
Supporting Text S1- Calculations for the Feedback Gain & Overshoot. 

Feedback Gain

Suppose a simple feedback system consisting of an mRNA molecule (X) that encodes a transcriptional repressor

(Y), able to repress transcription from its own promoter. 

Let G be the feedback gain, defined as the ratio between the steady-states of the negative feedback HXfb) and the

open loop HX0L. 

The dynamics of the negative feedback follow
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dt
=

Λ1 k
n

k
n + HytLn

- Β1 xt

dy

dt
= Λ2 xt - Β2 yt

Eq 1.

Where x is the RNA concentration, Y is the protein concentration , Λ stands for production rates, Β represents

degradation/dilution rates, k is the feedback constant, and n is the cooperativity of the system (non-linearity of the

feedback). In these condition the steady-state of the system is 

dx

dt
=

Λ1 k
n

k
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- Β1 xt = 0

dy

dt
= Λ2 xt - Β2 yt = 0

In  order  to  simplify  the  calculations  we  replace k
n = K  and  the  steady-state  for  strong  repression  (

K + yss > yssL for X follows
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Similarly the equations for the open loop
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dt
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yield in steady-state
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This expressions yields the following limits:
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This  indicates  that  while  decreasing k  (increasing the  affinity  of  the  repressor  for  its  cognate  site)  increases

indefinitely the feedback gain, increasing n reaches a limit gain that equals the intrinsic promoter strength (
Λ1 Λ2

Β1 Β2

)

times the inverse of the half-repression constant (k).

The gain in y is calculated in the same way, yielding
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 Which indicates that the feedback gain is equivalent for values of x and y

Feedback Overshoot existence

System of Ec. 1 produces a transient overshoot whenever x and y reach a maximum that is higher than the steady

state value. A max. in x is reached iif
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then x
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From this follows that y at x = xmax y is always smaller than its steady state value
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Equivalent reasoning yields that x
' < 0 at y = ymax and xss < xymax

Gain-Overshoot relationship

The overshoot (O) is the ratio between the maximal value of X or Y and its steady-state value. In the case of an

RNA
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The higly non-linear nature of the ODE system prevents the calculation of Xmax, but in the case of strong self-

repression (k+y » y)  and high cooperativity  we can linearize the system, approximating Xmax to the equivalent

value for the open loop when t= txmax
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This allows direct integration of Xmax
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This approximation holds for higly-nolinear systems, where the high cooperativity index (n) acts as an effective

delay between the accumulation of the repressor  (y) and the onset of repression. Therefore
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To calculate the overshoot for y we follow the same reasoning. Linearizing x until  the onset of the negative

feedback, we can approximate the value of Ymax
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This indicates that the Oy ¹ Ox, and
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Simulations  indicate  that  these  approximation  holds  for  highly-nonlinear  systems  (Figure  4,  main  text).  This

condition can be met by systems where the repressor exhibits high cooperativity to its cognate binding site or

where the repressor dimer/multimerization is required for binding.

Effect of multimerization

The following system includes a step of repressor dimerization

Hkn = KL
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dt
=
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 This indicates that at steady state the dimer system is formally identical to the monomeric system with the only

difference of ca �cd  multiplying y, which reflects the steady-state of the dimerization dynamics. Similarly, the

gain in the dimer system can be expressed as

 G =
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=
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To calculate the overshoot for y we follow the same reasoning. Linearizing x until  the onset of the negative
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Simulations  indicate  that  these  approximation  holds  for  highly-nonlinear  systems  (Figure  4,  main  text).  This

condition can be met by systems where the repressor exhibits high cooperativity to its cognate binding site or

where the repressor dimer/multimerization is required for binding. 

Effect of multimerization

The following system includes a step of repressor dimerization 
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 This indicates that at steady state the dimer system is formally identical to the monomeric system with the only

difference of  ca �cd  multiplying y, which reflects the steady-state of the dimerization dynamics. Similarly, the

gain in the dimer system can be expressed as 
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Supplementary Material 2 - Calculations for the Feedback Gain & Overshoot. 

Feedback Gain

Suppose a simple feedback system consisting of an mRNA molecule (X) that encodes a transcriptional repressor

(Y), able to repress transcription from its own promoter. 

Let G be the feedback gain, defined as the ratio between the steady-states of the negative feedback HXfb) and the
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Where x is the RNA concentration, Y is the protein concentration , Λ stands for production rates, Β represents

degradation/dilution rates, k is the feedback constant, and n is the cooperativity of the system (non-linearity of the
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This  indicates  that  while  decreasing k  (increasing the  affinity  of  the  repressor  for  its  cognate  site)  increases

indefinitely the feedback gain, increasing n reaches a limit gain that equals the intrinsic promoter strength (
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 Which indicates that the feedback gain is equivalent for values of x and y

Feedback Overshoot existence

System of Ec. 1 produces a transient overshoot whenever x and y reach a maximum that is higher than the steady
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The higly non-linear nature of the ODE system prevents the calculation of Xmax, but in the case of strong self-

repression (k+y » y)  and high cooperativity  we can linearize the system, approximating Xmax to the equivalent
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To calculate the overshoot for y we follow the same reasoning. Linearizing x until  the onset of the negative

feedback, we can approximate the value of Ymax 
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Simulations  indicate  that  these  approximation  holds  for  highly-nonlinear  systems  (Figure  4,  main  text).  This

condition can be met by systems where the repressor exhibits high cooperativity to its cognate binding site or

where the repressor dimer/multimerization is required for binding. 

Effect of multimerization

The following system includes a step of repressor dimerization 

Hkn = KL
dx
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 This indicates that at steady state the dimer system is formally identical to the monomeric system with the only

difference of  ca �cd  multiplying y, which reflects the steady-state of the dimerization dynamics. Similarly, the

gain in the dimer system can be expressed as 
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Feedback Gain

Suppose a simple feedback system consisting of an mRNA molecule (X) that encodes a transcriptional repressor

(Y), able to repress transcription from its own promoter. 

Let G be the feedback gain, defined as the ratio between the steady-states of the negative feedback HXfb) and the

open loop HX0L. 

The dynamics of the negative feedback follow
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Where x is the RNA concentration, Y is the protein concentration , Λ stands for production rates, Β represents

degradation/dilution rates, k is the feedback constant, and n is the cooperativity of the system (non-linearity of the

feedback). In these condition the steady-state of the system is 
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This  indicates  that  while  decreasing k  (increasing the  affinity  of  the  repressor  for  its  cognate  site)  increases

indefinitely the feedback gain, increasing n reaches a limit gain that equals the intrinsic promoter strength (
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Feedback Overshoot existence

System of Ec. 1 produces a transient overshoot whenever x and y reach a maximum that is higher than the steady
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The higly non-linear nature of the ODE system prevents the calculation of Xmax, but in the case of strong self-

repression (k+y » y)  and high cooperativity  we can linearize the system, approximating Xmax to the equivalent

value for the open loop when t= txmax
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To calculate the overshoot for y we follow the same reasoning. Linearizing x until  the onset of the negative

feedback, we can approximate the value of Ymax 

Ox = 
Ymax

Yss

dy

dt
= Λ2 xt - Β2 yt and xt »

Λ1

Β1

 I1 - e
- Β1 tM

dy

dt
»

Λ1 Λ2

Β1

 I1 - e
- Β1 tx=xmax M - Β2 yt

Oy » J Λ1 Λ2

Β1 Β2

N
n

n+1 I 1

K
M 1

n+1 O K Β1I1-e
- Β1 tM - Β2I1-e

- Β2 tM
Β1- Β2

O

Oy » K Β1I1-e
- Β1 tM - Β2I1-e

- Β2 tM
Β1- Β2

O G

This indicates that the Oy ¹ Ox, and

Oy = Ox

Β1 - Β2

I1-e
- Β

2
tM

I1-e
- Β

1
tM

Β1- Β2

Simulations  indicate  that  these  approximation  holds  for  highly-nonlinear  systems  (Figure  4,  main  text).  This

condition can be met by systems where the repressor exhibits high cooperativity to its cognate binding site or

where the repressor dimer/multimerization is required for binding. 

Effect of multimerization

The following system includes a step of repressor dimerization 
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 This indicates that at steady state the dimer system is formally identical to the monomeric system with the only

difference of  ca �cd  multiplying y, which reflects the steady-state of the dimerization dynamics. Similarly, the
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