Comparison of genotype clustering tools with rare variants

Additional Materials

Lemieux Perreault L.-P., Legault M.-A., Barhdadi A., Provost S., Normand V., Tardif J.-C. and Dubé M.-P.

Supplemental Equation 1 - Error rate for rare markers

The genotypic model for error rate estimation was tested by Liu *et al.* for common variants only. However, we found that the possible values of ϵ were out of bound (*i.e.* negative or above one) for a majority of rare markers. For those cases, ϵ was approximated using $\epsilon \simeq (C_1 - C_3 + 1)/3$, as described below.

$$C_1 = p_1^2 (1 - 2\epsilon) + 2p_1 p_2 \epsilon + p_2^2 \epsilon$$
 (S1)

$$C_{3} = p_{1}^{2}\epsilon + 2p_{1}p_{2}\epsilon + p_{2}^{2}(1-2\epsilon)$$
(S2)

$$C_{1} - C_{3} = p_{1}^{2}(1 - 2\epsilon) + 2p_{1}p_{2}\epsilon + p_{2}^{2}\epsilon - p_{1}^{2}\epsilon - 2p_{1}p_{2}\epsilon - p_{2}^{2}(1 - 2\epsilon)$$

$$= p_{1}^{2}(1 - 2\epsilon) + p_{2}^{2}\epsilon - p_{1}^{2}\epsilon - p_{2}^{2}(1 - 2\epsilon)$$

$$= p_{1}^{2} - 2p_{1}^{2}\epsilon + p_{2}^{2}\epsilon - p_{1}^{2}\epsilon - p_{2}^{2} + 2p_{2}^{2}\epsilon$$

$$= p_{1}^{2} - 3p_{1}^{2}\epsilon + 3p_{2}^{2}\epsilon - p_{2}^{2}$$

$$= (p_{1}^{2} - p_{2}^{2}) - 3(p_{1}^{2} - p_{2}^{2})\epsilon$$

$$= (1 - 3\epsilon)(p_{1}^{2} - p_{2}^{2})$$

$$= (1 - 3\epsilon)(p_{1} - p_{2})(p_{1} + p_{2})$$

$$= (1 - 3\epsilon)(p_{1} - (1 - p_{1}))$$

$$C_{1} - C_{3} = (1 - 3\epsilon)(2p_{1} - 1)$$

$$(S3)$$

$$2p_{1} - 1 = \frac{C_{1} - C_{3}}{1 - 3\epsilon}$$

$$2p_{1} = \frac{C_{1} - C_{3}}{1 - 3\epsilon} + 1$$

$$p_{1} = \frac{1}{2}\left(\frac{C_{1} - C_{3}}{1 - 3\epsilon}\right) + \frac{1}{2}$$

$$(S4)$$
if $p_{1} \approx 0 \implies \frac{1}{2}\left(\frac{C_{1} - C_{3}}{1 - 2\epsilon}\right) + \frac{1}{2} \approx 0$

$$p_{1} \approx 0 \quad \Rightarrow \quad \frac{1}{2} \left(\frac{1 - 3\epsilon}{1 - 3\epsilon} \right)^{+} \frac{1}{2} \approx 0$$

$$\Rightarrow \quad \frac{C_{1} - C_{3}}{1 - 3\epsilon} + 1 \approx 0$$

$$\Rightarrow \quad C_{1} - C_{3} + 1 - 3\epsilon \approx 0$$

$$\Rightarrow \quad C_{1} - C_{3} + 1 \approx 3\epsilon$$

$$\Rightarrow \quad \epsilon \approx \frac{C_{1} - C_{3} + 1}{3}$$
(S5)

Supplemental Table 1 - Overall agreement probability and Cohen's κ calculation

Table S1: Overall agreement probability and Cohen's κ calculation. Distribution of *n* samples by calling tool in *q* categories. The set of possible categories are all possible genotypes (*i.e.* $q \in \{AA, AB, BB, 00\}$, where 00 represents the *no call* category). This table is computed for each marker and for each pair of calling tools. The overall agreement probability and Cohen's κ are shown in Equation 1 and 2 of the main text, respectively.

Tool A	1	2	•••	\overline{q}	Total
1	n_{11}	n_{12}	•••	n_{1q}	n_{A1}
2	n_{21}	n_{22}		n_{2q}	n_{A2}
÷					:
q	n_{q1}	n_{q2}		n_{qq}	n_{Aq}
Total	n_{B1}	n_{B2}		n_{Bq}	n

Supplemental Table 2 - Fleiss' π calculation

Table S2: Fleiss' π **calculation.** Distribution of r calling tools by n samples and q response categories. The set of possible categories are all possible genotypes (*i.e.* $q \in \{AA, AB, BB, 00\}$, where 00 represents the *no call* category). This table is computed for each marker and for each calling tool. Fleiss' π is explained in Equation 3 of the main text.

Sample	1	2	•••	\overline{q}	Total
1	r_{11}	r_{12}	•••	r_{1q}	r
2	r_{21}	r_{22}		r_{2q}	r
:					÷
n	r_{n1}	r_{n2}		r_{nq}	r
Total	r_{+1}	r_{+2}		r_{+q}	nr

Supplemental Table 3 - Call concordance with the 1000 Genomes Project (Fleiss' π outliers)

Table S3: Call concordance with the 1000 Genomes Project (Fleiss's π outliers). Call concordance and number of compared markers for the three control replicates when compared to the 1000 Genomes Project for the markers that were outliers for their Fleiss' π values. The following four tools were compared: GenCall (optimized cluster file), GenoSNP (optimized), optiCall (without excluding markers failing Hardy-Weinberg) and zCall.

Tool	NA12	763_R	NA12763 R1		NA12763 R2	
	\mathbf{Rate}	$\overline{\text{Number}}$	\mathbf{Rate}	$\overline{\mathbf{N}}\mathbf{u}\mathbf{m}\mathbf{b}\mathbf{e}\mathbf{r}$	\mathbf{Rate}	$\mathbf{N}\mathbf{u}\mathbf{m}\mathbf{b}\mathbf{e}\mathbf{r}$
GenCall (optimized)	0.989157	3,228	0.989151	3,226	0.989434	3,218
GenoSNP (optimized)	0.895096	$3,\!079$	0.908626	$3,\!130$	0.878186	3,021
optiCall	0.851575	$3,\!207$	0.849688	$3,\!200$	0.830272	$3,\!158$
zCall	0.984485	3,416	0.984485	$3,\!416$	0.984485	$3,\!416$