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1. Supplementary Materials – The Monte Carlo Search for Boundary
Polytopes

One can follow an entirely algebraic process to identify all boundary polytopes. In

view of the complexity of the space it is helpful to use a computer to explore N

especially to confirm information on the dimensionality of boundary polytopes and on

the necessary boundary transformations.

In order to reduce the computational burden and deal with the open boundary

polytopes, rather than randomly generating points in G6, we generate random short

lines in G6 and look for cases in which the boundary of N must have been crossed

because one end of the line is Niggli-reduced, while the other end is not. The process

for the initial search for 5-D boundary polytopes is given in Table 1.

The search for the boundary polytopes resulting from the process in Table 1 pro-

duces transformations in the course of Niggli reduction (step 6). We sort the Niggli-

reduced G6 vectors by the associated transformation matrix from step 6. A high

population for a given matrix indicates a significant volume of G6 with access to the
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associated boundary polytope, implying a 5-D boundary polytope (See Fig. 1 and

Fig. 2). A lower population for a given matrix possibly implies a lower-dimensional

boundary polytope, a common “edge” resulting from the intersection of multiple 5-D

boundary polytopes. With enough probes, many of the lower dimensional boundary

polytopes can be discovered, but only with difficulty because the information on those

lower-dimensional boundary polytopes is swamped in a sea of data about the 5-D

boundary polytopes.

Efficient discovery of all these intersections of multiple 5-D boundary polytopes

requires the use of “projectors”. A projector for a subspace Q in G6 is a symmetric

matrix, P , that when applied to any point g in G6 is such that Pg is the closest point

in Q to g. A projector has the nice property that PP = P , i.e. that it acts like the

identity matrix on the subspace Q.

The projector for a given boundary polytope can be discovered by examining the set

of Niggli-reduced G6 vectors associated with the transform matrix for that boundary

polytope. The examination can either be a simple inspection of the list of vectors or can

be done algorithmically by use of a singular value decomposition (SVD) calculation

(Beltrami, 1873; Jordan, 1874; Stewart, 1993). It should be noted that the projector

projects onto the hyperplane associated with the polytope and may project a point

from G6, or even from N itself, outside of N.

Let us first derive projectors by simple inspection. A search for points near a bound-

ary produces a list of vectors that can be examined for the conditions that are met.

For instance, the trial vectors:

4.41605 53.21164 53.3171 -9.85206 -2.73956 -1.78806
4.95245 106.2402 106.5968 -72.3608 -0.26549 -4.79911
5.62821 98.26772 98.36612 24.37056 1.57819 1.85157

are seen to meet the condition g2 = g3.

The trial vectors:
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4.85822 9.79018 40.14963 -3.6758 -0.01092 -2.18456
4.89205 21.22063 75.92303 6.01777 0.05752 2.78514
5.03365 26.32789 46.84058 -17.2646 -0.01252 -2.03757

are seen to meet the condition g5 = 0.

In each case the necessary projector is obvious (see projectors P2 and P3, below).

In other cases, such as the body-diagonal boundary polytope, or many of the lower-

dimensional boundary polytopes involving multiple face-diagonals, simple inspection

is challenging. Given a sufficient number of vectors, the projector may be recovered

algorithmically from such a list of vectors, rather than by inspection. If a singular

value decomposition is done on a list of vectors near to and covering a single 5-D

boundary polytope, the vector corresponding to the smallest singular value is the unit

normal to that boundary polytope, and the projector onto that polytope is simply the

identity minus the projector onto the line of the unit normal. The projector onto the

line of the unit normal is generated by forming a matrix, A, whose first row is the unit

normal and whose remaining rows are set to zero. Then ATA is the projector onto the

line of that unit normal.

In the general case of a lower-dimensional boundary polytope, the projector onto

the boundary polytope is the identity minus the projector Q onto the hyperplane Ω

orthogonal to the boundary polytope. In that case a singular value decomposition

on the list of vectors near to and covering the lower-dimensional boundary polytope

will have small singular values for the vectors spanning Ω. The projector Q onto

Ω is generated by forming a matrix A with initial rows consisting of the vectors

corresponding to the small singular values and the remaining rows set to zero. Then

ATA is the projector onto Ω and I−ATA is the projector onto the boundary polytope.

Once we have found the projectors for the 5-D boundary polytopes, the projectors

for their intersections may be generated from their products. The product of two dif-

ferent projectors is not, itself, likely to be a projector, but repeated squaring of that
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product rapidly converges to the correct projector (Andrews, 1976). Given these pro-

jectors, the process for the remaining boundary polytopes is given in Table 2. This

process is similar to the initial process, but three new steps have been added: In step 0

the projector for a particular boundary polytope is read in. In step 2A the vector con-

firmed by step 2 is projected onto the hyperplane containing the boundary polytope,

and step 2B verifies that the projected vector is still a valid unit cell. When doing

a random perturbation of a vector already projected onto the hyperplane containing

a boundary polytope while looking for intersections with that boundary polytope, it

is sufficient to use a random vector projected onto that the hyperplane containing

the boundary polytope. However, that risks missing some very low dimension cases.

That search produced 215 distinct boundary polytopes. The search was then redone,

stepping back into the Niggli cone after each projection, and using a full 6-D spherical

random search to ensure catching any nearby boundary polytopes. That search added

one more distinct boundary polytope, for a total of 216 boundary polytopes.

The dimension of a boundary polytope can be determined by computing the number

of eigenvalues equal to 1 of the projector onto the hyperplane containing the boundary

polytope, and having distinct boundary projectors is a sufficient condition for two

boundary polytopes to be distinct. However, distinct projectors is a necessary, but not

sufficient, condition for two boundary polytopes to be distinct, because crossing one

bounding hyperplane in two different places can require two different transformation

matrices to reduce the result. The reduction transformation matrices themselves are

needed to disambiguate cases with the identical bounding hyperplane projector.

In the course of the Monte Carlo investigation of the boundary polytopes resulting

from combinations of 5-D boundary polytopes, we track the relative populations as an

indicator of a consistent assignment of dimension. The candidates for assignment to a

particular dimension are sorted by population, and the list is cut off on a precipitous
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drop of more than an order of magnitude. For the remaining populations, the mean

population µ and estimated standard deviation σ are computed. For each population τ ,

a Z-score, (τ − µ)/σ, is computed (see http://en.wikipedia.org/wiki/Standard score).

Z-scores of less than -1 suggest the possible need for further study of the boundary

polytopes involved. A combination of the population analysis resulting from the Monte

Carlo search, algebraic analysis of constraints and computation of the eigenvalues

of projectors allows the identification of the dimensions of the boundary polytopes,

helps to identify distinct combinations of intersections of 5-D boundary polytopes that

represent the same lower dimensional boundary polytopes and confirms the critical

initial identification of the 15 5-D boundary polytopes identified purely by the Monte

Carlo search.

We limit our consideration of valid boundary polytopes to those avoiding the mathe-

matically interesting but crystallographically impossible cases of zero length cell edges.

Combinations of boundary polytopes without a valid intersection or with an intersec-

tion that would force any of g{1,2,3} to zero or that did not have neighboring Niggli-

reduced probe points are eliminated. 574 combinations of 1 through 8 intersecting

5-D boundary polytopes were not degenerate. Many combinations represent equiva-

lent boundary polytopes. There are 216 distinct boundary polytopes. There are 15

5-D boundary polytopes of the full G6 Niggli cone, 53 4-D boundary polytopes result-

ing from intersections of pairs of the 15 5-D boundary polytopes, 79 3-D boundary

polytopes resulting from the 2-fold and higher intersections of the 15 5-D boundary

polytopes, 55 2-D boundary polytopes resulting from 2-fold and higher intersections of

the 15 5-D boundary polytopes, 14 1-D boundary polytopes resulting from 3-fold and

higher intersections of the 15 5-D boundary polytopes. The ability of the intersection

of only 2 5-D boundary polytopes to produce 4-D, 3-D or 2-D boundary polytopes

results from the additional constraints imposed by Niggli reduction.
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For the 5-D boundary polytopes, three special cases arise in which the Niggli reduc-

tion conditions divide a single polytope into two sub-polytopes, the “flat boundary

intersections”. In each of those three cases, instead of two boundary polytopes meeting

at an angle, two boundary polytopes meet edge on. These three cases are g4 = g2,

g5 = g1, and g6 = g1. In each case the division in the polytope is based on the equality

of the other two members of g{4,5,6}. For example, when g4 = g2, the division is along

g5 = g6. Therefore, when multiplying projectors, instead of multiplying the projector

for g4 = g2 by itself when the two half-polytopes are required, the second projec-

tor is replaced by the projector for the division, i.e. in the example given instead of

multiplying the projector for g4 = g2 by itself, it is multiplied by the projector for

g5 = g6.

Table 1. Initial process to locate 5-D boundary polytopes

1. Generate a random vector in G6.
2. Confirm that the vector represents a proper unit cell (for instance, the sum of the

interaxial angles must be less than 360 degrees).
3. Niggli-reduce the vector.
4. Randomly perturb the vector resulting from step 3.
5. Confirm that the perturbed vector represents a proper unit cell.
6. Niggli-reduce the vector from step 5, accumulating the total transformation matrix

from the vector of step 3 to the new reduced vector.
7. If the transformation is the unit matrix, then the perturbed vector was not near

the boundary of N. Discard the trial. Otherwise, proceed.
8. If the transformation matrix has been discovered before, increment a counter for

its occurrences. Otherwise, add it to the list of discovered transformations.
9. Repeat many times, starting at step 1.
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Table 2. Process to locate lower-dimensional boundary polytopes.

0. Read in the projector for the desired boundary to be probed.

1. Generate a random vector in G6.
2. Confirm that the vector represents a proper unit cell (for instance, the sum of the

interaxial angles must be less than 360 degrees).
2A. Project the vector confirmed in step 2 onto the boundary.
2B. Confirm that the projected vector is still a valid unit cell.
3. Niggli-reduce the vector.
4. Randomly perturb the vector resulting from step 3.
5. Confirm that the perturbed vector represents a proper unit cell.
6. Niggli-reduce the vector from step 5, accumulating the total transformation matrix

from the vector of step 3 to the new reduced vector.
7. If the transformation is the unit matrix, then the perturbed vector was not near

the boundary of N. Discard the trial. Otherwise, proceed.
8. If the transformation matrix has been discovered before, increment a counter for

its occurrences. Otherwise, add it to the list of discovered transformations.
9. Repeat many times, starting at step 1.

Table 3. The 53 4-D boundary polytopes. The boundary conditions use the symbol notation of

Table 1 in the main text for the 5-D boundary polytopes. The bounding 4-D polytopes of each

of the 15 5-D boundary polytopes can be read off from this table by going down the

appropriate column to the main diagonal and then across. For example, the edges of the 3

polytope are 13, 23, 34, 35, 3A, 3B, 3D and 3E.

g2 =g3 g4 =0 g5 =0 g6 = 0 a-face-diagonals b-face-diagonals c-face-diagonals body
12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
34 35 3A 3B 3D 3E

45 47 48 4C 4E
56 58 59 5B

67 69
7C

8F
9A 9C

AD
BE BF

CD
EF
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Table 4. The 79 3-D boundary polytopes. In some cases the most natural presentation of a

given 3-D polytope is a 4-fold intersection. In each of those cases an equivalent 3-fold

intersection is given in parentheses immediately below the 4-fold.

g4 =0 g5 =0 g6 =0 a-face-diagonals b-face-diagonals c-face-diagonals body
123 124 125 126 127 128 129 12A 12B 12C 12D 12E 12F

134 135 13A 13B 13D 13E
145 147 148 14C 14E

156 158 159 15B
167 169

17C
18F

19A
1AD

1BF
1CD

1EF
234 235 23A 23B 23D 23E

245 247 248 24C 24E
256 258 259 25B

267 269
27C

28F
29A 29C

2AD
2BE 2BF

2CD
2EF

345 34CD 34E
(34C)

359A 35B
(359)

3AD
3BE

4567
(456)

458
47C 48EF

(48E)
569

58BF
(58B)

679C
(679)

9ACD
(9AC)

BEF
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Table 5. The 55 2-D boundary polytopes

g5 =0 g6 =0 a-face-diagonals b-face-diagonals c-face-diagonals body
1234 1235 123A 123B 123D 123E

1245 1247 1248 124C 124E
1256 1258 1259 125B

1267 1269 127C
128F

129A
12AD

12BF
12CD

12EF
1345 134CD 134E

(134C)

1359A 135B
(1359)

13AD 13BEF
(13BE)

14567 1458
(1456)

147C
148EF
(148E)

1569
158BF
(158B)

1679ACD
(6D, 7A)

2345 234CD 234E
(234C)

2359A 235B
(2359)

23AD
23BE

24567 2458
(2456)

247C
248EF
(248E)

2569
258BF
(258B)

2679C
(2679)

29ACD
(29AC)

2BEF
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Fig. 1. Illustration of Monte Carlo search for boundary polytopes in G6. The hatched
line represents a boundary polytope, e.g. g2 = g4. The unhatched side of the bound-
ary (N) consists of Niggli-reduced cells. In this case the hatched side is divided into
two regions, NN1 (e.g. g5 > g6) and NN2 (e.g. g5 < g6) for which different reduc-
tion matrices are required to get a Niggli-reduced cell, e.g. M6 for NN1 and M7

for NN2. “NN” stands for not Niggli-reduced. V 1 is a randomly generated probe
point in region N for which a random short line reaches across the boundary to
reach region NN1, so the starting point is associated with M6. V 2, V 4 and V 5 are
randomly generated probe points for which the random short line remains in the
Niggli-reduced region N. Therefore V 2, V 4 and V 5 are discarded. V 3 is a randomly
generated probe point in region N for which a random short line reaches across the
boundary to reach region NN2, so the starting point is associated with M7. Because
of this difference in reduction matrices, the boundary polytope is treated as con-
sisting of two distinct boundary polytopes, in this instance cases 6 and 7.
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Fig. 2. Counts of points found near various boundary polytopes in 100 million tri-
als, organized in declining order of counts, showing the most populated 23 of the
92 boundary polytopes found in this run. This is a run with no filtering for any
particular boundary with the counts shown on a logarithmic scale. Note the precip-
itous drop of nearly 2 orders of magnitude after the first 15 boundary polytopes.
This drop confirms that those 15 boundary polytopes are the 5-D boundary poly-
topes and that there is a vanishingly small probability of there being any other 5-D
boundary polytopes of the Niggli-reduced cells.




