Comparison of genotype clustering tools with rare variants

Additional Materials

Lemieux Perreault L.-P., Legault M.-A., Barhdadi A., Provost S., Normand V., Tardif J.-C. and Dubé M.-P.

Supplemental Equation 1 - Error rate for rare markers

The genotypic model for error rate estimation was tested by Liu *et al.* for common variants only. However, we found that the possible values of ϵ were out of bound (*i.e.* negative or above one) for a majority of rare markers. For those cases, ϵ was approximated using $\epsilon \simeq (C_1 - C_3 + 1)/3$, as described below.

$$
C_1 = p_1^2(1 - 2\epsilon) + 2p_1p_2\epsilon + p_2^2\epsilon \tag{S1}
$$

$$
C_3 = p_1^2 \epsilon + 2p_1 p_2 \epsilon + p_2^2 (1 - 2\epsilon)
$$
\n(S2)

$$
C_1 - C_3 = p_1^2(1 - 2\epsilon) + 2p_1p_2\epsilon + p_2^2\epsilon - p_1^2\epsilon - 2p_1p_2\epsilon - p_2^2(1 - 2\epsilon)
$$

\n
$$
= p_1^2(1 - 2\epsilon) + p_2^2\epsilon - p_1^2\epsilon - p_2^2(1 - 2\epsilon)
$$

\n
$$
= p_1^2 - 2p_1^2\epsilon + p_2^2\epsilon - p_1^2\epsilon - p_2^2 + 2p_2^2\epsilon
$$

\n
$$
= p_1^2 - 3p_1^2\epsilon + 3p_2^2\epsilon - p_2^2
$$

\n
$$
= (p_1^2 - p_2^2) - 3(p_1^2 - p_2^2)\epsilon
$$

\n
$$
= (1 - 3\epsilon)(p_1^2 - p_2^2)
$$

\n
$$
= (1 - 3\epsilon)(p_1 - p_2)(p_1 + p_2)
$$

\n
$$
= (1 - 3\epsilon)(p_1 - (1 - p_1))
$$

\n
$$
C_1 - C_3 = (1 - 3\epsilon)(2p_1 - 1)
$$

\n
$$
2p_1 - 1 = \frac{C_1 - C_3}{1 - 3\epsilon}
$$

\n
$$
2p_1 = \frac{C_1 - C_3}{1 - 3\epsilon} + 1
$$

\n
$$
p_1 = \frac{1}{2}(\frac{C_1 - C_3}{1 - 3\epsilon}) + \frac{1}{2}
$$

\nif $p_1 \approx 0 \Rightarrow \frac{1}{2}(\frac{C_1 - C_3}{1 - 3\epsilon}) + \frac{1}{2} \approx 0$ (S4)

$$
\Rightarrow \frac{C_1 - C_3}{1 - 3\epsilon} + 1 \approx 0
$$

\n
$$
\Rightarrow C_1 - C_3 + 1 - 3\epsilon \approx 0
$$

\n
$$
\Rightarrow C_1 - C_3 + 1 \approx 3\epsilon
$$

\n
$$
\Rightarrow \epsilon \approx \frac{C_1 - C_3 + 1}{3}
$$
 (S5)

Supplemental Table 1 - Overall agreement probability and Cohen's κ calculation

Table S1: Overall agreement probability and Cohen's κ calculation. Distribution of n samples by calling tool in q categories. The set of possible categories are all possible genotypes (*i.e.*) $q \in \{AA, AB, BB, 00\}$, where 00 represents the no call category). This table is computed for each marker and for each pair of calling tools. The overall agreement probability and Cohen's κ are shown in Equation 1 and 2 of the main text, respectively.

	Tool B				
Tool A			\cdots		Total
	n_{11}	n_{12}	\cdots	n_{1q}	n_{A1}
$\overline{2}$	n_{21}	$\,n_{22}$	\cdots	n_{2q}	n_{A2}
			\cdots		
q	n_{q1}	n_{q2}	\cdots	n_{qq}	n_{Aq}
Total	n_{B1}	n_{B2}	\cdots	n_{Bq}	$\, n$

Supplemental Table 2 - Fleiss' π calculation

Table S2: Fleiss' π calculation. Distribution of r calling tools by n samples and q response categories. The set of possible categories are all possible genotypes (*i.e.* $q \in \{AA, AB, BB, 00\}$, where 00 represents the no call category). This table is computed for each marker and for each calling tool. Fleiss' π is explained in Equation 3 of the main text.

Supplemental Table 3 - Call concordance with the 1000 Genomes Project (Fleiss' π outliers)

Table S3: Call concordance with the 1000 Genomes Project (Fleiss's π outliers). Call concordance and number of compared markers for the three control replicates when compared to the 1000 Genomes Project for the markers that were outliers for their Fleiss' π values. The following four tools were compared: GenCall (optimized cluster file), GenoSNP (optimized), $optiCall$ (without excluding markers failing Hardy-Weinberg) and $zCall$.

