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ABSTRACT Evolution at a multiallelic locus under the joint
action of gene conversion, mutation, selection, and random ge-
netic drift is studied. Generations are discrete and nonoverlap-
ping; the diploid, monoecious population mates at random. Under
the assumption that all four evolutionary forces are weak, a dif-
fusion approximation is established for the dynamics of the gene
frequencies. For two alleles, the inclusion of gene conversion merely
alters one of the two selection parameters of the thoroughly in-
vestigated diffusion process without conversion. Therefore, all re-
sults for this classical process, some of which are reviewed and
extended here, are immediately applicable to the biologically more
general problem. Small conversional disparities can dramatically
affect the fixation probability (and hence the rate of gene sub-
stitution) and can greatly reduce the mean conditional fixation time
of a new mutant. The mean absorption and fixation times are often
sufficiently short to imply that biased gene conversion can be an
important mechanism for the loss of genetic variability in and the
genetic divergence of isolated populations.

In a recent paper (1), data pertinent to the influence of gene
conversion on the dynamics of allelic frequencies at a multial-
lelic locus were reviewed, and the evolution of a large popu-
lation was investigated. It was shown that biased conversion
often causes loss of genetic variability and contributes to the
genetic divergence of isolated populations. If the effective pop-
ulation number is not much larger than the reciprocal of a typ-
ical disparity parameter (1), random genetic drift will signifi-
cantly affect the evolution of the population. In this paper, we
shall study the joint action of gene conversion, mutation, se-
lection, and random drift at a multiallelic locus. Sections 1, 2,
and 3 comprise the formulation of our problem, its approxi-
mation under the assumption that all four evolutionary forces
are weak, and biological applications, respectively.

Generations are discrete and nonoverlapping; the diploid,
monoecious population mates at random.

1. Formulation

There are n alleles; unless indicated otherwise, all sums run
from 1 to n. The life cycle starts with N adults, among whom
the genotype AAj has frequency P. 1 ' i s j ' n. The fre-
quencies of ordered genotypes will'also be useful and will al-
ways be indicated by a tilde:

- 1
= - (1 + 8y)Pij, PU, = (2 - i)Pij, Pi = Pij, [la]2

where Su denotes the Kronecker delta. The frequency of Ai in
adults reads

Pi = 2 Ij. [lb]

We exhibit the main features of the model in the following for-
mal scheme.
Adults - Gametes - Zygotes -
NP conversion * fertilization * * selection

Adults - ) Adults - Adults.
00 * mutation OP*** regulation N,.P

The adults produce infinitely many gametes without fertility
differences. To incorporate gene conversion, let cy designate
the probability that a gamete chosen at random from an AAj
individual carries Ai. Consult ref. 1 for discussions of the pa-
rameters cy and the disparities by, introduced below, and of the
assumption that conversion in AAj can produce only Ai and Aj.
For the frequency of Ai in gametes, we have

Pi* = 2 > CyjP. [2]

The gametes fuse at random to form zygotes, and viability
selection follows, after which the ordered genotype AjAj has
frequency

ft* = wjypipj*/W,
where wif and

3 = , WiPi Pj,
i2

[3a]

[3b]

represent the fitness of AiAj individuals and the mean fitness
of the population.
We signify the probability that Ai mutates to Aj by uy (by

convention, uji = 0 for all i) and assume that the two genes at
a locus mutate independently. Then, after mutation, the or-
dered genotypic frequencies become

P =**= v P**is _ i,, Pkl
kl

[4a]

where

Rki = -1 E Ukm) ki + Uki. [4b]

Finally, random genetic drift operates through population
regulation, which reduces the population number from infinity
to N and changes the unordered genotypic frequencies to P1.
This means that, given P, the allelic numbers NPK, (1 < i < j
' n) are multinomially distributed with parameters Pt** and
index N. In conjunction with [1]-[4], this defines a Markov chain
for the basic vector P(t) (t = 0, 1, 2, ...).

Biological considerations require the order of the determin-
istic effects posited above (1). Were we to insert random drift
before the end of the life cycle, at least one of the other evo-
lutionary forces would have to operate in a finite population,
and this would require a much more complicated probabilistic
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treatment for those forces. The diffusion limit would most likely
be the same as in Section 2, but this has not been proved.

Our model also applies to meiotic drive.

2. The diffusion limit

The intractability of the exact model formulated in Section 1
compels us to seek approximations. The disparity parameters
that control allelic frequency change due to gene conversion
appear to be always much less than one, usually by at least two
orders of magnitude (1). Mutation rates are generally between
10-6 and 10-4; if we exclude lethality and sterility, most se-
lection intensities do not exceed several percent (2). The ef-
fective population numbers (and even local population num-
bers) of natural populations usually exceed several hundred (3).
Consequently, we lose very little biological generality by pos-
iting that all four evolutionary forces are weak.
We introduce the disparities by and selection coefficients sy

through

CU = 2(1 + bij), Wij= 1 +s1 [5]

and assume that the disparity parameters, selection coeffi-
cients, and mutation rates are not much greater than the re-
ciprocal of the population number, which is much larger than
unity. Thus, we let N -X00 and suppose that

by = Py/(2N), Si = l/(2N), uY = 1Y/(2N), [6]
where f3y, ori, and juy are fixed. These constants satisfy pi -
- Ai (1), ayi, = aj, and pis = 0 for all i and j.
To derive the diffusion limit of the Markov chain {P(t)}, we

shall apply a theorem concerning the diffusion approximation
of Markov chains with two time scales (4). For our purpose, the
following statement suffices; consult refs. 4 and 5 for more de-
tail and discussion.

For N = 1, 2, ..., let {ZN(t), t = 01, ...} be a time-ho-
mogeneous Markov chain in a metric space EN; suppose both
*N: WN (armand IN: %N -(bitare continuous; define XN(t)
= N[ZN(t)] and yN(t) = 1N[ZN(t)] for each t 2 0; and let EN
> 0 and 8N > 0. Assume that limN, N = Ax 0 .< & < 00,
and limN a EN/8N = 0. All expectations, variances, and covari-
ances refer to one-step transitions starting at z. Set x = 4ON(Z)
and y = IN(Z), and suppose that as N -) 00

Es'E[X (1) - xi] = Mi(x,y) + o(l), [7a]

eN Cov[X$'(1), X3N(1)] = Vu(x,y) + o(1),
EN'E[{Xi (1) - E[Xi (1)]}4] = o(l),
8N'E[YkN(l) - Yk] = Ck(X,y) + o(l),
&; Var[YN'(1)] = o(1)

[7b]
[7c]

and YN([tN/8N]) -O 0 in probability whenever tN X-* .

We proceed to verify the conditions 7 for {P(t)}. According
to [6], all evolutionary forces operate on the slow time scale with
EN= 1/(2N). Then deviations of P from Hardy-Weinberg pro-
portions are reduced on the time scale of a single generation;
thus, N = 1. Therefore, it is natural to identify XNv and YgN with
pi and

Q#= P# - (2 - 3y)pipj
(1 . i - j s n), respectively. From [1]-[6], we obtain

P* Pi + I 3ikPik + Pi 3 ffikPk - Pi E (klPkPI

PI,3 ik + E Pk/ki] + O(N 2),
k k

= PiPj + O(N')
as N -k 00.

For [7a], we find from [lOa]
2NE(p - pi) = 2N(p,** - pi) = Mi(p,Q) + O(N-1),

where

Mi(p,Q) = 3 ISikPik + Pi E OikPk
k k

- Pi,3 klPkPI - ,3i:Lik + 3 Pk-ki- I
k1 k k

Appeal to ref. 4 (p. 31) and [10] yields
2N Cov (p;,p',) = p,***(6 - p;**) + -

= VU(p,Q) + O(N-'),
where

VYj(pQ) = pi(8S, - P).
Exactly as in ref. 4 (p. 31), [7c] holds because

2NE{[p! - E(p !)]4} = O(N-1).

From [9], [10], and [12a] we deduce

E(Q!.- Qij)
= E[(P!. - Py) - (2 - 5)(pi'p; -pip)]

[9]

[1Oa]

[lOb]

[Ila]

[lib]

[12a]

[12b]

[13]

= Pi* - P9i - (2 - 89)[Cov(p!,p;) + p"*Pj*** - pip>]
= -Qij + O(N-'). [14]

[7d] We invoke [9] and two elementary inequalities in ref. 4 (p. 23)
to establish [7e]:

[7e]
for ij = 1, ..., m and k = 1, . 1.., . Assume further that c(x,O)
= 0, and if & = 0, the zero solution of the differential equation

d
Y(t,x) = c[x, Y(t,x)] [7f]

is globally asymptotically stable; if Ax > 0, posit the same for
the difference equation

&'1[Y(t + 1, x) - Y(t,x)] = c[x, Y(t,x)]. [7g]

Then, provided some technical conditions are satisfied, XN([T/
EN]) converges weakly to the diffusion X(r) with generator

Var(Q!.)
s 2[Var(P!.) + (2 - ij)2Var(p,'pj)]
' 2[Var(P!,) + 4(2){Var(p!) + Var(pj')}] = O(N-1). [15]

In view of [14], for [7g] we get the trivial difference equation
q = 0, whence qij(t) = 0 for t 2 1.

This concludes the verification of conditions 7. Therefore, in
the diffusion time units of 2N generations, the population evolves
arbitrarily close to the Hardy-Weinberg surface Q = 0. More
precisely, Qy,([2Nr]) -) 0 in probability as N -X 00 with X> 0
fixed. Using [8], [lib], and [12b] leads to the generator

1= a2
L = - Vjj(x,0) ~

m a
+ E Mi(X,0)-,

i=l

[8]
1n-I ~a2

L = -3 Vi9(p,O) +
2 i j=l apiapj

n-I a
3 Mi(p,O)-,
i= 1 ap,

[16a]
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where
n n n

Mi(p,0) = Pi> /3ikPk + Pi afpik - Pi E 0kdPkPl
k=l k=l k,l= 1

n n

- PiE ok& + > PkIki,
k=l k=l

Vi,(p,O) = pi(8y - pi)

which is close to p, the fixation probability with pure random
drift (12), if and only if Jai << 1. In particular, with no selec-
tion and the heuristic insertion of the variance effective pop-
ulation number into [6] and of p = 1/(2N) into [21], for a new
mutant (Al) we obtain

[16b]

[16c]
for the limiting diffusion of p([2Nr]). It is essential to keep in
mind that L in [16a] operates on functions of (pi, P2, .*., Pn-);
one must express Pn in the arguments of these functions as

n-1

Pn= 1 >Pi.
i=1

The evolutionary effect of gene conversion is negligible if
NlbjI << 1 for all i andj. The analyses in ref. 4 strongly suggest
that the diffusion 16 applies to more general models than ours,
provided we take into account biological features such as dioecy
and nonbinomial variation in progeny number by replacing N
everywhere in this section by the variance effective population
number Ne.

3. Two alleles

For two alleles, [16] reduces to a diffusion on the unit interval
0<P = P'< 1:

1 d2 d
L P( -P)-2dpi MP dp'

where

M(p) = p(l - p)(a + yp) + v- (A. + v)p, [17b]

[17a]

ir1[1/(2N)] 2NeN-lbl2/(l_e-4kb12)
V2NeNlbl2e,
t-2NeN-lbl2e 4"A1,

This is much greater (less) than 1/(2N), the value without con-
version, if 4Neb2>> 1 (4Nebl2 <<-1). Thus, if 1b121 0.01,
the mean absolute fungal disparity (1), gene conversion strongly
influences the fixation probability in natural populations; it will
often do so even if Ib121 0.001. Since we expect that new mu-
tants frequently have a conversional disadvantage (17), the great
lowering of the rate of gene substitution whenever 4Neb12 <<
-1 may have considerable biological significance.
The mean time to fixation or loss of Al is (18, 19)

T(p) = 2Ne[a(1 - e2a)fl[(e - e2a)Ii(p)

+ (1 - e-2ap)I2(P)]
generations, where

(P e2ax - 1
I(p)= I dx,Jox(1 - x)

1l 1 - e2a(x- )

I2(P) = - dx.
x(1 - x)

If jai << 1, the mean absorption time is close to Watterson's
(20) result for pure random drift (a = 0),

y = 11- 2012 + O'22, [18]

A =/-L12, and v =-21. The generator 17 is identical with that
of the classical diallelic diffusion for mutation and selection in
a finite population, which has been extensively investigated (see
refs. 6 and 7 for reviews). Gene conversion merely causes the
appearance of /12 in a; in particular, if there is no dominance
('y = 0), conversion simply alters the selection intensity. In the
remainder of this section, we shall review and extend a few
properties of [17] that may be of particular biological interest
for the evolutionary significance of gene conversion.

(i) Reversible mutation. If u > 0 and v > 0, the probability
density of the frequency x of Al converges as t -X oo to (8, 9)

4(x) = BX2v (1 - x)2I lex( X+2a) [19]

where B denotes a normalization constant. Consult refs. 6 (pp.
442-445), 10 (pp. 363-365), and 11 (pp. 65-67) for discussions
of the stationary distribution 19.

(ii) No mutation. With negligible mutation (it = v = 0), we
focus on the fixation probability, the mean absorption time, and
the mean fixation time. Kimura (12, 13) treated fixation prob-
abilities with arbitrary dominance [see also refs. 6 (pp. 423-428),
7 (pp. 146-148), 14, and 15]. Hereafter, we posit the absence
of dominance (y = 0); then the probability that Al is fixed reads
(12, 13, 16)

l(p) (1 e-2aP)/(l - e)2a) [20]

where p designates the initial frequency of Al. If jalp << 1,
[20] reduces to

l(p) :2ap/(1 e2a) [21]

Therefore, we examine the behavior of rare alleles, Ialp << 1,
for al»>> 1. If a > 0, 2apln(2a/p) << 1, and e-'ln(2a/p) <<
1, [24] leads to the approximation

T(p) = 4Nep[ln(2a/p) + 1 + C], [26]
where C 0.5772 represents Euler's constant. If a < 0 and

e'ln(-2a/p) << 1, [24] yields
T(p) 4Nep[-ln(-2ap) + 1 C]. [27]

The mean time 26 exceeds Td(p), which exceeds [27], because
the fixation probability is an increasing function of a (see [20])
and we expect for a rare mutant the mean time to fixation to
exceed the mean time to loss. In fact, [21] reveals that irl(p) is
exponentially small for a << -1, which explains why [27] agrees
with the approximate mean conditional extinction time (21).

For a new mutant in the absence of selection, we heuristical-
ly substitute p = 1/(2N) into [26] and [27] to obtain Kimura's
(19) formulae: if b12 > 0,

T[1/(2N)] 2NeNW'[ln(8NeNbl2) + + C]; [28]
if b12 < 0,

T[1/(2N)] 2NeN-'[-in(-2Nebl2/N) + 1 C]. [29]

Thus, on an evolutionary time scale, the mean absorption time
for a new mutant is extremely short and, hence, the decay of
genetic variability can be very rapid. This happens because, in
view of [23] and the fact that lb,21 << 1, a new mutant is much
more likely to be lost than fixed. Our formula 29 is identical
with the approximation of Kimura and Ohta (22) for the mean
conditional extinction time.

[22]
e-eb 12 << 1,
e-4NA2 >> 1.

[23]

a = (12 + 0T12 - 22

[24a]

[24b]

[24c]

Td(P) = -4Ne[plnp + (1 - p)ln(I - p)]. [25]
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Finally, we investigate the mean conditional fixation time.
In generations, this reads (23)

T*(p) 2N
a(l - e"

[(e-2ap _ e-2) P]

[30a]

in which

JMP) = f(1 e aaXear dx, [30b]tP(1 - e-2ax)(I-e2a- 1) [0b

12(P) = (1 - eX'a)(1- e2a(X))dx. [30c]

If Jal << 1, T* is near the value for pure random drift (23),

Td*(p) = -4Nep-1(l - p)ln(I - p) -* 4Ne [31]
as p -- 0. Hence, we study the mean fixation time for rare al-
leles, jalp << 1, for lal >> 1. Since [30] is independent of the
sign of a (ref. 7, p. 151; ref. 24), we take a > 0 without loss
of generality. Thus, in the following formulae a and b12 refer
to the absolute values of these parameters. We express Ji and
J2 in terms of exponential integrals and use- the asymptotic ex-
pansions of these functions (25):
T*(p) =

4Nea-1[ln(2a) + C - (2a)-1 - 2 ap + O(a-2, a2p2)] [32]

as a -X00 and ap -* 0.
For a new mutant, of most interest is the ratio

r = lim T*(p)/TdC(p)

= '-'[ln(2a) + C - (2a)-1 + O(a-2)].
In the absence of selection, a = 2Nebi2 If the absolute value
of the disparity has the typical fungal value b12 = 0.01 and Ne
= 250, 103, 10, 10, and 106, then r 0.556, 0.212, 0.0328,
4.44 X 10-3, and 5.59 x 10-4. Thus, conversional bias in either
direction will often greatly depress the mean fixation time be-

low its approximate value for pure random drift, 4Ne genera-
tions. We conclude that gene conversion can be an important
mechanism for the genetic divergence of isolated populations.

Note Added in Proof. The biological discussion in ref. 26 is pertinent
to the subject of this paper.
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