SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Inhibition of Cdk1 arrests cells in G2 with disengaged centrioles

A. Quantification of centriole disengagement in pre-synchronised HeLa, U2OS and RPE1-hTERT cells with and without RO-3306 treatment. **B**. Flow cytometry of HeLa, U2OS and RPE1-hTERT cells that were asynchronous (AS), treated with aphidicolin alone for 16 hours, or pre-synchronised as in the Materials and Methods and treated with RO-3306 for 16 hours. **C**. Quantification of centriole disengagement in HeLa cells pre-synchronised with aphidicolin then treated with roscovitine for 16 hours. **D**. Quantification of centriole disengagement in mock, GAPDH and Cdk1 depleted HeLa cells. **E** and **F**. Western blot analysis with antibodies indicated from mock, GAPDH and Cdk1 depleted HeLa cells. Data in A, C and D show means \pm sd; n=3, >100 cells counted.

Figure S2. Plk1 is required for centriole disengagement during G2 arrest

A. Immunofluorescence microscopy of pre-synchronised HeLa cells treated with RO-3306 and BI 2536 for 16 hours, and stained for γ -tubulin (red) and centrin (green). **B.** Immunofluorescence microscopy of HeLa cells transfected with myc-Plk1-T210D or myc-Plk1-K82R and treated with RO-3306 and MLN 8054 for 16 hours following pre-synchronisation. Cells were stained with antibodies against myc (green) and C-Nap1 (red). Merge panels include DNA stained with Hoechst (blue). Scale bars, 10 µm.

Figure S3. Plk1 can promote APC/C-independent centriole disengagement in G2 arrested cells

A. HeLa cells were mock, GAPDH or securin depleted by RNAi whilst also, where indicated, transfected with myc-separase. After 12 hours, cells were synchronised, released and treated with RO-3306 alone or plus BI 2536. Cell lysates were prepared and Western blotted for securin, myc and α -tubulin. **B**. HeLa cells were mock-depleted or depleted of GAPDH or separase by RNAi and transfected with myc-separase-WT or RNAi-resistant separase (myc-separase-Res) as indicated. After 12 hours, cells were pre-synchronised with aphidicolin and then treated with RO-3306 for 16 hours. Cell lysates were prepared and Western blotted for myc, separase, GAPDH and α -tubulin. An N-terminal autocatalytic cleavage product of separase (<),

seen below the full-length myc-tagged separase (*), indicates activity of this construct in RO-3306 treated cells. C. HeLa cells were mock-depleted cells or cells depleted of Cdc20 or separase and transfected as indicated. After 12 hours, cells were synchronized and released without RO-3306 for 6 hours, or with RO-3306 for 16 hours. Cell lysates were prepared and Western blotted for Cdc20, separase, Plk1 and α -tubulin. **D**. HeLa cells were mock-depleted cells or cells depleted of Cdh1 or APC3 and transfected as indicated. After 12 hours, cells were synchronized and released without RO-3306 for 6 hours, or with RO-3306 for 16 hours. Cell lysates were prepared and Western blotted for APC3, Cdh1, Plk1 and α -tubulin.

Figure S4. Disengagement in response to RO-3306 is not a consequence of DNA damage

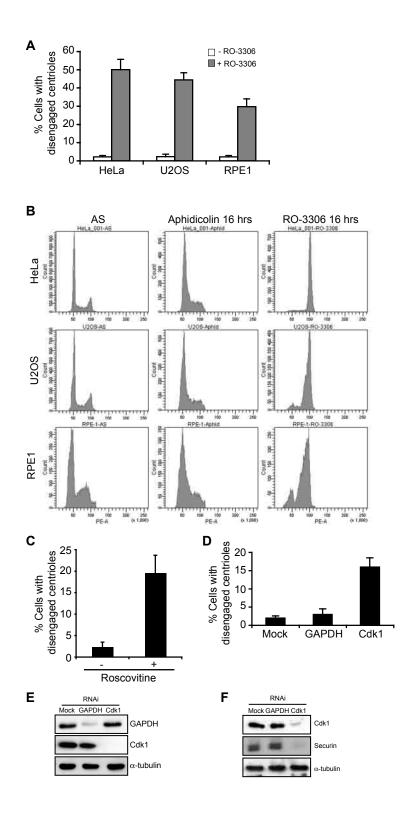
A. HeLa cells were synchronised by 16 hour aphidicolin treatment and 4 hour release then either left untreated or irradiated (5 Gy). Non-irradiated cells were fixed immediately, whilst irradiated samples were fixed 20 hours after IR treatment. Cells were stained for γ H2AX. Scale bar, 10 μ m. **B**. Immunofluorescence microscopy of HeLa cells treated with aphidicolin for 16 hours, released for 4 hours, then treated with RO-3306 for 16 hours, or treated with RO-3306 only for 16 hours. Cells were stained for γ -tubulin (green) and γ H2AX (red). Merge panels include DNA stained with Hoechst (blue). Scale bar, 10 μ m. **C**. Quantification of γ H2AX foci staining in HeLa cells following treatment as in B. **D**. Comparison of centriole disengagement in HeLa cells treated with RO-3306 for 16 hours or pre-synchronised with aphidicolin then treated with RO-3306 in those cells with or without γ H2AX foci. Data in C and D are shown as mean +/- sd for three independent experiments in which at least 100 cells were counted.

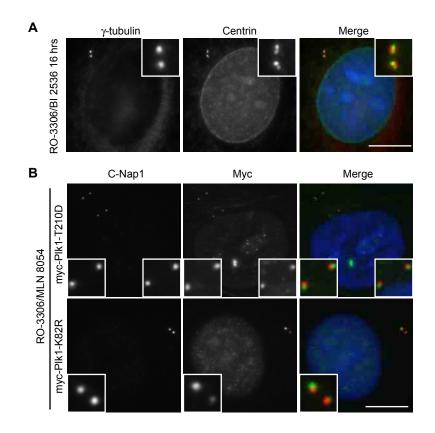
Figure S5. Depletion of proteins in IR treated samples

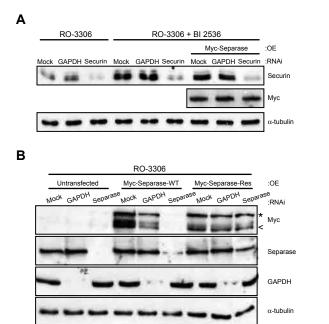
HeLa cells were mock, GAPDH, APC3, Cdc20, Cdh1, Separase or Emi1 depleted by RNAi whilst also, where indicated, transfected with myc-Plk1-T210D. After 12 hours, cells were synchronised, released for 4 hours and then irradiated. Cell lysates were prepared 20 hours post-IR and Western blotted for the proteins indicated.

Figure S6. Mitotic consequences for cells released from RO-3306 arrest

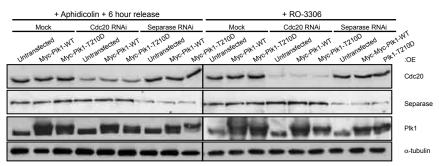
A. Immunofluorescence microscopy of metaphase cells following 1 hour washout from 16 hours RO-3306 treatment. Upper panels show DNA stained with Hoechst (blue in merge). Merge panels include γ -tubulin (green) and α -tubulin (red) antibody staining. **B**. Immunofluorescence microscopy of anaphase cells following 2 hour washout from 16 hours RO-3306 treatment. Images show DNA stained with DAPI. Merge panels include α -tubulin (red) antibody staining. **C**. Immunofluorescence microscopy of interphase cells following 20 hour washout from 16 hours RO-3306 treatment. Images show DNA stained with Hoechst. Merge panels include α -tubulin (red) antibody staining. Scale bars, 10 µm.

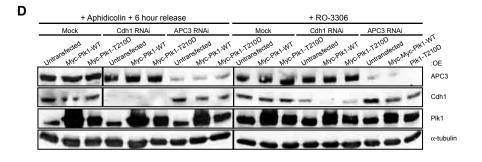

Movie S1. HeLa: α -tubulin-GFP cells were treated with aphidicolin for 16 hours before release into fresh media. After 4 hours, imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell undergoing a bipolar division.

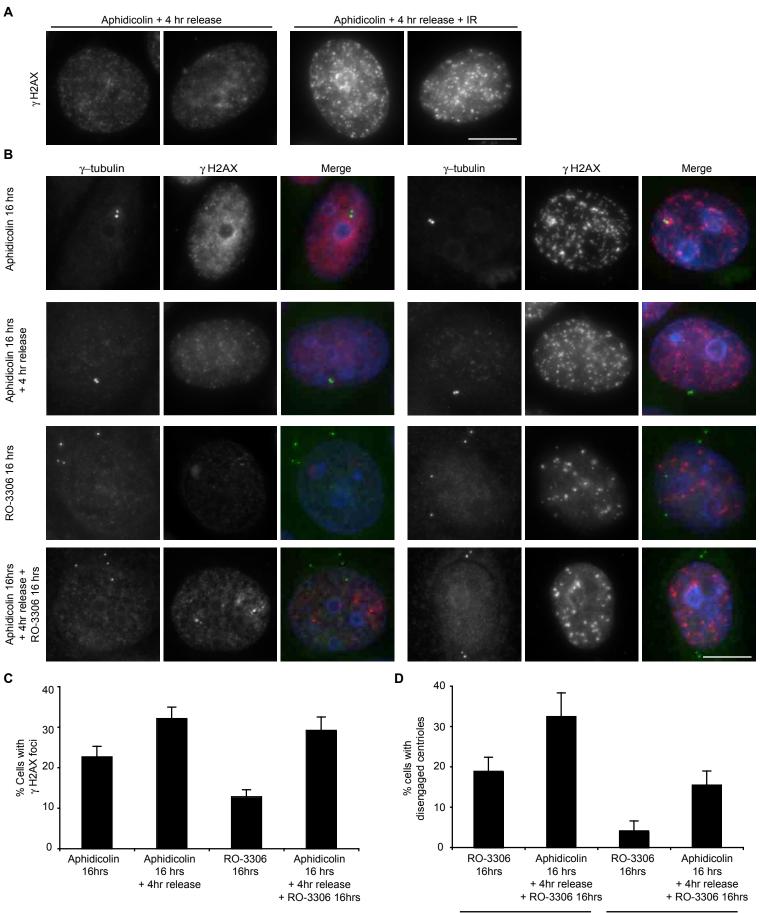

Movie S2. HeLa: α -tubulin-GFP cells were treated with aphidicolin for 16 hours before release into fresh media. After 4 hours, imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell undergoing a bipolar division.

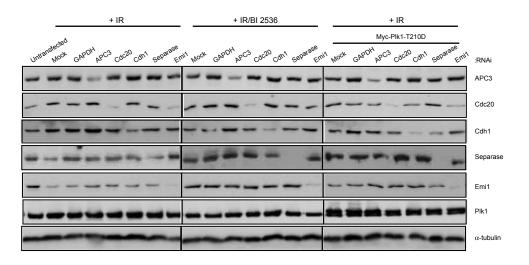

Movie S3. HeLa: α -tubulin-GFP cells were pre-synchronised and treated with RO-3306 for 16 hours. RO-3306 was washed out and imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell that initially forms a bipolar spindle, which then rapidly becomes tripolar, then tetrapolar. Eventually the two 'spare' poles move to one end of the cell as it undergoes a bipolar division.

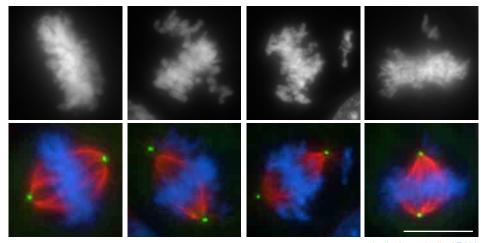
Movie S4. HeLa: α -tubulin-GFP cells were pre-synchronised and treated with RO-3306 for 16 hours. RO-3306 was washed out and imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell that initially looks like it will have two spindle poles but forms a tripolar spindle, which becomes tetrapolar, before the cell undergoes a tripolar division. **Movie S5.** HeLa: α -tubulin-GFP cells were pre-synchronised and treated with RO-3306 for 40 hours. RO-3306 was washed out and imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell initially forming a tetrapolar spindle, but later undergoing a tripolar division.


Movie S6. HeLa: α -tubulin-GFP cells were pre-synchronised and treated with RO-3306 for 40 hours. RO-3306 was washed out and imaging commenced with a z-stack acquired every 5 minutes. Movie is a maximum intensity projection of a cell initially forming a tetrapolar spindle, but later undergoing a tripolar division.

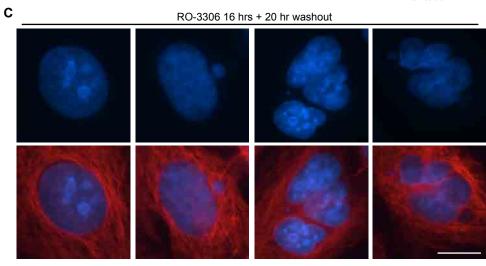







No γ H2AX foci

γ H2AX foci


Α

 γ -tubulin / α -tubulin / DNA

RO-3306 16 hrs + 2 hr washout

 α -tubulin / DNA

α-tubulin / DNA