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SUPPORTING MATERIAL 
 
A. Table of Symbols 

 
B. Test for Oil Dissipation Artifact 
 
A freshly skinned fiber was transferred from oil to a drop of relaxing solution and, after 
two seconds, returned to oil. During this brief period in solution 3-9% (0.03-0.09: column 
5) of the diffusible protein left the fiber, the exact amount depending on the protein 
species and fiber diameter. Following a 60 s equilibration period in oil, the fiber was then 
transferred to a second drop of relaxing solution for two seconds. That is, the initial 

Symbol Description Units 
C Protein concentration µM 
D Diffusion coefficient of protein cm2 s-1 
r Radial position in fiber µm 
t Elapsed time of diffusion s 
a Outer fiber radius µm 
C0 Initial concentration of protein µM 
Dw Diffusion coefficient of protein in aqueous solution cm2 s-1 
Dh Diffusion coefficient of protein with steric hindrance cm2 s-1 
Rh Hydrodynamic radius of protein nm 
Ro Average myofilament radius nm 
L Average half center to center spacing of myofilaments nm 
Dc Diffusion coefficient of protein in a crowded cytosol cm2 s-1 
γ Ease of vacancy of protein unitless 
Vh Hydrodynamic volume of protein dL g-1 
Vh

b Average hydrodynamic volume of background proteins in cytosol dL g-1 
ρ Total protein density in the cytosol g dL-1 
Db Diffusion coefficient of protein considering binding to cytomatrix cm2 s-1 
kb Average apparent binding constant of proteins to cytomatrix unitless 
ks Average apparent binding constant of supramolecular protein complex unitless 
ks

max Maximal apparent binding constant of supramolecular protein complex unitless 
ρ50 Total protein density at half maximal binding of the protein complex g dL-1 
ns Supramolecular protein complex cooperativity parameter unitless 
M Amount of protein diffused out of fiber µmoles 
M∞ Total amount of diffusible protein in the fiber µmoles 
t/a2 Diffusion time in fiber scaled by a cross-sectional area parameter s/cm2 

 Average fiber radius over all experimental fibers µm 
ϕ Ease of vacancy – hydrodynamic volume product dL g-1 
k Boltzmann’s constant J °K-1 
T Experimental temperature °K 
ηw Viscosity of water at 7°C cP 
ΔG Free energy of protein binding to cytomatrix kJ mol-1 

 
Table S1. Complete table of symbols, description and units used. 
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conditions were re-established and the procedure repeated, during which the fiber was 
depleted of a slightly greater amount of diffusible protein (0.04-0.12: column 6). Finally, 
the fiber was transferred rapidly through oil to a third drop of relaxing solution for a final 
washout period of ten minutes. Values of Dt/a2=0.049 (i.e., D of the Constant D model 
evaluated at t/a2=0.049 × 108) were calculated for a representative set of proteins by 
applying the Constant D model to drops 1-3 and to drops 2-3, respectively, as explained 
in the table caption. Dt/a2=0.049 derived from the second transfer (column 3) exceeded those 
from the first (column 2) by a factor of 2.8±0.6 (column 4). The fact that a significantly 
higher value of Dt/a2=0.049 was observed after a reduction in protein density is consistent 
with the breakup and dissipation of a protein complex and not with a diffusional delay 
due to dissipation of a layer of oil or polarized water (see main text)..  

 

1 2 3 4 5 6 
 D1 D2 D2/D1 M1/(M1+M2+M3)  M2/(M2+M3)        
Phosphoglucose 
isomerase  

1.2 (1.0) 2.2 (1.9) 2.7 (2.0) 0.03 (0.02) 0.04 (0.03) 

Triosephosphate 
isomerase  

1.9 (1.3) 5.0 (4.7) 2.5  (0.7) 0.04 (0.02) 0.07 (0.05) 

Pyruvate kinase  4.8 (5.8) 6.9 (3.9) 3.5 (2.3) 0.07 (0.05) 0.09 (0.04) 

Enolase  2.1 (1.6) 8.5 (9.5) 3.8 (2.3) 0.04 (0.02) 0.09 (0.07) 

Glyceraldehyde-3-
phosphate 
dehydrogenase  

4.1 (3.5) 10.0 (8.6) 3.5 (1.7) 0.06 (0.04) 0.11 (0.07) 

Phosphoglycerate 
mutase  

1.3 (1.4) 2.3 (2.5) 2.4 (2.2) 0.03 (0.03) 0.04 (0.03) 

Phosphoglucose 
mutase  

2.9 (2.6) 5.3 (5.7) 3.0 (2.2) 0.05 (0.04) 0.07 (0.06) 

Adenylate kinase 1.8 (1.4) 3.5 (3.4) 2.0 (1.3) 0.04 (0.02) 0.06 (0.04) 

Parvalbumin 5.3 (2.8) 12.0 (8.9) 2.2 (0.8) 0.09 (0.03) 0.12 (0.06) 

Table S2. Comparison of diffusion coefficient Dt/a2 calculated before and after re-equilibration period 
in oil.  Column 2 and 3: Radial diffusion coefficients (D = Dt/a2): × 10-8 cm2 s-1 (means ± SD), 4 fibers, 
7°C. Protocol: Skinned fiber transferred sequentially from oil to drop 1 (2 s), oil (60 s re-equilibration 
period), drop 2 (2 s), oil (<1 s), drop 3 (600 s), oil, fiber removed. Drop and fiber samples analyzed by 
SDS-PAGE. Diffusion coefficients calculated from equation [1] and [2] in text (Constant D model). 
Amount of each protein in each drop indicated by letter M; drop number indicated by superscript. D1 
calculated using the fraction M1/(M1 +M2+M3); D2 calculated using the fraction M2/(M2+M3). Average 
radius of fiber subset, 25.5±3.7 µm. Phosphofructose kinase and glycogen phosphorylase not analyzed.  
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C. Estimation of Hydrodynamic Volume 
 
Equation 4 and 7 in our simulation requires values for the hydrodynamic volume of each 
protein (as an estimate of the protein exclusion volume), as well as the average 
hydrodynamic volume of the background proteins in the cytosol. We estimated the 
hydrodynamic volume of each protein, Vh, for all 15 proteins tracked in this simulation, 
by means of a linear fit to the hydrodynamic volume of human and earthworm 
hemoglobin as a function of molecular weight from O’Leary (1).  This method of 
estimating Vh  was used because experimental values of the hydrodynamic volume are 
not available in the literature for these proteins. To incorporate the dependence of 
hydrodynamic volume on molecular weight a linear fit of hydrodynamic volume as a 
function of molecular weight is given by expression 6 in Figure 1S below.  Of the 15 
proteins in this study all but 6 of the proteins (TPI – 53.25 kDa, PGM – 57 kDa, PAR – 
11.93 kDa, ADK – 21.64 kDa, PGO – 61.43 kDa and PGK – 36.5 kDa) fall in the 
molecular weight range spanned by human (65 kDa) and earthworm (3700 kDa) 
hemoglobin and of those 6 proteins, 3 are within 15 kDa of human hemoglobin (TPI, 

 
Figure S1. Comparison between several methods of calculating, diffusion of various proteins in an 
aqueous solution Dw, hydrodynamic radius Rh, and hydrodynamic volume Vh.  Values of diffusion in 
water and hydrodynamic radius of each protein using linear estimation of Vh as a function of molecular 
weight (expression 6) is contrasted against that obtained from empirical expressions derived from 
Young et al. (expressions 1 and 2) using the Stokes-Einstein relation (expressions 3 and 9) to perform 
intermediate calculations. 
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PGM and PGO).  A comparison of the estimated diffusion in water of each protein from 
Young et al. (2), shown in Expression 1, Figure 1S, with that obtained from the linear fit 
(Expressions 6-9, Figure 1S) shows between 7.5 to 10% higher rate of diffusion is 
predicted from the linear fit.  In addition, the estimated hydrodynamic radius using the 
linear fit lies between that estimated directly from Young et al. (Expression 2, Figure 1S) 
and that obtained estimating Dw from Young et al. and then calculating Rh using the 
Stokes-Einstein expression (Expressions 1 and 3, Figure 1S).  These observations suggest 
that the estimates of hydraulic volume used in our simulation fall within the range of the 
values that would be expected experimentally. 

 
D. Surface plots of protein concentration across myofibril radius as a function time 
 
In Figures 2S, 3S, 4S and 5S the simulation profiles of protein concentration as a function 
of radial position and time are shown for the optimized parameters of the Variable D 
model given in Table 1 in the text.  It can be observed from these figures that 
parvalbumin and adenylate kinase (Figure 4S), which were not included in the 

 
Figure S2. Surface plots of protein concentration across the fiber radius as a function of time for 
phosphoglucose isomerase (PGI), phosphofructose kinase (PFK), triosephosphate isomerase (TPI), and 
glyceraldehyde-3-phosphate dehydrogenase (GPD). 
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supramolecular protein complex, diffuse out of the myofibril rapidly and have nearly 
completely diffused out of the myofibril at t/a2 of 0.1 s/µm2.  The remaining proteins take 
much longer to diffuse out, with concentrations approaching zero across the myofibril at 
t/a2 > 0.2 s/µm2.  Phosphofructose kinase takes the longest to diffuse out of the myofibril, 
with near complete diffusion out of the myofibril at t/a2 ~ 0.4 s/µm2 (Figure 2S).  In all 
proteins participating in the supramolecular complex the steep drop in the concentration 
that progresses along the radial direction from the outer fiber radius with time is a direct 
result of the complex dissociating as local total protein concentration decreases. 
 
E. Simulation Model Code and Optimization Notes 
 
All code and datasets used to simulate the best fits of the two different model versions to 
the experimental data are available upon request from the authors.  Constant D and 
Variable D simulation codes are very similar but files in each folder differ even though 
they may be named the same.  Therefore each simulation should be run out of its 
respective folder. All code is written in MATLAB and requires the Partial Differential 
Equation toolbox to run.  Actual optimization code used to obtain these best fits is also 

 
Figure S3. Surface plots of protein concentration across the fiber radius as a function of time for 
enolase (ENO), pyruvate kinase (PVK), phosphoglycerate mutase (PGM), and aldolase (ADO). 
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available upon request and requires the additional Optimization toolbox to run locally on 
a single core and the Parallel Computing Toolbox to run the optimization in a parallel 
manner either locally on a multicore processor or on a computational cluster.  These file 
are extensively documented and could be rewritten in other programming languages.  In 
MATLAB help can be obtained for all scripts and functions by typing “help” followed by 
the script or function name.  A brief one-line description of all the scripts and functions in 
a folder can be obtained by typing “help” followed by the folder name. This 
documentation and attached model code aims at facilitating model transparency and 
model replication.   
 
There are three major differences from typical optimization methods, which are worth 
noting but are not covered in the original paper. 

1) The optimization is performed in two stages.  First a simulated annealing method 
explores the parameter space as defined by the upper and lower bounds on the 
parameters giving us a more global perspective on the minimization.  This method 
randomly selects parameter values so is independent of the initial guess.  The exact 

 
Figure S4. Surface plots of protein concentration across the fiber radius as a function of time for 
parvalbumin (PAR), adenylate kinase (ADK), phosphoglucose mutase (PGO), and glycogen 
phosphorylase (PPB). 
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method is very similar to that developed by Boyan (3) which utilizes a Modified Lam 
annealing schedule and does not impose a neighborhood function that is dependent on 
the annealing temperature for each random selection of parameter values.  Therefore 
this simulated annealing code is relatively model-independent and does not require a 
good initial guess; however, it does require the user to define the minimal bounded 
parameter space to search.  Another modification made is that the user can specify the 
number of parameters between two iterations that are allowed to change.  The exact 
parameters that do change between iterations is randomly selected and these 
parameters are allowed to change anywhere within their bounds.  After the simulated 
annealing optimization returns a value we use fmincon, a gradient-based minimization 
function included in the MATLAB optimization toolbox, to find the local minima in 
the region identified by the global simulated annealing method.  For more details on 
fmincon see MATLAB documentation (4).   

2) The form of the least-squares minimization used to determine the residual error 
between simulation and data is not the traditional least-squares error in the y variable 
given by: 

 
Figure S5. Surface plots of protein concentration across the fiber radius as a function of time for 
phosphoglycerate kinase (PGK), lactate dehydrogenase (LDH), and glycogen phosphocreatine kinase 
(PCK). 
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where RE is the residual error between the simulation evaluated at xi, ysim(xi), and yi 
where xi and yi are the values of x and y for data point i, ymax is the maximal value of 
the y variable and N is the total number of data points.  If this residual error was to be 
used the sigmoidal distribution of the data points would lead to an optimization that 
would tend to fit the large number of points at long t/a2 (t/a2 > 0.10 × 108 s/cm2) and 
would not try to minimize the error generated by the dramatic increase in diffusion 
around t/a2 ~ 0.05 × 108 s/cm2.  This type of data requires a residual error function 
that approximates the perpendicular distance of the data points to the simulation 
curve.  This is given by: 
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where xsim(yi) is the simulation x value at yi and xmax is the maximum value of the x 
variable.  This approximate perpendicular distance residual error function resulted in 
much better fits to the sigmoidal shape of the data. 

3) The optimization was run on either a multi-node remote cluster or a single/multi 
core local workstation.  In the cluster configuration the computational jobs are 
distributed across the cores in an “embarrassingly parallel” manner, meaning that 
each job executes to completion without communicating with other jobs run at the 
same time.  This is the simplest of cluster configurations and requires no message 
passing interface (MPI).  However if no cluster is available to the user the 
optimization code (available on request) can be run on a multi core workstation 
using the Parallel Computing Toolbox.  

 
F. Akaike and Bayesian Information Criteria and Residual Error 
 
Akaike and Bayesian information criteria (AIC and BIC) were performed on the 
simulations that most closely replicated the data for both the Constant D and Variable D 
models.  Both the AIC and BIC employ a penalty term that is a function of the number of 
parameters in each model in order to assess whether a better fit is justified in a model 
with more adjustable parameters.  The expression for AIC is: 
 
 AIC = n log σ 2( ) + 2K   

where n is the number of datapoints, σ2 is the sum of the residual error squared divided 
by the number of datapoints and K is the number of adjustable parameters in the model.  
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The expression for BIC is similar but has a larger penalty on additional free parameters 
and is given by: 
 
 BIC = n log σ 2( ) + K logn   

In the Variable D model there are 4 adjustable parameters, which determine the varying 
diffusion coefficients for all 11 proteins while in the Constant D model each proteins 
diffusion coefficient is determined separately yielding a model with 11 adjustable 
parameters.  In addition the Variable D model yields a smaller residual error so it is 
evident that the AIC and BIC evaluations will favor the Variable D model.  Despite this 
we have evaluated these criteria and they are given in Table 3S below and support the use 
of the Variable D over the Constant D model.  When comparing the AIC and BIC values 
calculated here the more negative values indicate better fits.  A difference of over 10 
between the two models suggest that the model with the lower AIC or BIC value is 
highly preferred.  
 In addition we have evaluated the residual error in two regions of the data, at t/a2 less 
than and greater than 0.125 × 108 s cm-2, to compare how closely each model represents 
the data in these regions.  It can be seen from Table 3S below that the Variable D model 
fits the data at the shorter time scales much more successfully than the Constant D model 
and almost equally at the longer time scales. 

 
 
  

 Variable D Model Constant D Model 
Akaike Information Criteria -1493 -1398 
Bayesian Information Criteria -1477 -1355 
Delta AIC 0 95 
Delta BIC 0 122 
Residual Error 0.0204 0.0229 
Residual Error t/a2 < 0.125 0.0186 0.0232 
Rsidual Error t/a2 > 0.125 0.0784 0.0679 

Table S3.  Akaike and Bayesian Information Criteria and residual error comparisons between the 
Variable D and Constant D models.  For both the AIC and BIC values a larger negative number is 
preferred.  These values are negative because the residual errors were normalized by the maximal 
values on each axis to represent percentage error.  In addition residual error was calculated over the 
data points where t/a2 is less than and greater than 0.125 × 108 s cm-2.  Note that the residual error at 
short time and long times is calculated in a slightly different manner than the overall residual error 
leading to larger predicted error in the Constant D model for both short and long times than is found 
overall. 
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