1,729Q) neecong loop remo 100% surviva 2 information thire half-site, the +1C cent 0.049/2 3.13/10	20 75 53 98 6 3 0 41 204 0 K 24N, T29 1000 remode 100 k, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c http://www.com/allocale	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/~1 0.98/~1 0.92/0.93 ~1/~1 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a
SV SV SV SV SV SV SV HV Human Cells HV AGAP003225 FV CPK2 FV CPK2 FV CPK2 FV CPK2 FV AGAP009607 (-) notes on AGAP009607 (+) notes on AGAP008878 (-) notes on AGAP008878 (+) notes on AGAP002800 (-) notes on AGAP002800 (+) Y1921 with +6	 +3G S1: A170K, Y192G, K200V +3G S1: A170K, Y192G, K200V -3A S1: Y13W, E35A, 58-65 = LRQHDRG- +3C S1: A170E, D194K, K200A +3C S1: A170E, D194K, K200A -3C C2: Y18W, E35K, 58-65 = FRPDG -3C C2: Y18W, E35K, 58-65 = FRPDG S152V, D168S, T189V, K200H, T204R S152V, D168S, T189V, K200H, T204R Y18W, E35K, 58-65 = TRPDG, S152T, D168S, T189V, K200H, T2 base mutations to provide stability/activity, but not specificity: F13Y, I55V, S79N, I81L, E86D, F91I, S92T, R102K, S111Y, L112S, L232K Y18C, T22S, E31R, G33K, R59T, A68H, R70E, S152C, 155-168: RKALESSHLVAKFS, T189S, Y192S, D194I, T196R, C198I, K200R T204A, and same base mutations as AGAP003225 Need to determine whether -4C_C1 and/or -4C_C2 can cleave -5G/-4 combined with -4C mutations. This variant should cleave all (-) half s A sequence similar to the tested single variant +3G_S1 showed surviv K200C. Suprisingly, the +3C_S1 variant cleaves the (+) half-site more poorly showed that +3C_S1 cleaves +1G/+3C better than +3C (Figure 5). Th needs randomization over the third substitution, +9C. Need to dermine whether -3T_S1 can cleave -3T/-2C. Then the mutat 3T S1 sequence. This variant should cleave all (-) half substitutions e This site includes the +4G/+5G substitutions in the CPK2 (+) half-site enzyme for this pocket. The variant showing up the most often in libra S152C, L156R, I164F, S166K, D168G, Y192V, K200R, K202D Combining -8G_P1 and -3C_C2 will almost certainly yield a highly a the wild-type nucleotide at position -5. Need to determine whether any of the variants the cleave +4T can tole result in unexpected specificity preferences. This data is associated with Figures S10 and S11 and Supplementary 1 	AGAP009 AGAP003 AGAP003 AGAP003 AGAP003 204R, and K49D, 153V, , K202D, C. Then the n ubstitutions e val of 32%. Th than the +3C terefore, good ions for -8T_1 except for -100 . It is cleaved aries based or ctive variant for erate +5C. Ad Discussion idual	+3G 607 (+) -3A +3C 225 (-) 225 (-) 225 (+) 225 (+) 225 (+) EC _{1/2max} EC _{1/2max} K _M k _{ost} EC _{1/2max} k _{ost} EC _{1/2max} kost cept -10 his sequer base alorr cleavage P1 (K24N G, requiri d with 50- the CPK for this er ditionally Target	240/42 197/17 177 145/15 318/29 6.6/4. 7.4/7. 24/20 NA 121/14 1185/12 >3,00 >5 for -8G_P1 (I C, requiring I ince was A170 ince was A170 ince this is surj of this half-s ince the stress of the stress information 1,729Q) neecong loop remo 100% surviva 2 information thire half-site, the +1C cent 0.049/2 3.13/10	20 75 53 98 6 3 0 41 204 0 K 24N, T29 1000 remode 100 k, D194A, prising bec ite likely d to be com deling. al by variat n is: , as -5T is c http://www.com/allocale	0.83/0.73 0.82/0.82 ~1 ~1/~1 0.82/0.77 0.98/~1 0.98/~1 0.98/~1 0.98/~1 0.92/0.93 ~1/~1 NA 0.92/0.93 ~1/~1 NA K) need to be eling. (C198A, ause we also bined with the - ions of the leaved as well a bstitutions may NA