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Appendix S1: Appendix

Decision trees and the functional responses

Decision trees for functional responses describe predator actions at each decision point. When applied to

functional responses, these trees must have at least two stages. The first stage describes the distribution

of encounter events between predator and prey, (cf. Level 1 in Figure 1). In general, let us denote the

different encounter events by Ei and the probability that Ei occurs by P (Ei). Since we also include

events when the predator does not encounter any prey,
∑

i P (Ei) = 1. Furthermore, let αk give the

predator’s possible actions (i.e. what the predator does) in encounter Ei and s(αk | Ei) be the predator’s

conditional strategy of using action αk when in encounter Ei. We stress here that actions αk are specific

for each encounter event Ei and so are more formally denoted as αki. To simplify notation, the second

index is omitted throughout the article. Then, for each i, P [s(αk | Ei)] ≧ 0 and
∑

k P [s(αk | Ei)] = 1

where P [s(αk | Ei)] is the probability of using conditional strategy s(αk | Ei) in event Ei. Finally, the

predator’s success at killing its prey may also depend on the encounter event Ei and on its action αk.

Let κ(αk | Ei) denote the probability the predator is successful, which is 0 if αk is an action that does

not attack a prey and is a number between 0 and 1 otherwise.

For the general modeling approach, we now introduce the “activity distribution” of the predator. An

activity event Aℓ is given by an encounter event Ei, an event specific action αk and whether or not the

predator kills its target (i.e., Aℓ = {Ei, αk, κ(αk | Ei)}). Taken together, all such events form a partition

of the total event set. That is, every activity event is included in the union of the Aℓ and two different

Aℓ and Aℓ′ are mutually exclusive. The activity distribution answers the three questions posed at each

stage of the predation process: encounter, predator’s decision, predator’s success.

The probability Pℓ of activity event Aℓ is given through the information above. For example, if Aℓ is

the encounter event E1 combined with action α1 and the predator kills the prey, then Pℓ = P (E1)P [s(α1 |

E1)]κ(α1 | E1). Since the functional response is based on the number of prey killed by the predator per

unit time, we must also consider the duration τℓ of each activity event Aℓ. The activity distribution
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together with the duration of these events define one renewal cycle. The result in the following paragraph

from renewal theory (e.g., [1–3]) is essential to calculate the multi-prey functional response in our model.

Suppose that the activity distribution is constant over a given time interval T . Then the average

number of Aℓ0 activity events per unit time, φℓ0 , is given by

φℓ0 :=
Pℓ0∑
τℓPℓ

. (S1)

Suppose that the predator chooses a habitat at random and let I be the set of all activity events when

the predator kills a particular prey type. Then, the expected number of this type of prey killed per unit

time (i.e. the functional response to this type of prey) is
∑

ℓ∈I φℓ.

Predator energy intake rate functions are often generated in optimal foraging theory [2, 3] using

renewal theory. The optimal predator strategy then maximizes the expected energy gain per renewal

cycle divided by the expected time of the renewal cycle. The approach taken above is closer to that

used by Charnov and Orians [4] who also consider the distribution of predator-prey encounter events and

introduce tree diagrams to describe the possible predator activities for each such event. This approach

provides a straightforward procedure to obtain predator functional responses as illustrated by examples

in this article. The renewal theorem used here assumes that the time horizon is infinite. When it is finite,

the precise statement from probability theory is that the expected number of Aℓ0 activity events observed

in a time interval of length T is somewhere between
TPℓ0∑
τℓPℓ

and
(T+τmax)Pℓ0∑

τℓPℓ
where τmax := max{τℓ}, as

proven by Garay and Mori [5] using Wald’s equation [6]. Thus, the average number of Aℓ0 activity events

per unit time is essentially given by 1
T

TPℓ0∑
τℓPℓ

(i.e. by φℓ0 in (S1) when T is sufficiently large relative to

τmax.

For both the simultaneous encounter and the classic (i.e. non-simultaneous) models of the main text,

the activity distribution is given at the second level terminal nodes of the two-level decision tree (Figures

1 and 3). The prey recognition game (Figure 6) requires a third level to describe the predator activity

distribution since the predator’s possible actions in a given encounter event depends on its own second

level decision of whether to spend time recognizing the type of prey it encountered before deciding whether

to attack. This decision tree also illustrates a situation where the predator must take the same action at

different encounter events (specifically at the level 2 information set of Figure 6). Both of these properties

of the prey recognition game fit the general framework developed in this Appendix (since the activity

distribution is still given by the terminal nodes of the decision tree) and so the functional response can

be calculated through (S1). Similarly, the decision trees of Figures 1 and 2 can be easily generalized to
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multi-prey models by adding more encounter and activity events at levels 1 and 2 respectively.

Although all three examples in the main text assume that the predator is always successful when it

decides to attack a prey in a given encounter event (i.e. κ(αk | Ei) = 1 if αk is the action to attack a

particular type of prey in encounter event Ei), the decision tree approach remains applicable when this

is not the case. For example, if the predator is not always successful when attacking a prey it encounters

of a given type (say, prey A) in Figure 1, another level can be included in the tree to account for this by

replacing the terminal node after qA by two branches with probabilities κ(α1 | E1) and 1 − κ(α1 | E1).

In the terminology of extensive form games, the node following qA is now a “move by nature” and, since

there are no predator choices following this node, the tree can be truncated by deleting these two branches

(i.e. by returning to the tree of Figure 1). However, the energy intake and duration time at this truncated

node are altered. For instance, if the predator energy intake corresponding to the two deleted branches

are πA and 0 respectively with duration times τs+τAh and τs, then the energy intake of attacking prey A

becomes πAκ(α1 | E1) and its duration time (τs+τAh)κ(α1 | E1)+τs(1−κ(α1 | E1)) = τs+τAhκ(α1 | E1).

Zero-one rule and the Nash equilibrium

The predator energy intake f per unit time corresponding to the decision tree approach developed in this

paper is a rational function of the form

f(q1, q2, · · · , qN ) =
P (q1, q2, · · · , qN )

Q(q1, q2, · · · , qN )

when there are N information sets in the tree. Here qi for fixed 1 ≤ i ≤ N is an element of the set

of mixed strategies ∆i (i.e. qi is a probability vector whose components are nonnegative and sum to

1) that correspond to the possible choices at information set i. For example, ∆1 ≡ {(x1, x2, · · · , xm) |∑m
j=1 xj = 1, xj ≥ 0} is the m − 1 dimensional strategy simplex when information set 1 has m possible

choices. P and Q are polynomials that are linear in the components of each qi and Q is positive for all

(q1, q2, · · · , qN ) ∈ ∆ ≡ ∆1 ×∆2 × · · · ×∆N . To ease notational complexities, we will assume that N = 3

in all proofs in this Appendix and write f as f(x, y, z) where x ∈ ∆1, y ∈ ∆2 and z ∈ ∆3. Although the

proofs of the results in this Appendix are given for N = 3, they can all be extended to show the results

remain true for arbitrary N .

For all of the decision trees analyzed in the main text of this paper, N ≤ 3. In fact, each reduced tree

in the main text has N ≤ 2 with ∆1 and ∆2 one-dimensional (e.g. ∆1 ≡ {(x, 1−x) | 0 ≤ x ≤ 1}). In the
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decision trees of Figure 1 and Figure 3, the consumer has complete information at each of its decisions

nodes (i.e. the information sets are singleton sets and so the number of information sets coincides with

the number of decision nodes). For example, in the reduced tree of Figure 3, there are two decision

nodes denoted as B and AB. Individuals at each of these two nodes have complete information about the

resources encountered and can make one of two choices based on this knowledge. The situation is different

in the prey recognition game shown in Figure 6. Here, upon encountering a prey, the predator does not

know the prey type. So, the nodes denoted as Prey 1 and Prey 2 combine to form one information set.

The other decision node denoted Recognized Prey 2 in the reduced tree is a singleton information set

with two choices (i.e. whether or not to attack prey type 2).

Theorem 1 Optimal foraging behavior occurs at one of the vertices of ∆1 × · · · ×∆N .

Proof. Assume that N = 3. We need to show that, for some choice of vertices x∗ ∈ ∆1, y∗ ∈ ∆2 and

z∗ ∈ ∆3, f(x∗, y∗, z∗) ≥ f(x, y, z) for all (x, y, z) ∈ ∆1 ×∆2 ×∆3.

Since f is a continuous function on a compact set, it attains its maximum value at some point

(x∗, y∗, z∗) ∈ ∆1 ×∆2 ×∆3. Suppose that x∗ is not a vertex of ∆1. Then x∗ = (x∗
1, · · · , x∗

m) where 0 <

x∗
j < 1 for at least two different values of j (say j = 1 and 2). Consider f((x∗

1+ε, x∗
2−ε, · · · , x∗

m), y∗, z∗) for

−x∗
1 ≤ ε ≤ x∗

2. Since (x∗
1 + ε, x∗

2 − ε, · · · , x∗
m) ∈ ∆1, f((x∗

1 + ε, x∗
2 − ε, · · · , x∗

m), y∗, z∗) ≤ f(x∗, y∗, z∗) and

so
∂f((x∗

1+ε,x∗
2−ε,··· ,x∗

m),y∗,z∗)
∂ε |ε=0= 0. But f((x∗

1 + ε, x∗
2 − ε, · · · , x∗

m), y∗, z∗) =
P ((x∗

1+ε,x∗
2−ε,··· ,x∗

m),y∗,z∗)
Q((x∗

1+ε,x∗
2−ε,··· ,x∗

m),y∗,z∗)

where P and Q are polynomials that are linear in ε. That is f((x∗
1 + ε, x∗

2 − ε, · · · , x∗
m), y∗, z∗) = aε+b

cε+d

with cε + d > 0 and ∂f
∂ε = ad−bc

(cε+d)2
= 0 for all −x∗

1 ≤ ε ≤ x∗
2. Thus f is a constant function of ε and so

both f((x∗
1 + x∗

2, 0, x
∗
3 · · · , x∗

m), y∗, z∗) and f((0, x∗
1 + x∗

2, · · · , x∗
m), y∗, z∗) equals f(x∗, y∗, z∗) (i.e. f has

its maximum at both these points). Thus (x∗, y∗, z∗) can be replaced by either one of these points and

the process continued until one component of x∗ equals 1 and all the others are 0. That is, x∗ is a vertex

of ∆1. A similar process applied to ∆2 and ∆3 implies that y∗ and z∗ can be taken as vertices of ∆2 and

∆3 respectively.

■

By Theorem 1, to determine the optimal foraging outcome, we can evaluate f at all the vertices

of ∆1 × ∆2 × · · · × ∆N and take the largest of these values. In our models, the corresponding vertex

(or each of the vertices) satisfies the zero-one rule (i.e. either always consume the resource of a given

type in all encounters of this type or never consume it) and corresponds to a pure strategy choice for
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each agent in the N−player agent normal form game that assigns a separate player to each of the N

information sets of the decision tree. As we have seen in the main text, optimal foraging behavior

can also occur when agents use mixed strategies (q1, q2, · · · , qN ) ∈ ∆1 × ∆2 × · · · × ∆N . In sections

Decision trees and the functional response for two prey types and Foraging with simultaneous resource

encounters, only pure strategies can correspond to the optimal behavior for generic parameter values;

whereas section Prey recognition effects illustrates a generic game whose optimal behavior may occur

at mixed strategies. The following Theorem relates the optimal foraging behavior to the solution of

the N−player game. The second part of the theorem introduces the concept of a strict equilibrium

set (SES). By definition [7], E is a SES if it is a set of NE (x∗, y∗, z∗) ∈ ∆1 × ∆2 × ∆∗ such that, if

f(x, y∗, z∗) = f(x∗, y∗, z∗) (respectively, f(x∗, y, z∗) = f(x∗, y∗, z∗) or f(x∗, y∗, z) = f(x∗, y∗, z∗)) for

some (x∗, y∗, z∗) ∈ ∆1 × ∆2 × ∆3 with x ∈ ∆1, y ∈ ∆2 or z ∈ ∆3, then (x, y∗, z∗) ∈ E (respectively,

(x∗, y, z∗) ∈ E or (x∗, y∗, z) ∈ E). The concept of SES generalizes the idea of a strict NE. In fact, if a SES

is a singleton set (i.e. contains exactly one point), then this point is a strict NE. The general concept is

important for optimal foraging, because it includes the situation where, at a critical population density,

the optimal strategy is not uniquely defined. For example, in the case of the classic diet choice model

this happens when the encounter rate of a searching predator with the more profitable prey type is given

by (2).

Theorem 2 (a) If optimal foraging behavior occurs at (q1, · · · , qN ) ∈ ∆1 × · · · ×∆N , then (q1, · · · , qN )

is a Nash equilibrium of the N−player agent-normal form of the optimal foraging game.

(b) The set E of all strategies (q1, · · · , qN ) ∈ ∆1 × · · · ×∆N corresponding to optimal foraging behavior

is a SES of the N−player agent-normal form of the optimal foraging game.

Proof. (a) Assume thatN = 3 and optimal foraging occurs at (x∗, y∗, z∗) ∈ ∆1×∆2×∆3. Since the agent-

normal form has payoff f(x, y, z) for each player when the strategy used by players 1, 2 and 3 are x, y and

z respectively, (x∗, y∗, z∗) is a NE if and only if f(x, y∗, z∗) ≤ f(x∗, y∗, z∗), f(x∗, y, z∗) ≤ f(x∗, y∗, z∗)

and f(x∗, y∗, z) ≤ f(x∗, y∗, z∗) for all (x, y, z) ∈ ∆1 × ∆2 × ∆3. These inequalities are obvious from

f(x∗, y∗, z∗) ≥ f(x, y, z) for all (x, y, z) ∈ ∆1 ×∆2 ×∆3.

(b) It is obvious that E satisfies the conditions of a SES. For example, (x, y∗, z∗) ∈ E when f(x, y∗, z∗) =

f(x∗, y∗, z∗) since (x, y∗, z∗) is then an optimal foraging behavior and so in E by its definition.

■

5



In all three foraging examples considered in the main text, there is a unique SES for every choice of

model parameters. In particular, the suboptimal NE component E′ in the prey recognition game when

recognition time is short is not a SES since all points on the vertical line with qA = 1 in Figure 7(a)

are best response to points in E′ but not all of them are in E′. Thus, optimal foraging behavior is

characterized either by solving for the SES or by finding the asymptotically stable set of NE under the

evolutionary dynamics. The equivalence between these two game-theoretic techniques is not surprising

here given the fact that they are also equivalent for the standard evolutionary dynamics (i.e. the replicator

equation) used in general multi-player extensive form games [7].

In the special case that all predator information sets are at level 2 in the decision tree (e.g. the two

optimal foraging game of section Decision trees and the functional response for two prey types and the

simultaneaous encounter game of section Foraging with simultaneous resource encounters), the following

theorem gives an even closer connection between optimal foraging behavior and Nash equilibrium.

Theorem 3 Suppose that there are no predator decision points that depend on the outcome of predator

choices at previous predator decision points. Then optimal foraging behavior occurs at (q1, · · · , qN ) ∈

∆1 × · · · ×∆N if and only if (q1, · · · , qN ) is a Nash equilibrium of the N−player agent-normal form of

the optimal foraging game. Furthermore, a set E is a SES if and only if it is the set of all strategies

(q1, · · · , qN ) ∈ ∆1 × · · · ×∆N corresponding to optimal foraging behavior.

Proof. These statements are straightforward consequences of the fact

f(q1, q2, · · · , qN ) =
P (q1, q2, · · · , qN )

Q(q1, q2, · · · , qN )

where P and Q are linear polynomials in the components of all the qi (e.g., when N = 2, P (x, y)

has no term of the form x1y1). We remark that this contrasts with the prey recognition game of

section Prey recognition effects where such non-linear terms appear (e.g. from (12), P (qA, qA2) =

p1π1 + p2π2qA + p2π2qA2 − p2π2qAqA2 has the nonlinear term p2π2qAqA2). Specifically, from Theo-

rem 2 above, if (q1, q2, · · · , qN ) is an optimal foraging behavior, it is a NE of the N−player agent-normal

form of the optimal foraging game.

For the converse, assume that (x, y, z) ∈ ∆1 ×∆2 ×∆3 is a NE of a three-player agent-normal form

of the optimal foraging game. Then

P (x′, y, z)

Q(x′, y, z)
≤ P (x, y, z)

Q(x, y, z)
,
P (x, y′, z)

Q(x, y′, z)
≤ P (x, y, z)

Q(x, y, z)
, and

P (x, y, z′)

Q(x, y, z′)
≤ P (x, y, z)

Q(x, y, z)
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for all (x′, y′, z′) ∈ ∆1 ×∆2 ×∆3. Thus

P (x′, y, z)Q(x, y, z) ≤ P (x, y, z)Q(x′, y, z),

P (x, y′, z)Q(x, y, z) ≤ P (x, y, z)Q(x, y′, z),

P (x, y, z′)Q(x, y, z) ≤ P (x, y, z)Q(x, y, z′).

Adding these three inequalities yields

(P (x′, y, z) + P (x, y′, z) + P (x, y, z′))Q(x, y, z)

≤ P (x, y, z) (Q(x′, y, z) +Q(x, y′, z) +Q(x, y, z′)) ,

Since P is linear, P (x′, y, z) + P (x, y′, z) + P (x, y, z′) = P (x′, y′, z′) + 2P (x, y, z). Similarly Q(x′, y, z) +

Q(x, y′, z) + Q(x, y, z′) = Q(x′, y′, z′) + 2Q(x, y, z). Thus, (1) implies that P (x′, y′, z′)Q(x, y, z) ≤

P (x, y, z)Q(x′, y′, z′). That is, P (x′,y′,z′)
Q(x′,y′,z′) ≤ P (x,y,z)

Q(x,y,z) for (x′, y′, z′) ∈ ∆1 × ∆2 × ∆3. That is, (x, y, z)

yields optimal foraging behavior.

The final statement of the theorem is obvious.

■

Foraging with simultaneous resource encounters.

Nash equilibrium strategy (qAB , qB).

The three-player agent normal form of Figure 3 has strategy set ∆1 × ∆2 × ∆3 where ∆1 = {(qA, 1 −

qA) | 0 ≤ qA ≤ 1}), ∆2 = {(qAB , qBA, 1 − qAB − qBA) | 0 ≤ qAB ≤ 1, 0 ≤ qBA ≤ 1 − qAB}) and

∆3 = {(qB , 1− qB) | 0 ≤ qB ≤ 1}).

From (6), τ2 ∂f
∂qA

and τ2 ∂f
∂qAB

are equal to

pAA [πAτs + (pABqBA + pBBqB) (πAτBh − πBτAh)] > 0.

and

pAB [πAτs + (pABqBA + pBBqB) (πAτBh − πBτAh)] > 0.

respectively. In particular, both of these partial derivatives are positive since prey A is the most profitable.

From the first displayed inequality, f(1, qAB , qBA, qB) > f(qA, qAB , qBA, qB) for all 0 ≤ qA < 1. That

is, qA = 1 strictly dominates all other actions of player 1 and so, at a NE, resource A must be consumed

whenever encountered on its own.
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From the second inequality, f(qA, 1− qBA, qBA, qB) > f(qA, qAB , qBA, qB) for all 0 ≤ qAB < 1− qBA.

Thus, a strategy of player 2 whereby a resource is not always consumed at its decision node AB (i.e.

qAB + qBA < 1) is strictly dominated by the strategy (1 − qBA, qBA, 0). It follows from this that

qAB + qBA = 1 at any NE.

That is, optimal foraging emerges from the reduced tree of Figure 3. This is the two-player agent

normal form game with strategy set {(qAB , 1 − qAB) | 0 ≤ qAB ≤ 1} × {(qB , 1 − qB) | 0 ≤ qB ≤ 1} and

common payoff function (7) given by

f(qAB , qB) =
(pA + pABqAB)πA + (pAB(1− qAB) + pBqB)πB

τ

where

τ = τs + pAτAh + pABqABτAh + pAB(1− qAB)τBh + pBqBτBh.

Thus, τ2 ∂f
∂qAB

is equal to

pAB [(πA − πB) τs + (pA + pAB + pBqB) (πAτBh − πBτAh)]

and this is positive if and only if

qB > q∗B =
(πB − πA)τs − (pA + pAB)(πAτBh − πBτAh)

pB(πAτBh − πBτAh)
.

That is, the best response to player 2 is given by (8). Similarly, τ2 ∂f
∂qB

is equal to

pB [πBτs + (pA − pABqAB) (πAτBh − πBτAh)]

and this is negative if and only if

qAB > q∗AB =
πBτs + pA(πAτBh − πBτAh)

pAB(πAτBh − πBτAh)
.

That is, the best response to player 1 is given by (10).

The optimal strategy (qAB , qB) as a function of energy value πB of the less profitable prey

type.

When prey A handling time is shorter than prey B handling time (i.e. τAh < τBh),
πAτBh

τAh
> π∗

B1 >

π∗
B2 > π∗

B3 > π∗
B4.

For 0 < πB < π∗
B4, q

∗
AB < 0 and q∗B < 0 and the optimal strategy is (qAB , qB) = (1, 0) (Figure 4a).

For π∗
B4 < πB < π∗

B3, 0 < q∗AB < 1 and q∗B < 0 and the optimal strategy is (qAB, qB) = (1, 0) (Figure 4b).
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For π∗
B3 < πB < π∗

B2, 1 < q∗AB and q∗B < 0 and the optimal strategy is (qAB , qB) = (1, 1) (Figure 4c). For

π∗
B2 < πB < π∗

B1, 1 < q∗AB and 0 < q∗B < 1 and the optimal strategy is (qAB , qB) = (1, 1) (Figure 4d).

For π∗
B1 < πB < πAτBh/τAh, 1 < q∗AB and 1 < q∗B and the optimal strategy is (qAB , qB) = (0, 1) (Figure

4e).

The Nash equilibria of the prey recognition game

From the main text, the energy intake rate in the prey recognition game of Figure 6 is

f((qA, qR, qM ), qA1, qA2) =
p1π1(qA + qRqA1) + p2π2(qA + qRqA2)

τ

where τ = τs + p1qAτ1h + p1qR(qA1τ1h + τr) + p2qAτ2h + p2qR(qA2τ2h + τr). It is straightforward to show

that f((λqA, 1 − λ, λqR), qA1, qA2) < f((qA, 0, qR), qA1, qA2) for 0 ≤ λ < 1 if qA + qR = 1. Thus, any

strategy (λqA, 1− λ, λqR) of player 1 with 0 ≤ λ < 1 is strictly dominated by (qA, 0, qR) and so qM = 0

at any NE.

Furthermore

τ2
∂f((qA, qM , qR), qA1, qA2)

∂qA1
= p1qR(π1(p1qRτr + τs + p1τs)+

p2(qA + qA2qR)(π1τ2h − π2τ1h) + p2qAπ1τs + p2qRπ1(τr + τs))

is positive if qR > 0 since π1

τ1h
> π2

τ2h
. That is, at a NE, the predator never moves immediately to another

patch if it encounters a prey (i.e. qM = 0) and, if the predator does spend some recognition time (i.e.

qR > 0), then it must attack any prey 1 that it recognizes (i.e. qA1 = 1).

As in the main text, we now look for the NE of the two-player game corresponding to the reduced

tree of Figure 6. Here,

f(qA, qA2) =
p1π1 + p2π2(qA + (1− qA)qA2)

τ

where τ = τs + p1τ1h + p2τ2h(qA + (1− qA)qA2) + (p1 + p2)τr(1− qA). For the best response of player 1

to strategy qA2 of player 2, we calculate the derivative of f with respect to qA as

p2(1− qA2)(p1π2τ1h − p1π1τ2h + π2τs) + τr(p1 + p2)(p1π1 + p2π2)

τ2
.

Since τr > 0, ∂f
∂qA

> 0 if π2/τ2h ≥ p1π1/(p1τ1h + τs) and so any NE then has qA = 1. Furthermore, in

this case, f(1, qA2) = (p1π1 + p2π2)/(p1τ1h + p2τ2h + τs) does not depend on qA2. Thus, every strategy

pair of the form (1, qA2) with 0 ≤ qA2 ≤ 1 is a NE.
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For the remainder of this Appendix, assume

π2/τ2h < p1π1/(p1τ1h + τs). (S2)

Then derivative of f with respect to qA is positive provided qA2 > q∗A2, as in (13). That is, the best

response of player 1 to the strategy qA2 of player 2 is given by (13).

Similarly, the derivative of f with respect to qA2 is

p2(qA − 1)(p2(qA − 1)π2τr + p1(π1τ2h − π2(τ1h + τr − qAτr))− π2τs)

τ2
.

This derivative equals 0 when either qA = 1, or

qA = q∗A = 1− p1π1τ2h − π2 (τs + p1τ1h)

π2(p1 + p2)τr
.

Under (S2), 1 > q∗A and for q∗A < qA < 1 (respectively, 0 ≤ qA < q∗A), the best response of player 2 is

qA2 = 0 (respectively, qA2 = 1) because the derivative is negative (respectively, positive). Finally, when

qA = 1 or qA = q∗A, the derivative of f equals zero and so qA2 can be any value between 0 and 1. This

gives (14).
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