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Meta-Analysis of Pathway Enrichment: Technical Description

Data sets and preprocessing

For application and evaluation of the meta-analysis, two Metabolomics MS data sets [1] and two Tran-
scriptomics DNA microarray data sets [2] were used. The Transcriptomics data sets can be obtained from
the ArrayExpress [3] website (processed data, corrected cy3 and cy5 signals) under the IDs E-ATMX-91

and E-MEXP-14752. The Metabolomics data sets can be downloaded from the MarVis homepage3. The
feature profiles of all data sets were ranked separately utilizing a signal-to-noise ratio s/n (similar to the
method described in [4]), where the signal s is calculated as the difference between the maximum and
the minimum average condition-specific intensity over all conditions and the noise level n is defined as
the pooled sample standard deviation (square root of the pooled sample variance) within all conditions.

Pathway Enrichment Analysis

The ranked features were mapped to the pathway entries in AraCyc4 [5] and the Arabidopsis-specific
pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database5 [6]. In case of the
Metabolomics MS data sets, all potential monoisotopic masses were calculated per feature based on the
ionization rules and number of isotopes used in [1] and mapped to the metabolite masses in the databases
using a tolerance of 0.005 Da. In case of the Transcriptomics DNA microarray data, the features were
mapped to the A. thaliana genes utilizing their CATMA IDs [7]. Via this procedure, 17498 features from
all data sets could be mapped to 663 different pathways. Based on the mappings, a set of feature ranks
was extracted for each pathway and data set. In order to test for an over-representation of high-ranked
features, a p-value was calculated for each set of ranks (pathway) utilizing a one-sided Kolmogorov-
Smirnov (KS) or Wilcoxon rank-sum test (also known as Mann-Whitney U test) [8] as implemented
in the MATLAB R© kstest and ranksum functions (Statistics toolbox). In the first case, the empirical
distribution of ranks in a given set is compared to the distribution of ranks in the respective data set. In
the second case, the average rank of features in a given set is compared to the average rank for the whole
data set without the features in the given set. The resulting p-values for the dependent Metabolomics
data sets were used for the covariance estimation. The covariances between both Transcriptomics data
sets and between the Metabolomics and Transcriptomics data sets, which were obtained from independent
biological samples, were set to zero. Only pathways with less than 500 associated entries were subjected
to enrichment and meta-analysis. For each pathway, only the p-values of data sets with at least one
feature mapped to one of the pathway entries were considered.

Meta-analysis of independent p-values

In statistical meta-analysis, the most common methods for combining independent p-values from related
tests are Fisher’s [9] and Stouffer’s method [10]. In Fisher’s method, the meta-p-value for N independent
p-values pi is calculated based on the test statistic

TF = −2

N∑
i=1

ln(pi) ∼ χ2(k = 2N) (1)

which follows a chi-squared distribution with 2N degrees of freedom. In Stouffer’s method, the test
statistic is the sum of p-values transformed into normally distributed random variables (standard normal

1http://www.ebi.ac.uk/arrayexpress/experiments/E-ATMX-9/
2http://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1475/
3http://marvis.gobics.de/data/wound raw data.zip
4Release biocyc-17.0, http://biocyc.org/
5KEGG FTP Release 2013-03-18, http://www.kegg.jp
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deviates) based on the inverse cumulative distribution function:

TS =

∑N
i=1 Φ−1(pi)√

N
(2)

which is again standard normally distributed under the null hypothesis.

Meta-analysis of dependent p-values

For dependent p-values, a powerful approach is Brown’s method [11], which is an extension of Fisher’s
method utilizing a known covariance matrix for standard normal deviates. The given p-values can be
transformed into standard normal deviates by means of the inverse cumulative distribution function of the
standard normal distribution. In order to incorporate the dependence of p-values, a scaled chi-squared
distribution with a scaling parameter c and modified degrees of freedom f is assumed:

TB ∼ cχ2(k = f) (3)

The parameters c and f are estimated based on the expected value and given covariance matrix of
transformed p-values. For the calculation of the covariances (see formula 4 in [11]), the more precise
estimation from [12] (formula 8) is used. The covariance matrix of the standard normal deviates Φ−1(pi)
can also be utilized in order to extend Stouffer’s method to dependent p-values assuming a multivariate
normal distribution. In this case, the variance is calculated as sum of all covariances instead of using the
number of p-values.

Estimation of covariances

In most applications with dependent data sets, the covariance matrix is not known and has to be es-
timated. In our proposed procedure, the pairwise covariance between two data sets is estimated based
on the standard normal deviates of the pathway-specific p-values, which were obtained for each single
data set in Pathway Enrichment Analysis. This estimation is expected to be biased by the alternative
hypothesis since the similar or same experimental setup of the data sets imposes a certain dependence.
In order to minimize this bias in the estimation of the pairwise covariance between two data sets i and
j, a parameter pmin is introduced and only pathways with p-values pmin < pi, pj < 1 − pmin are con-
sidered. Instead of directly estimating the sample covariance of the transformed p-values in this range
(which would again be biased because of the range restriction), Pearson’s correlation coefficient is used
as normalized version of the sample covariance utilizing the sample mean and sample standard deviation
for normalizing the data set-specific normal deviates. Finally, the estimated pairwise correlation coeffi-
cients are inserted into the covariance matrix of normal deviates. This is straight forward because the
normal deviates were derived from the p-values based on the inverse cumulative distribution function of
the standard normal distribution with unit standard deviation.

Simulated studies

The correlation estimation was evaluated by calculating the pairwise Pearson correlation coefficients
between all four data sets and a copy of the respective data set with 0, 10, 20, ..., and 100 percent of
the feature ranks randomly permuted. In order to generate the permuted copy of one of the data sets
for a given percentage, a corresponding number of features were randomly selected and their ranks were
randomly permuted. In contrast, the assignments of features to pathways were not modified. For each
original and permuted data set, the p-values were calculated for all pathways using the KS or rank-sum
test. The correlation coefficient between each original and permuted data set was computed based on the
respective standard normal deviates (not restandardized) and the restriction of p-values utilizing different
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parameter values pmin = 0, 10−5, 10−4, 10−3, 0.01, 0.05, 0.1. For each percentage, pmin value, and data set,
the random permutation and correlation estimation was repeated 100 times and the average correlation
coefficient and sample standard deviation of correlation coefficients was calculated. As measurement of
the introduced artificial correlation, the correlation coefficient between the feature ranks of each data set
and the permuted ranks (feature rank correlation) was calculated and averaged, respectively. The whole
procedure was repeated for negative correlation by randomly permuting a percentage of the inverted
original feature ranks per data set. The results were averaged over all data sets.
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