

Figure S1. Chemical shift assignments of Pdx1 c-terminus IDP annotated on a 2D-heteronuclear correlation spectra using the newer H_{α} - start ¹³C-detected CON as described in Figure 2B. The zoom of the region with the high concentrations of NMR peaks are shown on the right with high resolution H_{N} - start ¹³C-detected CON as described in Figure 2A.

Figure S2. Pulse sequence for the (H_N-flip)NCACON-IPAP experiment. The delays are δ = 10.8 ms, Δ = 9.0 ms, Δ_1 = 24.8 ms, Δ_2 = 28.0 ms, Δ_3 = 32.0 ms, and ε = t₂(0) + pC180. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C′ and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹⁵N was achieved by the use of 1.25 kHz garp- sequences. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is φ_1 = 8(x), 8(-x); φ_2 = 8(-x), 8(x); φ_3 = x, -x; φ_4 = 2(x), 2(-x); φ_5 = 4(x), 4(-x); $\varphi_{IPAP}(IP)$ = x, $\varphi_{IPAP}(AP)$ = -y; φ_{REC} = x, 2(-x), x, -x, 2(x), -x, -x, 2(x), -x, x, 2(-x), x. Quadrature detection in the t₁ and t₂ dimension is obtained by States-TPPI incrementation of φ_3 and φ_5 respectively.

Figure S3. Pulse sequence for the (H_N-flip)NCANCO-IPAP experiment. The delays are δ = 10.8 ms, Δ = 9.0 ms, Δ_1 = 24.8 ms, Δ_2 = 28.0 ms, Δ_3 = 32.0 ms, and ε = t₂(0) + pC180. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Composite pulse decoupling of ¹⁵N was achieved by the use of 1.25 kHz garp- sequences. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is φ_1 = 8(x), 8(-x); φ_2 = 8(-x), 8(x); φ_3 = x, -x; φ_4 = 2(x), 2(-x); φ_5 = 4(x), 4(-x); $\varphi_{IPAP}(IP)$ = x, $\varphi_{IPAP}(AP)$ = -y; φ_{REC} = x, 2(-x), x, -x, 2(x), -x, -x, 2(x), -x, x, 2(-x), x. Quadrature detection in the t₁ and t₂ dimension is obtained by States-TPPI incrementation of φ_3 and φ_5 respectively.

Figure S4. Pulse sequence for the (HACA)NCO-D-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 18$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. The pulse filled with hashed lines achieves selection of aspartic acid and is a 180° Q3 shaped pulse, centered at 42 ppm, and applied with a duration of 1200 µs on a system opperating at 11.7 T static field strength. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$, 8(-x); $\varphi_3 = x$, -x; $\varphi_4 = 16(x)$, 16(-x); $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 4(-x, x, x, x, -x), 2(x, -x, -x, x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S5. Pulse sequence for the (HACA)CON-A-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, and $\epsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x, -x$; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S6. Pulse sequence for the (HACA)NCO-A-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 15$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S7. Pulse sequence for the (HACA)CON-E-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, $\Delta_2 = 32$ ms, $\Delta_3 = 18$ ms, and $\varepsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$,8(-x); $\varphi_3 = x$, -x; $\varphi_4 = 16(x)$, 16(-x); $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 4(-x, x, x, -x), 2(x, -x, -x, x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S8. Pulse sequence for the (HACA)NCO-E-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 18$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$, 8(-x); $\varphi_3 = x, -x$; $\varphi_4 = 16(x)$, 16(-x); $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 4(-x, x, x, -x), 2(x, -x, -x, x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S9. Pulse sequence for the (HACA)CON-G-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, and $\varepsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$,8(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 2(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S10. Pulse sequence for the (HACA)NCO-G-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 14$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$, 8(-x); $\varphi_3 = x, -x$; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 2(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S11. Pulse sequence for the (HACA)CON-LA-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, $\Delta_2 = 7.2$ ms, $\Delta_3 = 14$ ms, $\Delta_4 = 18$ ms, and $\epsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. The pulses filled with hashed lines achieve selection of leucine and alanine. These band selective pulses are 180° Q3 shaped pulses with the following properties (times relevant for a system opperating at 11.7 T static field strength): 1st is centered at 19 ppm and applied for 1200 µs; 2nd is centered at 35 ppm and applied for 840 µs; 3rd is centered at 48 ppm and applied for 1200 µs. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S12. Pulse sequence for the (HACA)NCO-LA-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 7.2$ ms, $\Delta_3 = 14$ ms, $\Delta_4 = 18$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are offresonance 180° Q3 shaped pulses, centered at 54 ppm. The pulses filled with hashed lines achieve selection of leucine and alanine. These band selective pulses are 180° Q3 shaped pulses with the following properties (times relevant for a system opperating at 11.7 T static field strength): 1st is centered at 19 ppm and applied for 1200 µs; 2nd is centered at 35 ppm and applied for 840 μs; 3rd is centered at 48 ppm and applied for 1200 μs. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30), 2(90), 2(150), 2(210),$ 2(270), 2(330); $\phi_2 = 12(x), 12(-x); \phi_3 = x, -x; \phi_{IPAP}(IP) = x, \phi_{IPAP}(AP) = -y; \phi_{REC} = 3(x, -x, -x, x), 3(-x, -x, -x))$ Х, Х, Х,

-x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of $\phi_{3}.$

Figure S13. Pulse sequence for the (HACA)CON-S-IPAP experiment. The delays are $\bar{\delta}$ = 7.0 ms, Δ = 9.0 ms, Δ_1 = 25 ms, and ϵ = t₁(0) + pC180. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. The pulses filled with hashed lines achieve selection of serine. These band selective pulses are 180° Q3 shaped pulses, centered at 60 ppm and applied for 1200 µs on a system opperating at 11.7 T static field strength. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is φ_1 = 2(45), 2(135), 2(225), 2(315); φ_2 = 8(x),8(-x); φ_3 = x, -x; φ_4 = 16(x), 16(-x); $\varphi_{IPAP}(IP)$ = x, $\varphi_{IPAP}(AP)$ = -y; φ_{REC} = 2(x, -x, -x, x), 4(-x, x, x, -x), 2(x, -x, -x, x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S14. Pulse sequence for the (HACA)NCO-S-IPAP experiment. The delays are δ = 7.0 ms, Δ = 9.0 ms, Δ_1 = 32 ms, Δ_2 = 16.4 ms, and Δ' = 26.6 ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. The pulses filled with hashed lines achieve selection of serine. These band selective pulses are 180° Q3 shaped pulses, centered at 60 ppm and applied for 1200 µs on a system opperating at 11.7 T static field strength. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(45)$, 2(135), 2(225), 2(315); $\varphi_2 = 8(x)$, 8(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 2(x, -x, -x, x)$, 2(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S15. Pulse sequence for the (HACA)CON-TAVI-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, $\Delta_2 = 11$ ms, and $\epsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C° inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x, -x$; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S16. Pulse sequence for the (HACA)NCO-TAVI-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 11$ ms, $\Delta_3 = 15$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, -x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S17. Pulse sequence for the (HACA)CON-T-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 25$ ms, $\Delta_2 = 11$ ms, and $\varepsilon = t_1(0) + pC180$. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. The gray pulse on ¹³C indicates a band-selective ¹³C' and ¹³C^α inversion pulse. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. The pulse filled with hashed lines achieves selection of threonine. This band selective pulse is a 180° Q3 shaped pulse, centered at 68.5 ppm and applied for 1200 µs on a system opperating at 11.7 T static field strength. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garp- sequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .

Figure S18. Pulse sequence for the (HACA)NCO-T-IPAP experiment. The delays are $\delta = 8.0$ ms, $\Delta = 9.0$ ms, $\Delta_1 = 32$ ms, $\Delta_2 = 11$ ms, $\Delta_3 = 15$ ms, and $\Delta' = 26.6$ ms. Pulses are applied at the frequency indicated on the left of each line, with narrow and wide rectangles or shapes representing 90° and 180° pulses, respectively. Pulses filled with diagonal lines are off-resonance 180° Q3 shaped pulses, centered at 54 ppm. The pulse filled with hashed lines achieves selection of threonine. This band selective pulse is a 180° Q3 shaped pulse, centered at 68.5 ppm and applied for 1200 µs on a system opperating at 11.7 T static field strength. Composite pulse decoupling of ¹H and ¹⁵N was achieved by the use of 3.57 kHz waltz-65 and 1.25 kHz garpsequences, respectively. Pulses labeld 'TR' are time-reversed versions of the standard 90° Q5 shaped pulse. All pulses are applied with x-phase unless otherwise indicated. The phase cycle is $\varphi_1 = 2(30)$, 2(90), 2(150), 2(210), 2(270), 2(330); $\varphi_2 = 12(x)$, 12(-x); $\varphi_3 = x$, -x; $\varphi_{IPAP}(IP) = x$, $\varphi_{IPAP}(AP) = -y$; $\varphi_{REC} = 3(x, -x, -x, x)$, 3(-x, x, x, -x). Quadrature detection in the indirect dimension is obtained by States-TPPI incrementation of φ_3 .