Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche

Melissa A. Kinney¹, Rabbia Saeed¹, and Todd C. McDevitt^{*1,2}

¹The Wallace H. Coulter Department of Biomedical Engineering

Georgia Institute of Technology/Emory University, Atlanta, GA, USA

²The Parker H. Petit Institute for Bioengineering and Bioscience,

Georgia Institute of Technology, Atlanta, GA, USA

Address for Correspondence:

Todd C. McDevitt, Ph.D.

313 Ferst Drive, Suite 2102

Atlanta GA, 30332-0532

Phone: 404-385-6647

Fax: 404-894-4243

Email: todd.mcdevitt@bme.gatech.edu

Supplemental Methods

Immunostaining

For whole mount immunostaining, formalin fixed EBs were blocked and permeabilized in 2% BSA/0.1% Tween-20, containing 1-1.5% Triton X-100 for 30 minutes at 4°C with rotation, re-fixed in formalin for 15 minutes and blocked for an additional 3 hours. EBs were then stained with Alexa Fluor 546 phalloidin (1:40, Molecular Probes), counterstained with Hoechst (10 μ g/mL) and imaged using a Zeiss LSM 710 Confocal Microscope.

Supplemental Figures

Supplemental Figure 1. Mechanical testing methods. (A) Mechanical testing of EBs was accomplished through parallel plate compression, in which (B) the displacement was measured over time under constant force. (C) The resultant creep curves enable calculation of viscoelastic properties, including characteristic creep displacement, as well as parameters determined from the fit to a linear viscoelastic model. Scale bar = $200 \mu m$.

Supplemental Figure 2. Mechanical characterization. (A) Although EB diameter was not significantly modulated by culture environment, treatment with BMP4 resulted in increased (B) instantaneous and (C) relaxed moduli after 7 and 14 days of differentiation, as well as decreased (D) stress relaxation and (E) creep time constant. (F) The apparent viscosity increased over time, but was not modulated by culture condition. n=6 EBs; * = p < 0.05.

Supplemental Figure 3. F-actin localization within EBs during differentiation. EBs displayed largely cortical F-actin structures, which were dynamically remodeled during the course of differentiation after 2 (A&D), 4 (B&E), and 7 (C&F) days of differentiation in basal, serum free cultures (A-C) or upon soluble treatment with BMP4 (D-F). Scale bar = 50 μ m.

Supplemental Figure 4. Morphology of EBs cultured with cytoskeletal agonists and antagonists. Phase images (A-E, K-O) and H&E staining (F-J, P-T) of EBs cultured in basal, serum free media (A-J) or upon supplementation with BMP4 (K-T) exhibit changes largely consistent with the soluble growth factor treatment, with few subtle changes due to cytoskeletal perturbation with Jas (C, H, M & R), LatB (D, I, N & S), and Y27632 (E, J, O & T). Scale bar (A) = 200 μ m, (F) = 50 μ m.

ID	Gene name	Primary classification
Nanog	Nanog	Pluripotency
Oct-4	Octamer binding transcription factor-4 (POU5F1)	Pluripotency
Sox2	sex determining region Y-box 2	Pluripotency
Foxa2	forkhead box protein A2 (HNF-3β)	Endoderm
Gata4	GATA binding protein 4	Mes/endoderm
Gata2	GATA binding protein 2	Mesoderm
Afp	Alpha fetoprotein	Endoderm
Nes	Nestin	Ectoderm
Sox17	sex determining region Y-box 17	Ectoderm
т	Brachyury-T	Mesoderm
Pecam1	Platelet endothelial cell adhesion molecule	Mesoderm / endothelial
Cdh5	Vascular endothelial cadherin (VE-cadherin)	Mesoderm / endothelial
Des	Desmin	Mesoderm / cardiac
Pax6	Paired box gene 6	Ectoderm
Runx2	Runt-related transcription factor 2	Mesoderm / osteogenic
Fgf5	Fibroblast growth factor 5	Growth factor
Bmp4	Bone morphogenetic protein 4	Growth factor
Kdr	Vascular endothelial growth factor receptor 2	Mesoderm / endothelial
Nkx2.5	homeobox protein Nkx-2.5	Mesoderm / cardiac
Cd34	Cluster of differentiation 34	Mesoderm / hematopoietic
Sox4	sex determining region Y-box 4	Mesoderm / hematopoietic
Vegfa	Vascular endothelial growth factor A	Mesoderm / endothelial
Flt1	Vascular endothelial growth factor receptor 1	Mesoderm / endothelial
lgf2	Insulin-like growth factor 2	Growth factor
Hba-x	hemoglobin X, alpha-like embryonic chain	Mesoderm / hematopoietic
Hbb-y	hemoglobin Y, beta-like embryonic chain	Mesoderm / hematopoietic
18s	Ribosomal protein S18	Housekeeping
Actb	Beta actin	Housekeeping
Gapdh	Glyceraldehyde 3-phosphate dehydrogenase	Housekeeping

Table 1. PCR array genes and classifications