
Supplementary Text S2. Comparison to standard attractor dynamics
Inspired by previous heuristic extensions of standard attractor dynamics to metaplastic synapses [38], we also
constructed such dynamics and compared their performance to that obtained by our model. For this, we stored
a set of T = 10 patterns, denoted by x

(t), with t 2 {1 . . . T}, drawn from our usual prior with f = 0.5, in a
fully connected network of N = 500 neurons, by first initializing weights at random according to their stationary
distribution, and then by using the cascade rule (either the presynaptically- or the postsynaptically-gated variant) to
modify synapses as a function of the patterns. For recall, we used a heuristic form for the current to a neuron [38]:
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and set the threshold h

i

as a function of all the patterns to be retrieved using an offline procedure. Specif-
ically, h

i

was set to be at the half-distance between the mean current induced by the patterns in which the
neuron is active or inactive, respectively. More formally, if m
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are the mean currents expected to be received by neuron i for patterns

in which its state should be 0 or 1, respectively, then h

i

= (m

0

+ m

1

)/2. (This condition guarantees maximum
separability once the dynamics reached the appropriate fixed point, but see also for a discussion below). Note that
the recall cue, ˜x drawn from the usual input distribution with r = 0.2, does not explicitly appear in the total current,
as – in line with standard approaches – it was only used to initialize the system. Finally, we used a step-function
as the transfer function determining the output of the neuron, just as in our MAP dynamics (Text S1).

Unlike our model, the heuristic dynamics described above implicitly assume a uniform distribution over pattern
ages, and there is no obvious principled way to incorporate a more realistic decaying prior over pattern ages in the
dynamics. Thus, we simply plot the recall performance as a function of pattern age, without averaging the errors
across it (Fig. S3; solid lines). For comparison, we also plot the performance of our optimal dynamics (Fig. S3;
dashed lines). The quality of retrieval for the heuristic dynamics is remarkably poor, and in particular much poorer
than for our dynamics, with errors above control for all but the most recent patterns. Worse still, even the average
error would be above control for almost any prior for the pattern ages. There are several factors that contribute to
this:

• Unlike our model, the heuristic dynamics uses the recall cue only as the initial condition, and ignores this
source of information after that. This is detrimental for old memories, for which there is no information in
the synaptic weights, so the only useful information is the recall cue (and the prior over patterns, when it is
unbalanced). As a result, error rates for the heuristic dynamics saturate at the maximum possible value for a
system that only has binary outputs (

p
1/2 ⇡ 71%). This supports the importance of using external fields

for memory retrieval [8].

• The heuristic model has also no regulation of excitability depending on the weights of outgoing synapses,
similar to IP

out

in our model, which was crucial for ensuring competent recall for postsynaptically-gated
learning rules (Fig. 4A, top). In fact, ignoring the information stored in outgoing synapses in this way
roughly corresponds to the simplest approximation of the evidence from outgoing synapses in our model,
which – as we described in the main text – was a markedly efficient approximation. Consequently, retrieval
is particularly poor when storage is postsynaptically-gated (red line).

• Although the setting of the threshold h

i

, the analogue of IP
in

in our model, is guaranteed to work at a fixed
point, it does not guarantee that starting from the recall cue, which is different from the pattern that needs
to be recalled by definition, the dynamics would actually converge to the correct answer (formally, there is
no guarantee on the size of the corresponding basin of attraction). The kind of off-line threshold regulation
used here has another key shortcoming – though mostly of biological rather than computational relevance:
it seems difficult to implement it in a neural circuit, whereas we have shown that standard models of IP can
well approximate the optimal threshold setting in our model.



• The evolution of the network is deterministic, rather than stochastic. Although, as we showed above (Text
S1), stochastic dynamics in our system was indeed able to achieve better performance than (binary) de-
terministic dynamics (implementing MAP inference), this advantage was only marginal. Therefore, while
using binary deterministic dynamics can have a detrimental effect, we expect that this is not the main cause
of the significantly poorer performance of the heuristic dynamics.

• One potential caveat in the comparison of the retrieval performance of the optimal versus heuristic dynamics
has to do with a subtle difference in the way multiple patterns were stored in them. For the ‘heuristic’
network presented here, all patterns were stored in the synapses, while in for our optimal network we only
stored one pattern and simulated the effects of storing the others independently in each synapse. In this way,
we allowed our model to sidestep the problem caused by synaptic correlations [43], while the heuristic model
had to cope with this additional difficulty. Therefore, as a further control, we also constructed an analog of
our ‘pseudo-storage’ procedure for the heuristic network to ensure that it was also unaffected by synaptic
correlations. However, for the specific parameters used here, this still did not improve its performance.
Therefore, it is the heuristic form of the standard dynamics, and not other factors, that is mainly responsible
for its poor performance.


