Primary Antibody	Dilution	Source	
Mouse anti-insulin	1:1500	Sigma, Saint Louis, Missouri, USA	
Guinea pig anti-insulin	1:50	Zymed, San Francisco, CA, USA	
Mouse anti-glucagon	1:2000	Sigma, Saint Louis, Missouri, USA	
Rabbit anti-Ki67	1:200	Abcam Inc.Cambridge,MA,USA	
Rabbit anti-PDX-1	1:5000 ^a	Dr.Wright, University of Vanderbilt, USA	
Guinea pig anti-PDX-1	1:2000	Dr.Wright, University of Vanderbilt, USA	
Mouse anti-phospho Akt (Ser473)	1:2000 ^a	Cell Signaling Boston, MA, USA	
Rabbit anti-Akt	1:3000 ^a	Cell Signaling Boston, MA, USA	
Rabbit anti-phospho GSK3β (Ser9)	1:2000 ^a	Cell Signaling Boston, MA, USA	
Rabbit anti-phospho GSK3β (Y216)	1:2000 ^a	Abcam Inc.Cambridge,MA,USA	
Rabbit anti-GSK3β	1:2000 ^a	Cell Signaling Boston, MA, USA	
Mouse anti-Cyclin D1	1:2000 ^a	Cell Signaling Boston, MA, USA	
Mouse anti-Calnexin	1:2000 ^a	BD Biosciences Mississauga, ON Canada	
Mouse anti-β-actin	1:5000 ^a	Sigma-Aldrich; Oakville, ON, CA	

Supplementary Table 1. List of antibodies used for immunofluorescence and western-blot analyses.

^adilution factor applied for western blot analysis.

Primer	Accession &	Primer Pair Sequence 5'-	Location	Fragment	
Name	Definition	efinition 3' (<i>Sense/Antisense</i>)		Size(bp)	
CyclinD1	NM 007631.2	CTG TGC GCC CTC CGT ATC TTA	343-363	294	
(Cend1) [NM_007031]	INIM_007031.2	TCG GGC CGG ATA GAG TTG TCA	636-616		
Insulin I NM	NM 0083863	TGT TGG TGC ACT TCC TAC CC	191-210	266	
	INM_008380.3	ATC CAC AAT GCC ACG CTT CT	456-437		
Insulin II NM_00	NIM 009297 2	GCA GCA CCT TTG TGG TTC CC	154-173	208	
	INIM_008387.5	GCA GCA CTG ATC TAC AAT GCC	361-341	200	
Mafa NM_1943	NIM 104250 1	AGC GCT TCT CCG ACG ACC AG	692-711	295	
	INM_194550.1	GGC CCG CCA ACT TCT CGT AT	976-957	203	
Pdx1 NM_008814.2	CCA CCC CAG TTT ACA AGC TCG	252-272	224		
	INM_000814.2	GTA GGC AGT ACG GGT CCT CT	575-556	524	
18S	ND 002279 1	GTA ACC CGT TGA ACC CCA TTC	1577-1597	151	
	INK_005278.1	CCA TCC AAT CGG TAG TAG CG	1727-1708	131	

Supplementary Table 2. Sequences of primers used in real-time PCR

Supplemental Fig. S1: Western blot analysis of phosphorylated (P) Akt T308 and Gsk3 β Y216, total (T) Akt and Gsk3 β protein level in the isolated islets of *c*-*Kit*^{+/+} and *c*-*Kit*^{Wv/+} male mice at 8 week of age. Representative blots are shown. Data are normalized to either total Akt or Gsk3 β protein and expressed as means ± SEM (*n*=3 per experimental group)

Supplemental Fig. S2: Immunohistochemical staining for Mafa (red) of *c*-*Kit*^{+/+}/*saline*, *c*-*Kit*^{+/+}/1-*AKP*, *c*-*Kit*^{Wv/+}/*saline*, and *c*-*Kit*^{Wv/+}/1-*AKP* mice pancreatic section. An increased Mafa staining intensity was observed in the islet of *c*-*Kit*^{Wv/+}/1-*AKP* mice when compared to *c*-*Kit*^{Wv/+}/*saline* treated mice. No counterstaining was applied and nuclei are white transparent. Original magnificant 400x

c-Kit^{+/+}

c-Kit^{Wv/+}

Fig. 2 for review only: Immunofluorescence staining for Wnt3a and Wnt5a (green) of *c*- $Kit^{+/+}$ and *c*- $Kit^{Wv/+}$ mice pancreatic section. A similar staining intensity was observed in the islet of *c*- $Kit^{+/+}$ and *c*- $Kit^{Wv/+}$ mice. Original magnificant 400x

For review only

71st Scientific Sessions

Document ID: 2751ADA11D1

Improved β -cell proliferation and function in *c*-Kit^{Wv/+};Fas^{lpr/lpr} double mutant mice

Zhi Chao Feng^{1,2}, Matthew Riopel^{1,3}, Jinming Li^{1,2}, Lisa Donnelly¹, Rennian Wang^{1,2,4}

Children's Health Research Institute¹, Departments of Physiology/Pharmacology², Department of Pathology³, Medicine⁴, The University of Western Ontario, London, ON, Canada

Understanding the molecular mechanisms that control the balance between proliferation and death of pancreatic *β*-cells has important implications for diabetes. c-Kit receptor and its ligand, stem cell factor, are important for β -cell survival and maturation while Fas (CD95) is a member of the tumor necrosis factor receptor family capable of triggering β-cell apoptosis. Our previous *in vivo* studies of c-Kit deficient (c-Kit^{WV/+}) male mice have determined that disruption of c-Kit receptor signaling leads to a severe loss of β-cell mass and function with a significant increase in Fas expression and cell apoptosis. This led us to hypothesize that activation of the c-Kit receptor signaling regulates β -cell survival by down-regulating the Fas-mediated cell death cascade. Using a double (c-*Kit^{Wv/+}:Fas^{lpr/lpr}*) mutant mouse model, we found that *c-Kit^{Wv/+}:Fas^{lpr/lpr}* male mice displayed a significant improvement in fasting blood glucose levels (p<0.01) and glucose tolerance (p<0.05) when compared with $c-Kit^{Wv/+}$: Fas^{+/+} mice. Glucosestimulated insulin secretion tests *in vivo* revealed that *c-Kit^{Wv/+}:Fas^{lpr/lpr}* mice also displayed improved β -cell function and increased β -cell proliferation (p<0.001) that was associated with increased islet number and β -cell mass. These c-Kit^{Wv/+}:Fas^{lpr/lpr} mice also showed a significant increase in insulin and Pdx-1 mRNA expression when compared to $c-\breve{Kit}^{Wv/+}$: Fas^{+/+} mice. Taken together, these results demonstrate that down-regulation of the Fas pathway in c-Kit-deficient mice results in improved β -cell survival and function. This study shows that cross-talk between the c-Kit and Fas signaling pathways is critical for the regulation of β -cell mass and function.