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In the Appendix A, the derivation of the effective two-level dynamics of the system (single ring with a dimple) is provided. In
Appendix B, we detail on the analysis of the dynamics of phase and population imbalances of coupled persistent currents flowing
in the system, respectively. In the Appendix C, details about time-of-flight density distributions plotted in Fig.4 are presented.

Appendix A: Effective qubit dynamics

In this section, we demonstrate how the effective phase dynamics indeed defines a qubit. To this end, we elaborate on the
imaginary-time path integral of the partition function of the model Eq.(B1) in the limit of large fluctuations of the number of
bosons at each site. We first perform a local gauge transformation al → ale

ilΦ eliminating the contribution of the magnetic field
everywhere except at the weak link site where the phase slip is concentrated[3]). In the regime under scrutiny, the dynamics is
governed by the Quantum-Phase Hamiltonian[4]

HQP =

N−2

∑

i=0

[Un2
i − J cos (φi+1, − φi,)] + (A1)

[Un2
N−1 − J

′ cos (φ0, − φN−1, −Φ)] (A2)

where ni and φi are conjugated variables and with J = t⟨n⟩ and J ′ = t′⟨n⟩.
The partition function of the model Eq.(B1) is

Z = Tr (e−βHBH)∝ ∫ D[{φi}]e
−S[{φi}] (A3)

where the effective action is

S[{φi}] = ∫ dτ
N−2

∑

i=0

[

1

U
(φ̇i)

2
− J cos (φi+1, − φi)] + [

1

U
(φ̇N−1)

2
− J ′ cos (φ0 − φN−1 −Φ)] (A4)

Because of the gauge transformations, the phase slip is produced only at the boundary. We define θ ≐ φN−1, − φ0,. The goal,
now, is to integrate out the phase variables in the bulk. To achieve the task, we observe that in the phase-slips-free-sites the phase
differences are small, so the harmonic approximation can be applied:

N−2

∑

i=0

cos (φi+1 − φi) ≃
N−2

∑

i=0

(φi+1 − φi)
2

2
. (A5)

In order to facilitate the integration in the bulk phases, we express the single φ0 and φN−1 as: φ0 = φ̃0+θ/2, φN−1 = φ̃0−θ/2. We
observe that the sum of the quadratic terms above involvesN−1 fields with periodic boundary conditions: {φ̃0,, φ1, . . . , φN−2} ≡

{ψ0, ψ1, . . . , ψN−2}, ψN−1 = ψ0. Therefore

N−2

∑

i=0

(φi+1 − φi)
2
=

N−2

∑

i=0

(ψi+1 − ψi)
2
+

1

2
θ2
+ θ (ψN−2 − ψ1) . (A6)

The effective action, S[{φi}], can be split into two terms S[{φi}] = S1[θ] + S2[{ψi}] with
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S1[θ] = ∫ dτ [

1

U
(θ̇)2

+

J

2
θ2
− J ′ cos (θ −Φ)] (A7)

S2[{ψi}, θ] = ∫ dτ {

1

U
(ψ̇0)

2
+

N−2

∑

i=0

[

1

U
(ψ̇i)

2
+

J

2
(ψi+1 − ψi)

2
] + Jθ (ψN−2 − ψ1)} (A8)

The integration of the fields ψi proceeds according to the standard methods (see [5]). The fields that need to be integrated out
are expanded in Fourier series (N is assumed to be even): ψl = ψ0 + (−)

lψN/2 +∑
(N−2)/2
k=1 (ψke

2πikl
N−1 + c.c.), with ψk = ak + ibk.

The coupling term in Eq. (A8) involves only the imaginary part of ψk: ψN−2 −ψ1 = ∑k bkζk, being ζk =
4

√

N − 1
sin(

2πk

N − 1
).

Therefore:

S2[{ψi}, θ] = ∫ dτ
1

U
∑

k

(ȧk)
2
+ ω2

ka
2
k + ∫ dτ

1

U
∑

k

(ḃk)
2
+ ω2

kb
2
k + JUζkθbk (A9)

where ωk =
√

2JU [1 − cos ( 2πk
N−1

)]. The integral in {ak} leads to a Gaussian path integral; it does not contain the interaction
with θ, and therefore brings a prefactor multiplying the effective action, that does not affect the dynamics. The integral in {bk}
involves the interaction and therefore leads to a non local kernel in the imaginary time: ∫ dτdτ ′θ(τ)G(τ −τ ′)θ(τ ′). The explicit
form ofG(τ −τ ′) is obtained by expanding {bk} and θ in Matsubara frequencies ωl. The corresponding Gaussian integral yields
to the

∫ D[bk]e
− ∫ dτS02

∝ exp(−βUJ2
∞

∑

l=0

Ỹ (ωl)∣θl∣
2
) (A10)

with Ỹ (ωl) = ∑
(N−2)/2
k=1

ζ2k
ω2
k
+ω2

l

. The τ = τ ′ term is extracted by summing and subtracting Ỹ (ωl = 0); this compensates the
second term in Eq.(A7).

The effective action finally reads as

Seff = ∫
β

0
dτ [

1

2U
θ̇2
+U(θ)] −

J

2U(N − 1)
∑∫ dτdτ ′θ(τ)G(τ − τ

′
)θ(τ ′) (A11)

where

U(θ) ≐
J

N − 1
(θ −Φ)

2
− J ′ cos θ (A12)

plotted in Fig.1. The kernel in the non-local term is given by

G(τ) =
∞

∑

l=0

N−2
2

∑

k=1

ω2
l (1 + cos[ 2πk

N−1
])

2JU(1 − cos[ 2πk
N−1

]) + ω2
l

eiωlτ . (A13)

The external bath vanishes in the thermodynamic limit and the effective action reduces to the Caldeira-Leggett one [5]. Finally
it is worth noting that the case of a single junction needs a specific approach but it can be demonstrated consistent with Eq.(A11).

For the two rings with tunnel coupling, a similar procedure is applied. The effective action (4) is obtained under the assumption
that the two rings are weakly coupled and that U/J << 1. The effective potential (Eq.(5) of the main manuscript) for the two-
rings-qubit is displayed in Fig.2[9].

Appendix B: Real time dynamics: Two coupled Gross-Pitaevskii equations

In this section we study the dynamics of the number and phase imbalance of two bose-condensates confined in the ring shaped
potential (see also [9]). A single-species bosonic condensate is envisaged to be loaded in the setup described above. Our system
is thus governed by a Bose-Hubbard ladder Hamiltonian

HBH =Ha +Hb +Hint − ∑

=a,b

N−1

∑

i=0

µn̂i (B1)



3

FIG. 1: The double well potential providing the single-ring-qubit for J/[J ′(N − 1)] = 0.4 and Φ = π

FIG. 2: (Left) The effective potential landscape providing the two-rings-qubit. (Right) The double well for θa = −θb. The parameters are
J̃/J = 0.8 and Φa −Φb = π.

with

Ha = −t
N−1

∑

i=0

(eiΦa/Na†
iai+1 + h.c.) +

U

2

N

∑

i=1

n̂ai (n̂
a
i − 1)

Hb = −t
N−1

∑

i=0

(eiΦb/Nb+i bi+1 + h.c.) +
U

2

N

∑

i=1

n̂bi(n̂
b
i − 1)

Hint = −g
N−1

∑

i=0

(a†
ibi + b

†
iai) (B2)

where Ha,b are the Hamiltonians of the condensates in the rings a and b and the Hint describes the interaction between rings.
Operators n̂ai = a†

iai, n̂
b
i = b

†
ibi are the particle number operators for the lattice site i. Operators ai and bi obey the standard

bosonic commutation relations. The parameter t is the tunneling rate within lattice neighboring sites, and g is the tunneling rate
between the rings. The on-site repulsion between two atoms is quantified by U =

4πash̵
2

m ∫ ∣w(x)∣4d3x, where as is the s-wave
scattering length of the atom and ∣w(x)∣ is a single-particle Wannier function. Finally, the phases Φa and Φb are the phase twists
responsible for the currents flowing along the rings. They can be expressed through vector potential of the so-called synthetic
gauge fields in the following way: Φa/N = ∫

xi+1
xi

A(z)dz, Φb/N = ∫

xi+1
xi

B(z)dz, where A(z) and B(z) are generated vector
potentials in the rings a and b, respectively. We would like to emphasize, that the inter-ring hopping element g is not affected by
the Peierls substitution because the synthetic gauge field is assumed to have components longitudinal to the rings only.

To obtain the Gross-Pitaevskyi, we assume that the system is described by a Bose-Hubbard ladder Eqs.(B1), is in a superfluid
regime, with negligible quantum fluctuations. The order parameters can be defined as the expectation values of bosonic operators
in the Heisenberg picture:

ϕa,i(s) = ⟨ai(s)⟩, ϕb,i(s) = ⟨bi(s)⟩ , (B3)
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implying that the Heisenberg equations for the operators ai and bi are simplified into the Gross-Pitaevskii equations for the
corresponding expectation values:

ih̵
∂ϕa,i

∂s
= −t(eiΦa/Nϕa,i+1 + e

−iΦa/Nϕa,i−1)

+U ∣ϕa,i∣
2ϕa,i − µaϕa,i − gϕb,i (B4)

ih̵
∂ϕb,i

∂s
= −t(eiΦb/Nϕb,i+1 + e

−iΦb/Nϕb,i−1)

+U ∣ϕb,i∣
2ϕb,i − µbϕb,i − gϕa,i (B5)

We assume that ϕa,i+1 − ϕa,i =
ϕa(s)√
N

and ϕb,i+1 − ϕb,i =
ϕb(s)√
N

for all i, j = 0, ..,N , where N is a total number of ring-lattice
sites. From Eqs.(B4) and (B5) we obtain

ih̵
∂ϕa
∂s

= −2t cos (Φa/N)ϕa +
U

N
∣ϕa∣

2ϕa

−µaϕa − gϕb (B6)

ih̵
∂ϕb
∂s

= −2t cos (Φb/N)ϕb +
U

N
∣ϕb∣

2ϕb

−µbϕb − gϕa (B7)

Employing the standard phase-number representation: ϕa,b =
√

Na,be
iθa,b, two pairs of equations are obtained for imaginary

and real parts:

h̵
∂Na
∂s

= −2g
√

NaNb sin (θb − θa)

h̵
∂Nb
∂s

= 2g
√

NaNb sin (θb − θa) (B8)

h̵
∂θa

∂s
= −2t cos Φa/N −

UNa
N

+ µa + g

√

Nb
Na

cos (θb − θa)

h̵
∂θb

∂s
= −2t cos Φb/N −

UNb
N

+ µb + g

√

Na
Nb

cos (θb − θa)

(B9)

From Eqs.(B8) it results that ∂Na
∂s

+
∂Nb
∂s

= 0, reflecting the conservation of the total bosonic number NT = Na + Nb. From
equations (B8) and (B9) we get

∂z

∂s̃
= −

√

1 − z2 sin Θ (B10)

∂Θ

∂s̃
= ∆ + λρz +

z
√

1 − z2
cos Θ (B11)

where we introduced new variables:the dimensionless time 2gs/h̵ → s̃,the population imbalance z(s̃) = (Nb −Na)/(Na +Nb)
and the phase difference between the two condensates Θ(s̃) = θa− θb. It is convenient to characterize the system with a new set
of parameters: external driving force ∆ = (2t(cos Φa/N − cos Φb/N) + µb − µa)/2g, effective scattering wavelength λ = U/2g
and total bosonic density ρ = NT /N . The exact solutions of Eqs.(B10) and (B11) in terms of elliptic functions[10] can be
adapted to our case[9]. The equations can be derived as Hamilton equations with

H(z(s̃),Θ(s̃)) =
λρz2

2
+∆z −

√

1 − z2cosΘ, (B12)
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by considering z and φ as conjugate variables. Since the energy of the system is conserved, H(z(s̃),Θ(s̃)) =H(z(0),Θ(0)) =
H0. Combining Eqs.(B10) and (B12), Θ can be eliminated, obtaining

ż2
+ [

λρz2

2
+∆z −H0]

2
= 1 − z2, (B13)

that is solved by quadratures:

λ%s̃

2
= ∫

z(s̃)

z(0)

dz
√

f(z)
, (B14)

where f(z) is the following quartic equation

f(z) = (
2

λρ
)

2
(1 − z2

) − [z2
+

2z∆

λρ
−

2H0

λρ
]
2
. (B15)

There are two different cases: ∆ = 0 and ∆ ≠ 0.
I) ∆ = 0. – In this case the solution for the z(t) can be expressed in terms of ’cn’ and ’dn’ Jacobian elliptic functions as([10]):

z(s̃) = Ccn[(Cλρ/k(s̃ − s̃0), k)] for 0 < k < 1

= Csech(Cλρ(s̃ − s̃0)), for k = 1

= Cdn[(Cλρ/k(s̃ − s̃0),1/k)] for k > 1; (B16)

k = (
Cλρ

√

2ζ(λρ)
)

2
=

1

2
[1 +

(H0λρ − 1)

(λρ)2
+ 1 − 2H0λρ

], (B17)

where

C2
=

2

(λρ)2
((H0λρ − 1) + ζ2

),

2
=

2

(λρ)2
(ζ2

− (H0λρ − 1)),

ζ2
(λρ) = 2

√

(λρ)2
+ 1 − 2H0λρ, (B18)

and s̃0 fixing z(0). Jacobi functions are defined in terms of the incomplete elliptic integral of the first kind F (φ, k) = ∫
φ

0 dθ(1−

k sin2 θ)−1/2 by the following expressions: sn(u∣k) = sinφ, cn(u∣k) = cosφ and dn(u∣k) = (1 − k sin2 φ)1/2 [12]. The
Jacobian elliptic functions sn(u∣k), cn(u∣k) and dn(u∣k) are periodic in the argument u with period 4K(k), 4K(k) and
2K(k), respectively, where K(k) = F (π/2, k) is the complete elliptic integral of the first kind. For small elliptic modulus
k ≃ 0, such functions behave as trigonometric functions; for k ≃ 1, they behave as hyperbolic functions. Accordingly, the
character of the solution of Eqs.(B10) and (B11) can be oscillatory or exponential, depending on k. For k ≪ 1, cn(u∣k) ≈

cosu+ 0.25k(u− sin (2u)/2) sinu is almost sinusoidal and the population imbalance is oscillating around a zero average value.
When k increases, the oscillations become non-sinusoidal and for 1 − k ≪ 1 the time evolution is non-periodic: cn(u∣k) ≈

secu − 0.25(1 − k)(sinh (2u)/2 − u) tanhu secu. From the last expression, we can see that at k = 1, cn(u∣k) = secu so
oscillations are exponentially suppressed and z(s̃) taking 0 asymptotic value. For the values of the k > 1 such that [1−1/k] ≪ 1
z(s) is still non-periodic and is given by: dn(u∣1/k) ≈ secu+0.25(1−1/k)(sinh (2u)/2+u) tanhu secu. Finally when k ≫ 1
than the behavior switches to sinusoidal again, but z(s̃) does oscillates around a non-zero average: dn(u∣1/k) ≈ 1 − sin2 u/2k.
This phenomenon accounts for the MQST.

II)∆ ≠ 0.– In this case z(s) is expressed in terms of the Weierstrass elliptic function([10, 11])

z(s̃) = z1 +
f ′(z1)/4

%(λρ
2
(s̃ − s̃0); g2, g3) −

f ′′(z1)
24

, (B19)

where f(z) is given by an expression (B15), z1 is a root of quartic f(z) and s̃0 = (2/λρ) ∫
z(0)
z1

dz′
√
f(z′)

. For sin Θ0 = 0 (which

is the case discussed in the text), z1 = z0 and consequently s0 = 0. The Weierstrass elliptic function can be given as the inverse
of an elliptic integral %(u; g2, g3) = y, where

u = ∫
∞

y

ds
√

4s3
− g2s − g3

. (B20)
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The constants g2 and g3 are the characteristic invariants of %:

g2 = −a4 − 4a1a3 + 3a2
2

g3 = −a2a4 + 2a1a2a3 − a
3
2 + a

2
3 − a

2
1a4, (B21)

where the coefficients ai, where i = 1, ..,4, are given as

a1 = −

∆

λρ
;a2 =

2

3(λρ)2
(λρH0 − (∆2

+ 1))

a3 =

2H0∆

(λρ)2
;a4 =

4(1 −H2
0)

(λρ)2
(B22)

In the present case (∆ ≠ 0), the discriminant

δ = g3
2 − 27g2

3 (B23)

of the cubic h(y) = 4y3
− g2y − g3 governs the behavior of the Weierstrass elliptic functions (we contrast with the case ∆ = 0,

where the dynamics is governed by the elliptic modulus k). If g2 < 0, g3 > 0 then([12])

z(s̃) = z1 +
f ′(z1)/4

c + 3c sinh−2
[

√
3cλρ
2

(s̃ − s̃0)] −
f ′′(z1)

24

. (B24)

Namely, the oscillations of z are exponentially suppressed and the population imbalance decay (if z0 > 0) or saturate (if z0 < 0)
to the asymptotic value given by z(s̃) = z1 +

f ′(z1)/4
c−f ′′(z1)/24

.
If g2 > 0, g3 > 0 then([12])

z(s̃) = z1 +
f ′(z1)/4

−c + 3c sin−2
[

√
3cλρ
2

(s̃ − s̃0)] −
f ′′(z1)

24

, (B25)

where c =
√

g2/12. We see that the population imbalance oscillates around a non-zero average value z ≐ z1 +
f ′(z1)/4

2(2c−f ′′(z1)/24)
,

with frequency ω = 2g
√

3cλρ.
We express the Weierstrass function in terms of Jacobian elliptic functions. This leads to significant simplification for the

analysis of these regimes.
For δ > 0, it results

z(s̃) = z1 +
f ′(z1)/4

e3 +
e1−e3

sn2[
λρ
√
e1−e3
2 (s̃−s̃0),k1]

−
f ′′(z1)

24

, (B26)

where k1 =
e2−e3
e1−e3

and ei are solutions of the cubic equation h(y) = 0. In this case the population imbalance oscillates about the

average value z = z1 +
f ′(z1)/4

2(e1−f ′′(z1)/24)
.

The asymptotics of the solution is extracted through: k ≪ 1, sn(u∣k) ≈ sinu − 0.25k(u − sin (2u)/2) cosu. When k
increases oscillations starting to become non-sinusoidal and when 1−k ≪ 1 it becomes non-periodic and takes form: cn(u∣k) ≈
tanhu − 0.25(1 − k)(sinh (2u)/2 − u) sec2 u.

For δ < 0 the following expression for z(s) is obtained:

z(s̃) = z1 +
f ′(z1)/4

e2 +H2
1+cn[λρ

√
H2(s̃−s̃0),k2]

1−cn[λρ
√
H2(s̃−s̃0),k2]

−
f ′′(z1)

24

, (B27)

where k2 = 1/2− 3e2
4H2

andH2 =

√

3e2
2 −

g2
4

.The asymptotical behavior of the function cn(u∣k) has been discussed in the previous

subsection. As it it seen from this expression z(s̃) oscillates about the average value z = z1 +
f ′(z1)/4

2(e2−f ′′(z1)/24)
.

1. Population imbalance and oscillation frequencies in the limit λρ≪ 1

I-B ∆ = 0.– The qualitative behavior of the dynamics for this sub-case depends on the elliptic modulus k which is given by
Eq.(B17). For λρ≪ 1

k = z(0)λρ(1 −
λρ

2

√

1 − z(0)2
) (B28)
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implying that k ≈ 0; therefore z(t) displays only one regime given by

z(s̃) ≃ z(0)(cosω(s̃ − s̃0) (B29)

+

k

4
(ω(s̃ − s̃0) − sin 2ω(s̃ − s̃0)) sinω(s̃ − s̃0)) .

where ω ≃ 2g(1 + λ
2
ρ
√

1 − z(0)2
) and s̃0 is fixing initial condition. Therefore, in this regime the population imbalance is

characterized by almost sinusoidal oscillations about zero average– see the inset of Fig. 3 of the main part of the material.
II-B ∆ ≠ 0.– In this case, the behavior of z(t) is governed by the discriminant δ of the cubic equation Eq.(B23). There are two

different regimes depending on the initial value of the population imbalance which are given by the value of δ. All the regimes
can be discussed by expressing the Weierstrass function in Eq.(B19) using Jacobian elliptic functions. In the limit of δ = 0, the
population imbalance is

z(s̃) = z(0) +
f ′[z(0)]/4

−c + 3c[sin (−

√

3cλρ
2
s̃)]−2

− f ′′[z(0)]/24
. (B30)

For the parameters discussed in Fig. 3 of the main article, f ′[z(0)] ∼ 10−14; therefore the population imbalance is constant due
to the same reason discussed for D = 0 above. In the limit of δ < 0, the population imbalance is

z(s̃) = z(0) +
f ′[z(0)]/4

e2 +H2
1+cos (λρ

√
H2s̃)

1−cos (λρ
√
H2s̃)

− f ′′[z(0)]/24
, (B31)

where e2,H2 are defined in the Appendix A. Eq.(B31) is correct when 1/2 − 3e2/4H2 ≃ 0( for the parameters considered in the
article m ≃ 10−7). As one sees from this formula, the population imbalance displays an oscillating behavior around a non-zero
average (MQST regime) with frequency given by

ω = 2g(
√

1 +∆2
+

(z(0)∆ −

√

1 − z(0)2
)(2∆2

− 1)

2(1 +∆2
)
3/2

λρ) . (B32)

This two regimes are shown in Fig. 3 of the main article.

Appendix C: Time of flight

In this section the density of momentum distribution which can be observed in the time of flight type of measurement for a
Bose-Hubbard ladder model Eq.(B1) is derived. The density of momentum distribution is given by

ρ(k) = ∫ d3x∫ d3x′⟨Ψ(x)†Ψ(x′)⟩eik(x−x′) , (C1)

where Ψ†
(x) and Ψ(x′) are bosonic field-operators.

Let us express them through Wannier functions:

Ψ(x) =
N−1

∑

i=0

[w(x − ri)eiϕ
a
i ai +w(x − ri)eiϕ

b
i bi] , (C2)

where exponential factors arise from the Peierls substitution and they are given by ϕai+1 − ϕ
a
i = 2πΦa/L

2 and ϕbi+1 − ϕ
b
i =

2πΦb/L
2, where Φa and Φb are the fluxes induced in the rings a and b respectively. After substituting Eq.(C2) into Eq.(C1) and

making change of variables z = x − ri,z′ = x′ − ri, we get

ρ(k) =∑
i

∑

j

[∣w(k)∣2(ei(ϕ
a
j −ϕ

a
i )⟨a†

iaj⟩ + e
i(ϕbj−ϕ

b
i)⟨b†

ibj⟩

+ei(ϕ
a
j −ϕ

b
i)⟨b†

iaj⟩ + e
i(ϕbj−ϕ

a
i )⟨a†

ibj⟩)]e
ik(ri−rj) . (C3)
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We note that zi − zj = 0 for i and j belonging to the same ring; otherwise zi − zj = ±D, D being the distance between the
rings.Therefore, the momentum distribution reads

ρ(k) = ∣w(k)∣2[∑
i∈a

∑

j∈a

(ei((ϕ
a
j −ϕ

a
i )+k∥⋅x∥)

⟨a†
iaj⟩

+ ∑

i∈b

∑

j∈b

ei((ϕ
b
j−ϕ

b
i)+k∥⋅x∥)

⟨b†
ibj⟩

+ ∑

i∈a

∑

j∈b

ei((ϕ
b
j−ϕ

a
i )+k∥⋅x∥+kzD)

⟨b†
iaj⟩

+ ∑

i∈b

∑

j∈a

ei((ϕ
a
j −ϕ

b
i)k∥⋅x∥−kzD)

⟨a†
ibj⟩)] , (C4)

wherew(k) are Wannier functions in the momentum space (that we considered identical for the two rings), k∥ ⋅x∥ ≐ kx(xi−xj)+
ky(yi − yj), xi = cosφi, yi = sinφi fix the positions of the ring wells in the three dimensional space, φi = 2πi/N being lattice
sites along the rings. Then we transform annihilation and creation operators to the momentum space ai = 1/

√

N ∑q e
iφiqaq and

bi = 1/
√

N ∑q e
iφiqbq . We also take into account that ϕai = 2πiΦa/N and ϕbi = 2πiΦb/N for i = 0, ..,N − 1. Finally, we get

(Eq.7)

ρ(k) =
∣w(kx, ky, kz)∣

2

N

N−1

∑

i=0

N−1

∑

j=0

∑

q∈{2πn/N}

(C5)

[cos [k∥ ⋅ x∥ + (q +
Φa
N

)(φi − φj)]⟨a
†
qaq⟩+

cos [k∥ ⋅ x∥ + (q +
Φb
N

)(φi − φj)]⟨b
†
qbq⟩+

2 cos [k∥ ⋅ x∥ + kzD + (q +
Φa
N

)φi − (q +
Φb
N

)φj)]⟨a
†
qbq⟩] .

1. Expectation values for U = 0

In the following, we provide the details of the calculations of the expectation values entering the Eq.(C5), for U = 0.
The Hamiltonian in the Fourier space reads

HBH =∑

k

[−2t cos k̃aa
†
kak − 2t cos k̃bb

+
kbk − g(a

†
kbk + b

†
kak)] (C6)

We perform a Bogolubov rotation

ak = sin θkαk + cos θkβk

bk = cos θkαk − sin θkβk (C7)

The Hamiltonian Eq.(C6) can be diagonalized choosing tan 2θk = g/t(cos k̃a + cos k̃b):

HBH = ∑

k

[εα(k)α
†
kαk + εβ(k)β

+
kβk] (C8)

εα,β(k) = −t(cos k̃a + cos k̃b)

∓

√

g2
+ t2(cos k̃a − cos k̃b)2

where k̃a = k +Φa/N, k̃b = k +Φb/N and ± corresponds to the α and β respectively.
The correlation functions result

⟨a†
kak⟩ = sin2 θk⟨α

†
kαk⟩ + cos2 θk⟨β

†
kβk⟩ (C9)

⟨b†
kbk⟩ = cos2 θk⟨α

†
kαk⟩ + sin2 θk⟨β

†
kβk⟩

⟨a†
kbk⟩ = ⟨b†

kak⟩ =

sin 2θk
2

(⟨α†
kαk⟩ − ⟨β†

kβk⟩)
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where ⟨α†
kαk⟩ and ⟨β†

kβk⟩ are given by the usual Bose-Einstein distribution:

⟨α†
kαk⟩ =

1

e(εα(k)−µα)/kBT − 1
(C10)

⟨β†
kβk⟩ =

1

e(εβ(k)−µβ)/kBT − 1

where µα,β are the chemical potentials of the condensates of quasiparticles, kB is a Boltzmann constant and T is e temperature
of the condensate.

The chemical potentials can be obtained by fixing the average number of boson per site (filling). It is convenient to introduce
the new variables µ = (µα + µβ)/2, δ = (µα − µβ)/2. The partition function of the system is given by

Z =∏

k

[1 − e−β(εα(k)−µ)][1 − e−β(εβ(k)−µ)] (C11)

where β = 1/kBT . The free energy of the system can be calculated from the partition function

F = −

1

Nβ
ln Z (C12)

Then the chemical potentials can be fixed solving the following equations:

Nα +Nβ = −
∂F

∂δ
, Nα −Nβ = −

∂F

∂µ
(C13)

where theNα,β are the numbers of the quasiparticles of the type α and β respectively.It is easy to show, thatNα+Nβ = NT ,where
NT is a total number of the bosonic particles in the system.
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