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ABSTRACT A similarity principle is formulated according to
which the statistical pattern of the pelagic population is identical
in all scales sufficiently large in comparison with the molecular
one. From this principle, a power law is obtained analytically for
the pelagic animal biomass distribution over the animal sizes. A
hypothesis is presented according to which, under fixed external
conditions, the oxygen exchange intensity of an animal is governed
only by its mass and density and by the specific absorbing capacity
of the animal's respiratory organ. From this hypothesis a power
law is obtained by the method of dimensional analysis for the ex-
change intensity mass dependence. The known empirical values
of the exponent of this power law are interpreted as an indication
that the oxygen-absorbing organs of the animals can be repre-
sented as so-called fractal surfaces. In conclusion the biological
principle of the decrease in specific exchange intensity with in-
crease in animal mass is discussed.

We consider in the present paper the power laws established
empirically by biologists for the animal biomass distribution of
the poikilothermic pelagic animals over their sizes:

F = dB/dW = Const W- [1]
in which W pC' is the mass of the animal, p is the animal's
body density, e is a characteristic size of the animal, and a is
a dimensionless constant; and for the mass dependence of the
animal exchange intensity R (oxygen mass absorbed by an an-
imal per unit time):

R = AWk [2]

in which A and k are constants. The biologists were interested
for a long time (see ref. 1 for a review) in understanding whether
the power laws such as Eqs. 1 and 2 are only convenient ap-
proximations of the empirical data or reveal some deep general
laws of nature.

It is shown in the present paper that these laws can be de-
duced in a precise mathematical way from certain simply for-
mulated general principles. Similarity methods and dimen-
sional analysis are used for these considerations. These methods
were used earlier in other biological problems (see, for in-
stance, refs. 2 and 3). We use them here, however, in a com-
pletely different aspect.

BIOMASS DISTRIBUTION OVER THE RANGE OF
ANIMAL WEIGHTS

The power law of biomass distribution over the animal weights
(4, 5) is8proved to be valid in a wide range of weights: from 10-6
g to 10 g. We suppose that this law can be considered as one
of the manifestations of the following general principle of pe-
lagial biology: the statistical pattern of the pelagial population
is identical in all scales that are large in comparison with mo-
lecular ones. This exclusion of molecular scales is necessary for
the following reasons. The molecular processes can be of great
significance in the nutrition of the smallest organisms. Due to

the existence of a united trophic chain, these molecular pro-
cesses can influence the total biomass, fFdW, but not the con-
tribution to it of sufficiently large animals, FdW. A direct con-
firmation of this principle for the benthos can be found in ref.
6.

According to the similarity principle just formulated, there
exists no distinguished weight scale WO in the whole range of
not-too-small animal masses W. Consequently, for two arbitrary
masses from the similarity range, W1 and W2, the ratio F(W2)/
F(W1) can depend on the ratio W2/W1 only. If such a distin-
guished mass scale WO were to exist, then the ratio F(W2)/F(W1)
should depend on the location of the masses W1 and W2 with
respect to the distinguished mass scale-i.e., should depend on
an additional argument W1/Wo. Consequently, for three ar-
bitrary masses W,, W2, W3 from the similarity range, the re-
lationships are valid:

F(W2) _ W(w
=() tW77

F(W3) _ W3
F(W1) t1

F(W3) IW3y
F(W2) P

'

[3]

in which 'p is the same function for all three relationships. Di-
viding the second relationship 3 by the first one, we obtain in
the left-hand side F(W3)/F(W2); equating the right-hand sides
of the relationship obtained and of the third relationship 3, we
obtain a functional equation for the function':

'(dy)/'(ix) = '(dy/x). [4]
We denote here x = W2/W1, y = W3/W1. Differentiation

of both sides of Eq. 4 with respect to y and then setting y =
x, we obtain for the function p a simple differential equation:

v'(x)/p(x) = -a/x; a = -(p'(l). [5]
Integrating Eq. 5 and using the obvious condition 'p (1) = 1,

we obtain (P(x) = xG. After substitution of the last expression for
the function p into the first relationship 3 we obtain denoting
W2 simply by W:

F(W) = [F(W1)Wf]W-a = Const W-¶. [6]
Thus, power law 1 is deduced analytically from the above

formulated similarity principle. Note that the empirical data
show that the constant a is close to unity. Therefore, we obtain
the expression B ln(W/WO) for the total biomass in which WO
is a characteristic mass scale governed by the phenomena out-
side the similarity range-for instance, by the nutrition pro-
cesses of the smallest organisms. So, a direct application of the
similarity principle to the total biomass cannot lead to a con-
structive result.
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EXCHANGE INTENSITY
Let us turn now to the property of one of the basic biological
processes: the exchange intensity R. Each animal possesses a
respiratory organ that absorbs the oxygen (although the avail-
able information concerning these organs is surprisingly scanty
for many pelagic animals). At first sight (as we shall see later,
the situation is in fact much more complicated) the oxygen-ab-
sorbing part of the organ could be approximated by a line (if,
for instance, the organ has many whiskers), by a surface, or by
a volume (containing, like a kidney, many small absorbing balls
surrounded by pores). The organ can be characterized by some
specific absorbing capacity (3n i.e., at first sight, correspond-
ingly, by the absorbing capacity of a unit length (n = 1), unit
area (n = 2), or unit volume (n = 3). Specific absorbing capacity
can depend, of course, on the external conditions: temperature
and composition of the ambient water (oxygen saturation, pH,
salinity, etc.), time of day, and movement speed of the animal.
Our basic hypothesis is the following: under fixed external

conditions, the exchange intensity R is governed only by spe-
cific absorbing capacity 3,,, the animal body mass W, and its
density.

Let us apply dimensional analysis to the problem under con-
sideration. The dimensions [R] of the exchange intensity are
the dimensions of the oxygen mass [Mi02] divided by the time
dimensions T:

[R] = [mo2] Ta'. [7]-
Furthermore, as we showed previously, the dimensions of

specific absorbing capacity are

[a~n] = [R] L-n [8]
in which L are the length dimensions. Indeed, if, for instance,
the oxygen is absorbed by a surface, then the specific absorbing
capacity is the absorbing capacity of the unit area, etc. Fur-
thermore, the body mass dimensions are [W] = M and density
dimensions are [p] = ML-3 where M are the mass dimensions.
Therefore, the quantity (W/p)'13 has the length dimensions, so
from Eq. 8 the quantity ,Bn(W/p)"/3 has the dimensions of R.
Thus, the quantity

1I = R/J3n(W/p)n/3 [9]

is dimensionless. Being dimensionless, the quantity H remains
invariant under the variation of basic measurement units. Let
us note now that the units of measurement of (3n, W, and p are
independent. Therefore, changing each one of these quantities
arbitrarily by changing its measurement unit can leave the two
other governing parameters invariant. Because HI remains in-
variant also, it appears that H does not depend on 8,n or on W
and p. Thus, the quantity HI is constant, so we obtain

R = Const (n3 pn/3Wn/3. [10]

Denoting A = Const (Sn p-n/3, k = n/3 we reduce relation-
ship 10 to the form of Eq. 2. Thus, relationship 2 is obtained
analytically from the basic hypothesis formulated above.
The exchange intensity mass dependence power law 2 was

established empirically for the warm-blooded animals in the last
century [see the review by Wienberg (1)]. It was obtained in
1950s for crustaceans with k 0.75 and also for fishes with av-
erage k 0.8. The empirical data for various cold-blooded pe-
lagic animals were summarized by Hemmingsen (7) for a huge
mass range from 10-6 g to 108 g. From the average of all data,
Hemmingsen obtained the power law of the form of Eq. 2 with
k 0.75. As Wienberg stressed in his review (1), the exponents
of the power law show some difference for various animal spe-
cies. So, according to Wienberg (8) k 0.7 for cyprinodont fishes,

k 0.75 for Salmonidae, k 0.8 for Cyprinidae and Acipen-
serida, and k 0.85 for carp. According to a review in the pa-
per by Musaeva and Shushkina (9) in the western part of the
Pacific, for instance, at 28-300C, k 0.35 for ctenophores, k

0.5 for medusas, k 0.7 for calanoids and pteropods, k
0.8 for chaetognaths, k 0.85 for euphausids, k 0.95 for
siphonophores, and k is about unity for hyperuids. It should be
noted however that the values of k presented are to be con-
sidered as preliminary ones only; the study of the interspecies
variability of the exponent values requires more detailed in-
vestigations with possible data reduction to uniform conditions
and good statistics.

FRACTALITY OF THE RESPIRATORY ORGANS
It is essential that the measured values of the exponent k be
mainly within the range between k = 2/3 (absorption by a sur-
face) and k = 1 (absorption in a volume), so that the dimension
n of the respiratory organ n = 3k, appears to be (cf. the formula
10) not an integer number. It appears to be mainly >2 but <3
(for instance, n = 2.4 for Acipenseridae). This fact can be con-
sidered as established reliably, independently of the usual nat-
ural scatter of the experimental data. We interpret this fact in
the following way: the oxygen-absorbing organs of the animals
can be approximated by fractal surface with fractal (Hausdorf)
dimension n = 3k > 2.
Remember that fractals are defined (10) as surfaces that are

continuous but have very broken form. For them the total areas
S', of all faces of the polyhedrons inscribed into them-for in-
stance, composed from equilateral triangles with the side length
7,-do not tend to a finite limit at q -- 0-i.e., at unbounded
decrease of face areas. In fact S,7 tend to infinity according to
a power law

svK 0 2-3k Ni13k [11]
Here N is the number of the inscribed polyhedron faces and or
is, to within a constant factor, the so-called Hausdorf measure
of the fractal surface. In other words, the areas of these geo-
metric objects are infinite and the volumes are equal to zero;
however, they possess a finite peculiar intermediate charac-
teristic, the Hausdorf measure, having the dimension of length
to a noninteger degree. Such objects were studied intensively
by the mathematicians of the end of the last century and the
beginning of the present one. The majority of scientists found
them to be mathematical monsters having no applications to
real problems of natural sciences. In fact, this is not so. The
revival of interest in such objects, and especially the recog-
nition of their importance in applications, is due to the work of
B. B. Mandelbrot and especially to a remarkable monograph-
essay (10). The very term "fractal" was proposed by Mandel-
brot. Because the surface of the respiration organ is a fractal
one, the specific absorbing capacity of this organ (3, is to be
related not to its area, which is infinite, but to its Hausdorf
measure. Therefore, the noninteger power of length appears in
the dimensions of 3,,:

[fi8n] = [R] L 3
We observed here in living organisms the transition from

usual two-dimensional surfaces to fractal ones with the Haus-
dorfdimensions n = 3k> 2. We think that it can be considered
as revealing a general tendency of biological systems to accom-
modate the membranes of maximal area within minimal vol-
umes; apparently, this tendency reaches to molecular levels.
These considerations are in agreement with the results of area
measurements (rather than Hausdorf measures) of fish bran-
chia, available, for instance, in Klyashtorin's book (11). The
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branchia of teleost fishes consist of branchial arcs. From each
of these arcs, coupled gill filaments come off, contracting to
their ends and possessing multiple transverse secondary plates
(having thickness 10-15 Aum and height 150-200 gum). These
plates are covered by a dense network of capillary vessels. The
dependence of branchial area or on the fish mass is described
also by a power relationship

a= aW'

analogous to Eq. 2. For sea fishes x is about 0.82 on the average
(for Micropterus dolomien, x 0.78; for tuna x = 0.85-0.90).
The fact that x exceeds 2/3 can be considered as an indication
of the approximation of branchia by fractal surfaces.

If rather rare values of the exponent k in the law 2 falling
within the range 1/3 < k < 2/3 can be considered as reliable
ones for some animal species, it can be interpreted as an in-
dication of the fact that for these animals the oxygen-absorbing
organs are approximated by fractal lines rather than fractal sur-
faces with the dimension n = 3k within the range 1 < n < 2.
It means that the total length L,, of the broken lines with the
size lengths vj inscribed into these continuous curves tend, at
i1-- 0, to infinity according to a power law L,, - A ii'-n (so that
N'q --> A, where N is the number of the sides of the broken
line and A is the Hausdorfmeasure of the fractal line). The known
form of the copepods with their multiple hair-like whiskers cov-
ering all articulations resembles such a possibility.

ON THE PRINCIPLE OF THE DECREASE IN
SPECIFIC EXCHANGE INTENSITY WITH

INCREASE IN ANIMAL MASS
By specific exchange intensity we understand, as usual, the ex-
change intensity of an animal per unit of its mass: I = R/W.
According to Eq. 10 we have

I = Const fnP -n/3 W(n-3)/3 [13]
Because the values of n are always <3 (the oxygen absorp-

tion cannot be more than volume related) it follows from the
last relationship that the specific exchange intensity of an an-
imal is decreasing as its mass grows. This general principle is
well known to biologists [an impressive discussion of this prin-
ciple can be found in Wienberg's review (1)]. This principle is
explained by one completely general reason-the geometric di-
mensions of the respiratory organ cannot exceed the dimen-
sions of the animal body.

For some clarification of this important point let us consider
an imaginary animal for which this principle is not valid. This
animal-we called it "mamot"-is designed in the following way.
Its body consists of a very dense film, like the body of the flat-
fish; however, its respiratory organ is usually branchia situated
on the sides of the animal. The width of a growing animal, as
well as its branchia, increases but the thickness of its film-body
does not change. It is obvious that obtaining the relationships
of type 10 for the mamots we have to introduce into the con-
sideration the surface density Ps instead of the usual volume
density p; the dimensions of surface density are [ps] = ML-2.
Repeating the same arguments as earlier, we obtain in this case,
R n/2

R = ConstBnX
PS

I = Const n pos-n/2W(n-2)/2. [14]
It is clear that, since n > 2, the specific exchange intensity

is growing, not decreasing, with mamot's mass growth. The
general validity of the principle of the specific exchange in-
tensity decreasing with animal mass growth is due to the non-
existence of such mamots.
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