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A Spectral Density Functions J(ω)

Here we present expressions for the spectral density function J(ω) in the Lipari-Szabo (model-free)
formalism, corresponding to various models for the overall rotational diffusion tensor. The most
general is the fully anisotropic model, where all three eigenvalues of the rotational diffusion tensor
are assumed to be different. In the case when two eigenvalues of the diffusion tensor are assumed
to be equal, the fully anisotropic model can be simplified to an axially-symmetric model. Finally,
in the simplest case, when all three eigenvalues are assumed to be equal, a simple isotropic model is
used. The axially-symmetric and isotropic models can be directly derived from the fully anisotropic
model.

A.1 Fully Anisotropic Diffusion Tensor Spectral Density Function

The rotational diffusion tensor is a symmetric 3 × 3 matrix, and can be decomposed using eigen-
decomposition, such that

D = V





Dx 0 0
0 Dy 0
0 0 Dz



VT , (S1)

where Dx ≤ Dy ≤ Dz are the eigenvalues of the diffusion tensor, and V is an orthonormal matrix
of the eigenvectors of D.

We start with the most general case of a fully anisotropic diffusion tensor, with all three eigen-
values, Dx, Dy, and Dz, being different. Assuming that the local motion of a PQ bond can be
described using the extended model-free formalism[1, 2], the spectral density function can be writ-
ten as

J(ω,v,D, τslow , τfast) =
2

5

5
∑

k=1

[

S2
dk(D)ak(v,D)

d2k(D) + ω2
+

(S2

fast − S2)
ek(D, τslow)ak(v,D)

e2k(D, τslow) + ω2
+

(1− S2

fast)
êk(D, τfast)ak(v,D)

ê2k(D, τfast) + ω2

]

,

(S2)

where S2

fast and τfast are the squared order parameter and the corresponding correlation time for

the fast motion, S2

slow and τslow are for slow motion (naturally, τfast ≪ τslow), and the generalized
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squared order parameter is defined as S2 = S2

slowS
2

fast. When only one local motion is present,

usually characterized by the squared order parameter S2 and the (local) correlation time τloc,
the model-free[1] form of the spectral density function can be obtained from Eq. S2, by setting
S2

slow = 1, hence S2 = S2

fast, and renaming τfast as τloc, or, alternatively, by setting S2

fast = 1,

hence S2 = S2

slow, and renaming τslow as τloc.
In Eq. S2 the components independent of the PQ bond are

d1(D) = 4Dx +Dy +Dz,

d2(D) = Dx + 4Dy +Dz,

d3(D) = Dx +Dy + 4Dz ,

d4(D) = 6k3 + 2k4,

d5(D) = 6k3 − 2k4,

ei(D, τloc) = τslow/(diτslow + 1),

êi(D, τfast) = τfast/(diτfast + 1)

k1 = Dy −Dx,

k2 = Dz −Dx,

k3 = (Dx +Dy +Dz)/3,

k4 =
√

k2
1
− k1k2 + k2

2
,

(S3)

the components that depend on the PQ bonds are

a1(v,D) = 3v̄22 v̄
2

3 ,

a2(v,D) = 3v̄21 v̄
2

3 ,

a3(v,D) = 3v̄21 v̄
2

2 ,

a4(v,D) = p1 − p2,

a5(v,D) = p1 + p2,

p1 =
1

4
[3(v̄41 + v̄42 + v̄43)− 1],

p2 =
1

12
[δ1(3v̄

4

1 + 2a1 − 1) + δ2(3v̄
4

2 + 2a2 − 1) + δ3(3v̄
4

3 + 2a3 − 1)],

v̄ = VTv,

(S4)

and the shared components are

δ1 = (−k1 − k2)/k4,

δ2 = (2k1 − k2)/k4,

δ3 = (2k2 − k1)/k4,

(S5)

Note that we reformulated how d4 and d5 were calculated in Ghose et al. [3] to increase numerical
stability.

In the case of a “rigid” bond S2

slowS
2

fast = 1, and Eq. S2 reduces to

J(ω,v,D) =
2

5

5
∑

k=1

dk(D)ak(v,D)

d2k(D) + ω2
. (S6)
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A.2 Axially-Symmetric Diffusion Tensor Model

If two eigenvalues of Dexp are equal, then an axially-symmetric diffusion tensor model can be used
for the computation of Dexp. We label the two equal eigenvalues as D⊥, and the unique eigenvalue
as D‖. The expression for J(ω,v,D) can be simplified greatly from the case of fully anisotropic
diffusion model [3, 4].

Without loss of generality, we simplify the fully anisotropic model for the case when D⊥ =
Dx = Dy and D‖ = Dz. For simplicity, we assume S2

slow, S
2

fast = 1, however the analysis can also
be extended to general order parameters values. In this case the spectral density function for an
axially-symmetric diffusion model can be written as:

J(ω,v,D) =
2

5

3
∑

k=1

d̂k(D)âk(v,D)

d̂2k(D) + ω2
, (S7)

where the components independent of the PQ bonds are

d̂1(D) = 5D⊥ +D‖,

d̂2(D) = 2D⊥ + 4D‖,

d̂3(D) = 6D⊥,

(S8)

the components dependent on the PQ bonds are

â1(vi,D) = 3v̄23(1− v̄23),

â2(vi,D) =
3

4
(1− v̄23)

2,

â3(vi,D) =
1

4
(3v̄23 − 1)2,

v̄ = VTv.

(S9)

A.3 Isotropic Diffusion Tensor Model

If all three eigenvalues of the diffusion tensor are equal, a simple isotropic diffusion tensor model
can be used. We label the eigenvalue as Dc. Note that now d̂1 = d̂2 = d̂3 = 6Dc. From Eq. S7 we
have:

J(ω,v,D) =
2

5

τc

1 + (ωτc)
2
, (S10)

where τc = 1/(6Dc).

B Default CSA Values

The default CSA values used in ROTDIF are given in Table S1.
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Table S1: Default Chemical Shift Anisotropy (CSA) values.

Bond Type Molecule Nucleus CSA (ppm)

N-H Protein 15N 160
N1-H1 RNA 15N 130
N3-H3 RNA 15N 95
Cα-Hα Protein 13C 30
C′

1-H
′

1 RNA 13C 29
C2-H2 RNA 13C 150
C′

2-H
′

2 RNA 13C 23.1
C′

3-H
′

3 RNA 13C 83
C′

4-H
′

4 RNA 13C 79.5
C5-H5 RNA 13C 170
C′

5-H
′

5 RNA 13C 55.5
C′′

5 -H
′′

5 RNA 13C 55.5
C6-H6 RNA 13C 180
C8-H8 RNA 13C 140
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C ROTDIF Algorithms

Below we describe the algorithms for solving all three diffusion tensor models. Note that our
algorithms use a nonlinear least-squares function “lsqnonlin(χ2(x),x0)”, that we define as a generic
convex nonlinear least-squares solver.

Algorithm S1 rotdifIso

Input: ρexp, σi – defined in Eq. 9.
Output: Dexp – the experimental diffusion tensor.
1: for all bonds do
2: τ ic ← solution from Eq. 11.
3: end for

4: Diso ← 1/ [6〈τc〉] , {where 〈τc〉 is the mean of all the τc values for all bonds.}

5: x0 ←





Diso 0 0
0 Diso 0
0 0 Diso





6: Dexp ← lsqnonlin(χ2(∅,x),x0) {∅ represents the fact that the first parameter v in χ2 in Eq. 9
is not used in the isotropic model.}

7: return Dexp
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Algorithm S2 rotdifAxi

Input: ρexp, σi – defined in Eq. 9 and v – array of the normalized PQ vectors, where vi is
associated with ρexpi .

Output: Dexp, the experimental diffusion tensor.
1: Diso ← rotdifIso(ρexp)
2: D̂← Diso

3: Dexp ← Diso

4: for oblate and prolate case do

5: {Switch between the prolate and oblate cases. The first eigenvalue changes from being D‖

to D⊥.}
6: if prolate case then

7: D̂x = D̂y = 0.75Diso, D̂z = 1.25Diso

8: else if oblate case then

9: D̂x = 0.75Diso, D̂y = D̂z = 1.25Diso {oblate case}
10: end if

11: for α = 0, π/2 do

12: for β = 0, π/2 do

13: x0 ← R(α, β, 0)D̂RT (α, β, 0)
14: x∗ ← lsqnonlin(χ2(v,x),x0)
15: if χ2(v,x∗) < χ2(v,Dexp) then
16: Dexp ← x∗

17: end if

18: end for

19: end for

20: end for

21: return Dexp
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Algorithm S3 rotdifAni

Input: ρexp, σi – defined in Eq. 9 and v – array of the normalized PQ vectors, where vi is
associated with ρexpi .

Output: Dexp, the experimental diffusion tensor.
1: Diso ← rotdifIso(ρexp)

2: D̂← Diso

3: Dexp ← Diso

4: D̂11 ← .75Diso, D̂22 ← Diso, D̂33 ← 1.25Diso {Move away from the isotropic case.}
5: for α = 0, π/2 do

6: for β = 0, π/2 do

7: for γ = 0, π/2 do

8: x0 ← R(α, β, γ)D̂RT (α, β, γ)
9: x∗ ← lsqnonlin(χ2(v,x),x0)

10: if χ2(v,x∗) < χ2(v,Dexp) then
11: Dexp ← x∗

12: end if

13: end for

14: end for

15: end for

16: return Dexp
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