#### SUPPLEMENTAL MATERIALS

#### **Supplemental Methods**

#### **Bone Marrow Transplantation**

8-10 week old Balb/C were irradiated with (850 cGy). Four hours later they received
10 million bone marrow (BM) cells from MHC-EGFP donor mice via tail vein injection.
12 weeks post BM transplant, the stomach tissues were collected for analysis.

#### **Tissue preparation and Immunofluorescence:**

Mouse stomach tissues were processed for immunohistochemistry and incubated with primary and secondary antibodies as previously described<sup>1</sup>. Guinea pig anti-HDC at 1:300 (EuroProxima) was used to stain HDC expressing cells.

### Gastric epithelial single cell isolation and cell sorting

Gastric corpus epithelial cells were isolated using mixed methods of mechanical and enzymatic dissociation <sup>2</sup>. The mouse stomach corpus mucosa cell suspension was obtained by protease buffer containing 50 µg pronase (Sigma-Aldrich) per 100 ml Basal Medium Eagle (Gibco). A MoFlo Beckman Coulter Cytomation sorter was gated to select CFP-positive cells using side and forward scatter to select single cells excluding nonviable cells with 7-AAD. Analysis of sorted HDC<sup>+</sup> cells by subsequent analytical flow cytometry for CFP showed that approximately 82% of sorted cells expressed the fluorescent protein. Analysis of HDC enrichment in CFP<sup>+</sup> cells versus CFP<sup>-</sup> cells by RNAseq approached 388-fold with reduction in expression H+/K+ATPase ß subunit, TFF2, and pepsinogen by 84%, 95%, and 78% respectively. The ECL enrichment achieved in the present work is considerably higher than described previously, indicating lower contamination by parietal, mucous pit, and chief cells<sup>3</sup> and was sufficiently

#### ACCEPTED MANUSCRIPT

enriched to identify genes that were significantly upregulated in ECL cells. For corpus Tph1-CFP<sup>+</sup> cells isolated by FACS, Tph1 and Mcpt1 expression, measured by qPCR, were enriched by >270-fold and 256-fold respectively versus unsorted stomach corpus cells with greater than 60% reduction in H+/K+ATPase and pepsinogen expression measured by real time RT-PCR.

For analytical flow cytometry for cell surface proteins, cell samples were centrifuged at 800 rpm, decanted, and incubated for 10 minutes with selected fluorescentlyconjugated antibodies (all from eBiosciences): rat anti-CD45-APC, rat anti-c-Kit-PE, rat anti-Gr-1-FITC, and rat anti-CD11b-PE-Cy7. Analytical flow cytometry was performed on a BD LSR II flow cytometer.

#### **RNA extraction and RT-PCR**

Total RNA from FACS sorted cells was isolated using Qiagen RNeasy mini purification kit (Valencia, CA, USA) and reverse transcribed using iScript II cDNA synthesis (Biorad). To analyze the expression of transcripts, primers (sequences provided upon request) were designed against several targets and quantitative or semiquantitative PCR were performed accordingly.

#### Legends to Supplemental Figures

**Supplemental Figure 1**. Contribution of Neurog3-expressing cells to gastric serotonin, ghrelin, and somatostatin cells in Neurog3Cre;ROSA<sup>tdTom</sup> mice. (Top row) Coexpression of tdTomato with serotonin (5HT) in the antrum (B) but not in the corpus (A). (Bottom row) tdTom coexpression in the majority of ChgA<sup>+</sup> cells (C) and Ghrelin-cells (D) in the corpus.

# ACCEPTED MANUSCRIPT

## Supplemental Figure 2. Correlation between RNAseq variance normalized read

counts and relative gene expression measured by qPCR. Expression measured by

qPCR for 6 genes with normalized read counts between 1000 and 60000. Logarithmic

scale.

# Suppl Figure 3. Coexpression of somatostatin (Sst) and ghrelin in some HDC+ cells

from HDC-CFP mice. Green arrows, CFP<sup>+</sup> cells, yellow arrows, double positive cells,

red arrows, ghrelin<sup>+</sup> or Sst<sup>+</sup> cells, red arrowhead, CFP<sup>-</sup> cell with strong ghrelin staining.

# **References for Supplemental Materials**

- 1. Li HJ, Kapoor A, Giel-Moloney M, et al. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine. Dev Biol 2012;371:156-69.
- 2. Jain RN, Brunkan CS, Chew CS, et al. Gene expression profiling of gastrin target genes in parietal cells. Physiological Genomics 2006;24:124-32.
- 3. Walker AK, Park WM, Chuang JC, et al. Characterization of gastric and neuronal histaminergic populations using a transgenic mouse model. PLoS One 2013;8:e60276.

CR

| Suppl. Table 2 GO enrichment analysis of top 1200 upregulated genes |  |
|---------------------------------------------------------------------|--|
| Top 60 GO terms ranked by pvalue out of 234                         |  |

| GO ID      | Pvalue   | Odds Ratio | Exp. no. of genes | Observed | Size | Term (Biological Process)                   |
|------------|----------|------------|-------------------|----------|------|---------------------------------------------|
| GO:0019226 | 5.54E-17 | 7.30       | 5.8               | 34       | 584  | transmission of nerve impulse               |
| GO:0044765 | 1.72E-16 | 3.87       | 25.2              | 70       | 2549 | single-organism transport                   |
| GO:0035637 | 1.96E-16 | 6.98       | 6.0               | 34       | 609  | multicellular organismal signaling          |
| GO:0007268 | 3.11E-16 | 7.98       | 4.6               | 30       | 466  | synaptic transmission                       |
| GO:0007267 | 5.31E-16 | 6.14       | 7.5               | 37       | 756  | cell-cell signaling                         |
| GO:0051179 | 1.36E-13 | 3.07       | 40.5              | 86       | 4098 | localization                                |
| GO:0006810 | 1.50E-13 | 3.22       | 32.3              | 75       | 3268 | transport                                   |
| GO:0051234 | 3.94E-13 | 3.14       | 32.9              | 75       | 3329 | establishment of localization               |
| GO:0051049 | 9.96E-13 | 4.41       | 11.1              | 40       | 1121 | regulation of transport                     |
| GO:0046903 | 4.98E-11 | 4.97       | 6.9               | 29       | 693  | secretion                                   |
| GO:0006836 | 2.48E-10 | 12.73      | 1.2               | 13       | 122  | eneurotransmitter transport                 |
| GO:0034220 | 3.33E-10 | 5.22       | 5.5               | 25       | 561  | ion transmembrane transport                 |
| GO:0055085 | 4.52E-10 | 4.37       | 8.0               | 30       | 812  | transmembrane transport                     |
| GO:0032879 | 6.98E-10 | 3.38       | 15.0              | 42       | 1512 | regulation of localization                  |
| GO:0006811 | 1.18E-09 | 3.73       | 11.1              | 35       | 1120 | ion transport                               |
| GO:0032940 | 1.58E-09 | 4.81       | 6.0               | 25       | 605  | secretion by cell                           |
| GO:0043269 | 2.45E-09 | 5.56       | 4.3               | 21       | 436  | regulation of ion transport                 |
| GO:0003001 | 3.60E-09 | 6.44       | 3.2               | 18       | 322  | generation of a signal involved in cell-cel |
| GO:0023061 | 3.60E-09 | 6.44       | 3.2               | 18       | 322  | signal release                              |
| GO:0051046 | 5.62E-09 | 5.29       | 4.5               | 21       | 457  | regulation of secretion                     |
| GO:0006812 | 1.72E-08 | 3.98       | 7.8               | 27       | 786  | cation transport                            |
| GO:0001505 | 3.30E-08 | 10.56      | 1.2               | 11       | 121  | regulation of neurotransmitter levels       |
| GO:0030001 | 4.73E-08 | 4.28       | 6.1               | 23       | 615  | metal ion transport                         |
| GO:0007269 | 8.52E-08 | 13.45      | 0.8               | 9        | 79   | neurotransmitter secretion                  |
| GO:0048489 | 3.14E-07 | 14.12      | 0.7               | 8        | 67   | synaptic vesicle transport                  |
| GO:0007399 | 3.36E-07 | 2.86       | 14.5              | 36       | 1469 | nervous system development                  |
| GO:0034765 | 8.26E-07 | 6.08       | 2.4               | 13       | 240  | regulation of ion transmembrane transpo     |
| GO:0007270 | 9.98E-07 | 9.80       | 1.0               | 9        | 105  | neuron-neuron synaptic transmission         |
| GO:0065008 | 1.03E-06 | 2.44       | 22.2              | 46       | 2245 | regulation of biological quality            |
| GO:0003008 | 1.11E-06 | 2.37       | 24.5              | 49       | 2474 | system process                              |

ACCEPTED MANUSCRIPT

| GO:0034762 | 1.19E-06 | 5.87  | 2.5  | 13 | 248 regulation of transmembrane transport     |
|------------|----------|-------|------|----|-----------------------------------------------|
| GO:0060341 | 1.25E-06 | 3.62  | 6.8  | 22 | 685 regulation of cellular localization       |
| GO:0051649 | 2.34E-06 | 2.69  | 14.4 | 34 | 1459 establishment of localization in cell    |
| GO:0010817 | 2.48E-06 | 4.73  | 3.5  | 15 | 353 regulation of hormone levels              |
| GO:0044057 | 3.27E-06 | 3.95  | 5.0  | 18 | 509 regulation of system process              |
| GO:0015672 | 3.85E-06 | 4.55  | 3.6  | 15 | 366 monovalent inorganic cation transport     |
| GO:0022008 | 4.64E-06 | 2.93  | 10.3 | 27 | 1045 neurogenesis                             |
| GO:0006887 | 4.86E-06 | 6.15  | 2.0  | 11 | 199 exocytosis                                |
| GO:0006813 | 5.58E-06 | 6.80  | 1.6  | 10 | 164 potassium ion transport                   |
| GO:0050877 | 7.08E-06 | 2.32  | 20.9 | 42 | 2109 neurological system process              |
| GO:0030182 | 7.42E-06 | 3.05  | 8.8  | 24 | 885 neuron differentiation                    |
| GO:0016486 | 8.60E-06 | 40.86 | 0.1  | 4  | 14 peptide hormone processing                 |
| GO:0045956 | 8.60E-06 | 40.86 | 0.1  | 4  | 14 positive regulation of calcium ion-depenc  |
| GO:0071705 | 9.84E-06 | 3.78  | 4.9  | 17 | 498 nitrogen compound transport               |
| GO:0051641 | 1.08E-05 | 2.42  | 16.9 | 36 | 1707 cellular localization                    |
| GO:0042391 | 1.14E-05 | 4.71  | 3.0  | 13 | 305 regulation of membrane potential          |
| GO:0050804 | 1.26E-05 | 5.53  | 2.2  | 11 | 220 regulation of synaptic transmission       |
| GO:0048699 | 1.35E-05 | 2.86  | 9.7  | 25 | 980 generation of neurons                     |
| GO:0048666 | 1.62E-05 | 3.24  | 6.8  | 20 | 686 neuron development                        |
| GO:0031644 | 1.78E-05 | 4.86  | 2.7  | 12 | 272 regulation of neurological system proces  |
| GO:0015837 | 2.31E-05 | 9.17  | 0.9  | 7  | 86 amine transport                            |
| GO:0044708 | 2.53E-05 | 4.07  | 3.7  | 14 | 378 single-organism behavior                  |
| GO:0035249 | 3.06E-05 | 11.24 | 0.6  | 6  | 61 synaptic transmission, glutamatergic       |
| GO:0051050 | 3.33E-05 | 3.42  | 5.4  | 17 | 548 positive regulation of transport          |
| GO:0023052 | 3.45E-05 | 1.85  | 50.4 | 76 | 5093 signaling                                |
| GO:0044700 | 3.45E-05 | 1.85  | 50.4 | 76 | 5093 single organism signaling                |
| GO:0032501 | 3.70E-05 | 1.82  | 58.6 | 85 | 5921 multicellular organismal process         |
| GO:0051969 | 3.95E-05 | 4.85  | 2.5  | 11 | 249 regulation of transmission of nerve impul |
| GO:0017157 | 4.12E-05 | 8.32  | 0.9  | 7  | 94 regulation of exocytosis                   |



# Supplemental Table 1. Selected GO term analysis from1,200 top enriched biological processes for HDC+ and HDC-

| GO                                                | D Biological Process                  |          |  |  |  |  |
|---------------------------------------------------|---------------------------------------|----------|--|--|--|--|
| A. Endocrine & Neuronal Function enriched in HDC+ |                                       |          |  |  |  |  |
| GO:0016486                                        | peptide hormone processing            | 8.60E-06 |  |  |  |  |
| GO:0046879                                        | hormone secretion                     | 0.0003   |  |  |  |  |
| GO:0006836                                        | Neurotransmitter transport            | 2.50E-10 |  |  |  |  |
| GO:0022008                                        | Neurogenesis                          | 4.60E-06 |  |  |  |  |
| GO:0030182                                        | Neuron differentiation                | 7.40E-06 |  |  |  |  |
| B. Mast Cell Function enriched in HDC- cells      |                                       |          |  |  |  |  |
| GO:0045576                                        | Mast Cell Activation                  | 2.90E-06 |  |  |  |  |
| GO:00043304                                       | Regulation of Mast Cell Degranulation | 2.95E-05 |  |  |  |  |
| GO:0002448                                        | Mast Cell Mediated Immunity           | 0.0002   |  |  |  |  |
| GO:0032762                                        | Mast Cell Cytokine production         | 0.0050   |  |  |  |  |